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Theory of Computation Overview

Main questions in theory of computation:

What is computation?  Automata & Turing Machines as the mathematical model
What can and cannot be computed?  Computability
What can be efficiently computed?  Complexity

Mathematical proof should provide 3 levels:

1. Short phrase giving "hints"
2. One paragraph description of main ideas
3. Full proof (and nothing else)

Automata

See my "Computer Languages & Compilers" course note. The following are something more formal.

Formal Definition of Language

An Alphabet  is a finite set of characters:

A String  over  is a finite sequence of characters 

 length of string 
The unique string of length 0 (empty string) denoted by 

 is the set of all strings over 

A Language over  is a set of strings over , i.e., a subset of :

Sometimes, we think of a language  as a function  (accepting a string or not?)
Sometimes, we use  to denote set of all strings that an automaton  accepts

http://people.csail.mit.edu/rrw/


Notation Meaning Notes

Empty language

Union

Intersection

 or Complement

Reverse

Concatenation

0 or more self-concatenation (Kleen star/closure)

1 or more self-concatenation

Operations on languages:

Deterministic Finite Automata (DFA) & Regularity

A DFA is a 5-tuple , e.g., 

Composed of:

: the finite set of states
: the finite alphabet

:  is the transition function
 is the start state
 is a finite set of accept/final states

 accepts a string  if there is a sequence , s.t.: (o.w. called reject)

, and
 for all , and

A language  is regular iff  is recognized by a DFA, that is, there is a DFA  where .

Regular Languages (RLs) are closed under the following cases:

1. Union Theorem: Union of two RLs  is still regular; rule to construct DFA:

, i.e., composite pairs of states

2. Intersection Theorem: Intersection of two RLs  is still regular; rules:

same as unioned DFA, except that

3. Complement Theorem: Complement of an RL  is still regular; rules:

everything the same as , except that
, i.e., flip final & non-final states

4. Reverse Theorem: Reverse of an RL  is still regular; rules are not intuitive, we should first introduce NFAs

5. Similar for Concatenation, Prefix, & Wrap.

Non-deterministic Finite Automata (NFA)

An NFA is a 5-tuple , e.g., 

Composed of:



: the finite set of states
: the finite alphabet

:  is the transition function, where  means the set of all possible subsets of 
 is a set of start states

 is a finite set of accept/final states
We allow multiple start states here, but normally the definition is only one; convertion is easy: add an extra state 
which stretchs -transitions to all the start states

 accepts a string  if there is a sequence , s.t.: (o.w. called reject)

, and
 for all , and

For every NFA , there is a DFA  s.t. :

Idea: Subset Construction, setting ; see my PL note - "Convert NFA  DFA"
This means a language  is regular iff  is recognized by an NFA!
This means using NFAs in place of DFAs can make proofs about RLs much easier!

Constructing NFA over language operations: Thompson's construction; see my PL note - "From RE  NFA".

Regular Expressions (REs) & Generalized NFA (GNFA)

First, check my PL note - "Regular Expressions".

Expressiveness: DFA  NFA  RE. They all express regular languages. Proof is two fold, where RE  regular is easy. Regular 
 RE introduces the concept of GNFA.

A Generalized NFA (GNFA) can read in entire substrings on one edge (labeled by an RE), instead of only a single character, 

e.g., 

Every NFA is also a GNFA, and
Every RE represents a GNFA (with only two states)

Converting from an NFA  into a GNFA  with only two states, then we can prove that  (which is regular) is 
equivalent to the language represented by the RE on that only edge of . Conversion goes as the following:

Non-Regular Languages

So far, our topics cover:

 
    Figure from Ryan's slides.

There are many languages that are non-regular (Cannot find a DFA for it). A typical example is . The 
big idea here is that: A DFA cannot remember how many zeros it has read in, if there are more zeros than its # states. Its # 
states is finite!

// Converting NFA to a two-states GNFA which is essentially an RE.

G convert(N) {

    if (#states == 2) return N;

    else {

        pick state q_rip which is not q_start or q_acc;

        for (every pair of states (q_i, q_j) that originally has path through q_rip)  // q_i can == 

q_j.

