
 Probability & Statistics

Author: Jose 胡冠洲 @ ShanghaiTech & Staff of Harvard STAT-110

 Probability & Statistics
Full-ver. Cheatsheet
Harvard Stat-110 Cheatsheet
Harvard Stat-110 Review Notes

Full-ver. Cheatsheet

See below (page 2-3).

Harvard Stat-110 Cheatsheet

See below (page 4-13).

Harvard Stat-110 Review Notes

See below (page 14-122).

 



R

.Bb .BbiX SJ6 1 o�` S:6 J:6
"2`MUpV P (X = 1) = p, P (X = 0) = q p pq pt+ q pet + q
"BMUn, pV

(
n
x

)
pxqn−x- x ∈ [0, n] np npq (pt+ q)n (pet + q)n

>:2QKUw, b, nV (wx )(
b

n−x)
(w+b

n )
- 0 ≤ k ≤ w, 0 ≤ n− k ≤ b nw

w+b f f f
:2QKUpV qkp- x ≥ 0 q

p
q
p2

p
1−qt

p
1−qet

6aUpV qk−1p- x ≥ 1 1
p

q
p2

pt
1−qt

pet

1−qet

L"BMUr, pV
(
n+r−1
r−1

)
prqn- n ≥ 0 r q

p r q
p2 ( p

1−qt)
r ( p

1−qet )
r

SQBbUλV e−λλk

k! - k ≥ 0 λ λ eλ(t−1) eλ(e
t−1)

*QMi .BbiX S.6 *.6 1 o�` J:6
lMB7Ua, bV 1

b−a - a < x < b · · · x−a
b−a - a < x < b · · · a+b

2
(b−a)2

12
etb−eta

t(b−a)

N (0, 1) 1√
2π
e−z2/2

∫ z

−∞
1√
2π
e−t2/2dt y R e

t2

2

N (µ,σ2) 1
σ
√
2π
e−(z−µ)2/(2σ2)

∫ z

−∞
1

σ
√
2π
e−(t−µ)2/(2σ2)dt µ σ2 eµt+

1
2σ

2t2

1tTQUλV λe−λx- x > 0 1− e−λx- x > 0 1
λ

1
λ2

λ
λ−t

"2i�Ua, bV 1
β(a,b)x

a−1(1− x)b−1 f a
a+b f f

:�KK�Ua,λV 1
Γ(a)(λy)

ae−λy 1
y f a

λ
a
λ2 f

"�v2bǶ _mH2 Y /Bb Y +QMi
X /Bb P (X=x|Y=y)P (Y=y)
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Ç SJ6, P (X = x) @ LQMM2;�iBp2c amKb iQ R

Ç DQBMi SJ6, P (X = x, Y = y) = P (X = x|Y = y)P (Y = y)

Ç K�`;BM�H SJ6, P (X = x) =
∑

y P (X = x, Y = y)

Ç S.6, fX(x) = F ′
X(x) @ LQMM2;�iBp2c BMi2;`�i2b iQ R

Ç DQBMi S.6, fX,Y (x, y) =
∂2

∂x∂yFX,Y (x, y)

Ç K�`;BM�H S.6, fX(x) =
∫∞
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Ç *.6, FX(x) = P (X ≤ x) @ LQM/2+`2�bBM;c _B;?i@+QMiBMmQmbc
HBKx→−∞ F (x) = 0- HBKx→∞ F (x) = 1
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∑
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8X 1p2Ƕb G�r
Ç S`QT2`iB2b,

RX V ar(X + c) = V ar(X)- V ar(cX) = c2V ar(X)

kX V ar(X + Y ) = V ar(X) + V ar(Y ) Bz BM/2T2M/2Mi5

S`QTQbBiBQM, fX,Y (x, y) = g(x)h(y) ⇒ BM/2T2M/2Mi �M/ B7 g Bb p�HB/ S.6-
#Qi? �`2 p�HB/ K�`;BM�H S.6b Q7 X �M/ Y
AM/2T2M/2M+2

RX FX,Y (x, y) = FX(x)FY (y)

kX fX,Y (x, y) = fX(x)fY (y)

jX fX|Y (x|y) = fX(x)

avKK2i`v
Ç X ∼ "BMUn, pV ⇒ n−X ∼ "BMUn, qV
Ç X ∼ >:2QKUw, b, nV ⇔ >:2QKUn,w + b− n,wV
Ç Z ∼ N (0, 1) ⇒ φ(z) = φ(−z)

Ç Z ∼ N (0, 1) ⇒ Φ(z) = 1− Φ(−z)

Ç Z ∼ N (0, 1) ⇒ −Z ∼ N (0, 1)
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n) c G(s+ t) = G(s)G(t)
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Ç 1tTQ K�t @ KBM, M − L ∼ 1tTQUλV- BM/2T2M/2Mi Q7 L
Ç "BM ⇒ >:2QK, X ∼ "BMUn, pV- Y ∼ "BMUm, pV ⇒ X|X + Y = r ∼

>:2QKUn,m, rV
Ç >:2QK ⇒ "BM, X ∼ >:2QKUw, b, nV- w + b → ∞ bXiX w

w+b }t2/ ⇒
X +QMp2`;2b iQ "BMUn, w

w+bV
Ç "BM ⇒ SQBb, X ∼ "BMUn, pV- n → ∞, p → 0 �M/ λ = np }t2/ ⇒ X

+QMp2`;2b iQ SQBbUλV
Ç SQBb ⇒ "BM, X ∼ SQBbUλ1V- Y ∼ SQBbUλ2V ⇒ X|X + Y = n ∼

"BMUn, λ1

λ1+λ2
V

Ç *?B+F2M@1;;, X + Y = N ∼ SQBbUλV- X|X + Y = n ∼ "BMUn, pV ⇒
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Ç b?B7i@b+�H2 Q7 LQ`K, Z ∼ N (0, 1)- X = µ+ σZ ⇒ X ∼ N (µ,σ2)
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∑
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BM;U/2+`2�bBM;V ⇒ fY (y) = fX(x)|dxdy |
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Ç DQBMi S.6, fX(1),...,X()

(x1, . . . , xn) = n!f(x1) · · · f(xn)

Ç S.6, fX(j)
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F k(x)(1− F (x))n−k

"2i�
Ç β(a, b) =

∫ 1

0
xa−1(1− x)b−1 = (a−1)!(b−1)!

(a+b−1)!

Ç "2i�@"BM *QMDmM;�+v, T`BQ` p ∼ "2i�Ua, bV- X|p ∼ "BMUn, pV- i?2M
p|X = k ∼ "2i�Ua+ k, b+ n− kV- E(p|X = k) = a+k

a+b+n

:�KK�
Ç Γ(a) =

∫∞
0

xae−x 1
xdx = (a− 1)!

Ç bmK Q7