            R(q_i, q_j) += R(q_i, q_rip) R(q_rip, q_rip)^* R(q_rip, q_j);

        results in a 1-state fewer GNFA G';

        return convert(G');

    }

}

https://people.csail.mit.edu/rrw/6.045-2020/lec4-color.pdf


More examples:  (palindromes) 

Proof method - The confusion technique: Assume there is a DFA , and # states = . Carefully choose string , where 
. Use Pigeonhole Principle to show that some state  must be visited at least twice. Then,  is in state  after 

reading  or , where  and  are two different prefixes of . Then pick a string  s.t. exactly one  or  is in   
Contradiction!

DFA Minimization

For every regular language , there is a unique & minimal DFA  (minimal here means fewest number of states; unique 
here means up to re-labeling states) s.t. .

We introduce the following terms:

For DFA , denote ,  which is the sub-DFA starting from 

String  distinguishes states  and  iff:  accepts    rejects  (i.e., leading to one accepting  the 
other rejecting)

If  such  (including !), then  (distinguishable from)
If ,  cannot distinguish  from , then  (indistinguishable from)

Easy to prove that indistinguishability relation is an equivalence relation. This means we can partition  into several 
equivalence classes, where each of them . Big idea of minimizing DFA is to find such partition into 
equivalence classes, and shrinking each of them down to one state. Output  has the following three properties:

1. 
2.  has no inaccessible states (i.e., unreachable from initial state)
3.  is irreducible (i.e., every pair of states is distinguishable)

Minimization algorithm: first prepare a table ; (after the algorithm it looks like )

Detailed proof about correctness & uniqueness can be found in Lec5's slides.

The Myhill-Nerode Theorem

Let us define an equivalence relation which is purely on the language itself and not assuming any DFAs: Let  and 
,  means that . We call  and  are indistinguishable to  (or -equivalent).

The Myhill-Nerode Theorem states that, a language  is regular  the number of equivalence classes of  is finite.

Proof is two-fold, by proving both directions; See Lec6's slides.
Application: a new way of proving a given language is not regular - give an infinite set of strings  in  (called a 
distinguishing set) s.t.  and  are distinguishable to .

Streaming Algorithms

Streaming algorithms are an extension to finite automata. They have 3 components:

1. Initialize: a bunch of variables and their initial assignments
2. Next symbol action: pseudocode to operate on variables when seeing the next incoming symbol 

// Minimizing a DFA M.

M_min minimize(M) {

    Run a graph search from initial state q_0 to remove all inaccessible states from M;

    // Running the Table Filling algorithm...

    for (all (p, q) s.t. exactly one of them is an accepting state)

        Mark 'D' at entry (p, q);   // Base case: distinguishable by eps.

    while (there is update in this iteration) {     // Iter: infer pairs distinguishable with longer 

strings.

        if (exists (p, q) and any symbol a in alphabet s.t. delta(p, a) = p2, delta(q, a) = q2, and

            we already marked 'D' at entry (p2, q2))

            Mark 'D' at entry (p, q);

    }

    Get EQUIV set = {[q] | q in Q} by those unmarked pairs;

    return M_min = (EQUIV, Sigma, delta_min([q], a) -> [delta(q, a)], [q_0], {[q] | q in F});

}



3. Stop: accept/reject condition when the stream stops

They are very similar to DFAs except that their memory usage can increase with the string length. This gives them the 
ability to recognize non-regular languages!

Example - streaming algorithm that recognizes  over alphabet :

When using binary representation to store variables  and , space usage of this algorithm is .

Proving lower bounds of memory usage of a streaming algorithm:

If language  is computable by a streaming algorithm with space usage , then , there is a DFA  with 
 states s.t. , i.e.,  (proof - see Lec7's slide);

A streaming distinguisher  for  is a subset of  s.t. , there is a string  s.t.  and  
distinguishes ;
Streaming Theorem: Suppose , there is a streaming distinguisher  with , then all streaming 
algorithms that recognize  must use at least  space.

For 2-pass streaming algorithm solution to FREQUENT ITEMS problem, see Lec7 slides.

Computability

Turing Machines (TM), Recognizability, & Decidability

Introduced by Alan Turing in 1936.

A (Deterministic) Turing Machine (TM) is defined as: , in each 

step:

1. Reads a symbol
2. Writes a symbol
3. Finite control changes state
4. Moves left / right a block

A formal definition would be a 7-tuple ,

Composed of:

: the finite set of states
: the finite input alphabet
: the finite tape alphabet, where  ("blank" symbol)  and 
: , where  means moving left / right

 is the start state
 is the accepting state

// Initialize:

C = 0, B = 0;

// When next symbol is 'a':

if (C == 0) {

    B = a;

    C = 1;

} else if (C != 0 && B == a)

    C++;

else if (C != 0 && B != a)

    C--;

// When stream stops:

if (B == 1 && C > 0)

    ACCEPT;

else

    REJECT;



 is the rejecting state, and 
Initially, input string is written on tape and the control head points to the first symbol

A TM configuration  is the stuff on tape with current state inserted right before control head

Configuration  yields  if  goes to  after running for one step in 

 accepts a string  if there is a sequence of configurations s.t.: (reject is similar)

, and
 yields  for all , and

 contains the accept state 
A TM can have 3 kinds of behaviors on an input string:

1. Accept
2. Reject
3. Running forever w/o halting

Recognizability is defined as the following:

A TM  recognizes  iff  accepts exactly the strings in  (but for other strings it might run forever)
A language  is recognizable (i.e., recursively enumerable) if some  recognizes 

Decidability is defined as the following: (this is stronger than recognizability)

A TM  decides  iff  accepts all strings in , and rejects all strings not in 
A language  is decidable (i.e., recursive) if some  decides 

Universal TM & The Church-Turing Thesis

We can encode a TM into a bit string , where (DFA / NFA are similar)

 encodes the machine metadata

 # states
 # tape symbols (we assume first  are input symbols)

 # input symbols
 index of the start state
 index of the accepting state
 index of the rejecting state
 index of the blank symbol

Each  encodes a function map in 

We then encode a pair of bit strings  as . Then, any DFA / NFA / TM is just a language over !

A Universal TM  can simulate any other TMs, i.e.,  accepts  accepts . In other words, there is a TM that 
can run any other arbitrary TM code! Proof is in Lec9 slides.

Since  is not regular, there isn't a DFA which can simulate any other DFA
 and  are both decidable;  is recognizable but undecidable

The Church-Turing Thesis states that "Any function on natural numbers can be calculated by an effective method (i.e., has 
an algorithm)  it is computable by a TM". The Church-Turing Thesis implies that there are unrecognizable languages! We 
can prove by showing that there is no onto function from the set of all TMs ( ) to the set of all languages over 

 (powerset of , i.e., ). In other words, there are more problems to solve than there are programs to 
solve them.

The Halting Problem & Mapping Reduction

Example of a recognizable but undecidable problem:

Consider the language . This is equivalent to the problem: 
given code of a TM  and an input , does  accept ? This problem is recognizable but undecidable.
Proof idea: diagnolization - suppose there is a machine  that decides , define a TM  that runs  on 

 and outputs the opposite answer. Now consider the input  for :  accepts   
rejects   rejects. Contradiction!

Example of an unrecognizable problem:



Consider the language  (  can be empty). This is 
equivalent to the "non-acceptance" problem of TMs.
Lemma:  is decidable   and  are both recognizable.
Then,  is not recognizable, otherwise both  and  would be decidable.

The Halting Problem states that:

Consider the language . This language is 
undecidable. In other words, there is no TM that can decide whether a TM halts on an input.

Proof idea: suppose there is a TM  that decides , then we can use  to construct a TM  that decides 
:

 runs 
If  rejects, then reject
If  accepts, run  and produce the output

In general, this technique is: to prove language  is undecidable, we prove that "If  is decidable, then so is ".

A function  is a computable function if there is a TM  that halts with exactly  written on tape, for every 
input . A language  is mapping reducible to language , formally , if there is a computable function  s.t. 

. Here,  is called a mapping reduction (or many-one reduction) from  to .

Mapping reducible relation  is transitive
If , then 
If  and  is recognizable, then  is recognizable; If  and  is unrecognizable, then  is 
unrecognizable
If  and  is decidable, then  is decidable; If  and  is undecidable, then  is undecidable

The language  is "complete" in recognizability!

Interesting conclusions & corollaries, see Lec11 slides for details:

, , , 
, , thus unrecognizable

, , thus unrecognizable

Oracle TMs & Turing Reduction

An Oracle TM  is one equipped with a set  and an oracle tape, and  may enter a special state  to ask queries 
about whether string on oracle tape  or not (goes to  if yes, o.w., ). Assume this "oracle" check finishes in one 
step.

A language  is decidable with  if there is an oracle TM with oracle  that accepts strings in  and rejects others. We 
say  Turing reduces to , formally .

Turing reducible relation  is transitive
If  and  is decidable, then  is decidable; If  and  is undecidable, then  is undecidable

We claim that :

In other words, we can decide the acceptance problem, given an oracle for the halting problem

Proof idea: write pseudocode for an oracle TM for  on input :

If , then run  and outputs its answer
Else, reject

Interesting conclusions & corollaries, see Lec11 slides for details:

, , 
If , then 

, 

Oracle TMs cannot solve all problems. In fact, there is an infinite hierarchy of unsolvable problems:

1. 
2. 
3. 
4. ...

Self-Reference & Recursion

There is a computable function  s.t., for every string ,  where  always prints out  and then 
accepts. Based on this, we can define a self-printing TM by:



  "takes input , outputs " 
Now consider the TM which takes input  and runs : it just prints out a machine description  "takes input , 
outputs " 

This is the essential idea behind quine programs.

More formally, the Recursion Theorem states that for every computable function , there  TM 
, such that for every string , . Construction of such TM:

  "takes input , outputs " 

, we can show that 

This theorem implies that we can use the operation "obtain your own description" in TM pseudocode!

A novel approach to prove that  is undecidable: Assume  decides . Define  to run  and 
outputs the opposite answer. According to the Recursion Theorem, there is a TM  s.t.  and it would 
say  rejects  when  accepts . Contradiction.

Also see proof of  is undecidable in Lec12 slides.

Formal Systems

See Lec12 slides page 17~25. I don't really catch them.

Complexity

Communication Complexity

Consider a theoretical model of communication: we have a function , where

Alice only knows , a binary string input; Bob only knows , another binary string input
Goal: get result of  by communicating as few bits as possible between Alice & Bob
Assume they alternate in communicating, and in every step send 1 bit / a STOP signal, and the last bit sent is the 
result

Define a protocol computing  to be a pair of functions , with the semantics:

The cost of a communication protocol  on -bit strings is the maximum number of rounds (i.e. ) taken by the 
algorithm over all possible input . The communication complexity of  on -bit strings, , is the minimum 
cost over all protocols computing  on -bit strings.

We are only interested in the communication cost, not including computation on either side

There is always a trivial protocol for any :

Alice sends the bits of  in odd rounds and Bob sends the bits of  in even rounds
 For every function , 

Connection to streaming algorithms & DFAs: For  with , define 

If  has a streaming algorithm using  space on string length , then . Idea: Alice 
runs streaming algorithm on  and reaches a memory configuration, she sends that configuration to Bob in 

 rounds, and Bob continues the algorithm on  from that configuration, then sends result bit to Alice
 For every regular , it has a DFA to compute, so 

Proving lower bounds of communication complexity:

Define communication pattern of a protocol on input  to be the sequence of bits Alice & Bob send, i.e. . 
If  and  have the same pattern , then  and  also have pattern 
Suppose , then there are  possible patterns. By the Pigeonhole Principle, ...

// Communication protocol semantics

r = 0, b_r = eps;

while (b_r != STOP) {

    r++;

    if (r is odd)

        Alice sends b_r = A(x, b_1...b_r-1);

    else

        Bob   sends b_r = B(y, b_1...b_r-1);

}

output f(x, y) = b_r-1;



Notation Definition Abbr. Meaning

 is dominated by  (strictly "smaller" than )

 is bounded above by 

 is "equal" to 

 is bounded below by 

 dominates  (strictly "larger" than )

Computation Time Complexity

The very basic notations of asymptotic complexity (Bachman-Landau notations):

Measuring worst-case time complexity of a TM can be done on counting the steps taken for a TM to halt on input of 
length . Formally,  where  the maximum number of steps taken by  over all inputs of length .

Example of a TM for deciding  using  time (we say ):

1. If  is not of the form , reject

2. Repeat untill all bits crossed out:

1. If parity of 0s  parity of 1s, reject
2. Cross out every other 0; Cross out every other 1
3. If all bits are crossed out, accept

To prove that there is no algorithm using less time, we can prove that any  is an unbounded function, 

it contains only regular languages, thus not including .

Different computation models can yield different time complexity! For example, on a two-tapes TM, there is an  
algorithm for :

1. Sweep over all 0s, copy them onto the second tape
2. Sweep over all 1s, each time crossing out a 0 from the second tape

Every multi-tape TM using  time on a language  has an equivalent  time one-tape TM  Language decidable 
in polynomial time on any multi-tape TM can be decided in polynomial time on a traditional one-tape TM. See an intuitive 
simulation on Lec13 slides, page 17-20.

An efficient universal TM  is one that takes in an extra input  and simply rejects when the simulated TM exceeds  
steps. Obviously,  accepts  accepts  in  steps. We can also guarantee that such  runs in  
time.

The Time Hierarchy Theorem states that for all reasonable  where  for all , 
. "We can solve strictly more problems if given quadratically more time to compute."

Proof idea is to use diagonalization with a clock, and the contradiction implies that the input cannot be decided in 
 time. But, by picking , we can construct a universal TM running in  

time to simulate a TM over this problem that runs in  time
Claim actually still holds for  

Nondeterminism & P vs. NP

Define:

These are the effectively decidable problems in the world of complexity theory (can be efficiently solved on real-world 
machines). The Extended Church-Turing Thesis states that our notion of efficient algorithms  polynomial time TMs. 
This thesis is under doubt nowadays because of the existense of quantum algorithms.

Define a decidable predicate  as a proposition about inputs  s.t. some TM  implements  (i.e., 
, ; i.e.,  is a computable function: 

). Theorems states that a language  is recognizable  there is a decidable predicate  s.t. 
.



This bridges recognizability via decidability. The proof is trivial for , and for , let  be true iff  accepts  in 
 steps.

Examples of using this theorem to show some language is recognizable - : 
let  be true iff  accepts string  in  steps. Keep guessing some  and verify it in finite  time!

This implies a very important corollary: "Determinism vs. Nondeterminism, are they equally powerful?"

Yes for finite automata
No for Turing machines
??? for polynomial time

A Nondeterministic Turing Machine (NTM) is one whose state diagram is an NFA. A formal definition is a 7-tuple 
,

Composed of:

Normal components of a TM

An accepting computation history for  on  is a sequence of configurations  following the definition of 
acceptance of a TM

 accepts in  time  such a history exists
 has time complexity  if on all inputs  of length at most ,  halts in  time

Now we can define . Define:

Can think of it as "recognizability" in complexity field. It means that tracing down a specific computation history in the 
"nondeterministic parallel tree" takes polynomial time. Equivalently, it means there is an algorithm which can verify (i.e., 
prove) whether a given solution (certificate) is correct, in polynomial time. [Existential Analogy]

Formally,  there is a constant  and a polynomial-time NTM  (verifier) s.t. 
.

Examples of NP problems:

Boolean SAT problems: 

Special case: conjunctive negation formula (CNF) - conjunction of clauses who are disjunctions of literals
3-CNF takes the form: ; each clause has 3 literals

Hamiltonian path problem

EQUIV / NEQUIV formula

-Clique problem; Independent set; Vertex cover

Knapsack problems (0-1)

... (many more)

NP-Completeness & The Cook-Levin Theorem

A polynomial time reduction is a mapping reduction where the function  is computable in polynomial time. We denote 
that as .

A useful property of such  is that for any input , 
 is also transitive

If  and , then ; If  and , then 
If  and , then ; If  and , then 

So we can ask: what are the "hardest" NP problems under such reduction? We define a language  to be NP-Complete 
(NPC) if  and  is NP-Hard: for every , .

We can easily show that  is NPC
The Cook-Levin Theorem states that the  language is NPC! See Lec15 slides for a high-level proof.

The entire P=NP? question can be answered if we can prove whether a logic problem  or .

3-SAT can be polynomial-time reduced to problems including (see Lec16 slides): Clique, Vertex cover, Independent set, 
Subset sum, Knapsack, Fair partition, Bin packing, Hamiltonian path, Longest path.... So these are all NP-Complete, thus 
equivalent in some deep sense.



CoNP & Oracle Complexity

The class coNP is the set of languages whose complement is in NP: . This is called 
conondeterministic computation. For a coNP language , there is a polynomial-time algorithm that can verify that a 
certificate is not in  (i.e., can efficiently verify a counter-example). In other words, a conondeterministic machine "tries 
all" polynomial-time paths and accepts only if all these paths lead to accept. [Universal Analogy]

; generally, deterministic complexity is closed under complement, so in fact 
Is ? It is also an open question!

Examples of coNP problems:

...

A language is coNP-Complete if  and  is coNP-Hard: for every , .

Key trick: , so we can easily prove coNP-completeness by using NP-completeness
Easy to see that  is coNP-complete, and the same for others

A very important class of languages is the .

Is ? is also an open question!

Next we move on to complexity classes with oracles. Denote  be the set of languages decidable in polynomial-time with 
an oracle for . Similarly:

 be the class of languages decidable in polynomial-time with an oracle for some language in 

 because running polynomial steps of polynomials still gives a polynomial
 be the class of languages decidable in polynomial-time with an oracle for some language in 

For any language  which is NP-complete, ; For example, 
 , 

 be the class of languages decidable by a polynomial-time NTM with an oracle for some language in 

Is ? is an open question!
 be the class of languages decidable by a polynomial-time conondeterministic TM with an oracle for some 

language in 

Is ? is an open question!

Space Complexity

We measure space complexity by finding the largest tape index reached during computation of TM. The worst-case 
space complexity  is the largest tape index reached by TM on any input of length .

Use  as the set of languages decided by a TM with  space complexity. We have 
. Every multi-tape TM using  space on a language  has an equivalent  space 

one-tape TM.

Like the Time Hierarchy, we have the Space Hierarchy Theorem that for all reasonable  where 

, . "We can solve strictly more problems if given more space to compute."

Define:



Intuition: You can always re-use space, but you cannot re-use time! So same order of space is intuitively stronger.

For every halting TM using  space, the upper bound of running time is the total number of possible configurations 
, otherwise the TM loops. This implies that there is a TM running in  time that decides the same language.

This means that if we define:

Then 
And  and , thus 

We can also have nondeterminism here. Define  as the set of languages decided by an NTM with  
space complexity. Define:

 is also 
The Savitch's Theorem states that for functions , , this means 

!

One example of PSPACE-complete problems is: True-Fully-Quantified-Boolean-Formula (TQBF).

P, NP, & PSPACE complexity can model the complexity of some games:

P captures short "zero-player" games, such as Conway's Game of Life
NP captures short "one-player" games with a goal, including many single-perspective video games
PSPACE captures short "two-player" games with a winning strategy

Randomized Complexity

A probabilistic TM  is an NTM where each nondeterministic step is a coin flip. Suppose each step has only two legal 
next moves. The probability that  runs on a path  is , where  is the number of coin flips that occur on .

The probability that  accepts input  is .

Language  in  means 
Language  in  means 

A probabilistic TM  decides a language  with error  iff for all input :

, and
.

We can define Bounded Probabilistic  ( ) to be the set of languages decided by some probabilistic polynomial-time TM 
with error at most  for some . Using the Error Reduction Lemma as stated in Lec21 slides, we can show that for 

any language  in , there is an equivalent machine  which decides  in the same time complexity with error 
. A one-sided version is Randomized  ( ) where negative inputs are always not accepted but positive inputs have 

bounded error.

One example of BPP problems is: Zero-Identical-Polynomial (ZERO-POLY). It is not known how to solve ZERO-POLY 
efficiently without randomness.

A widely-conjectured complexity space venn diagram looks like the following:



Figure taken from Ryan's slides.

 


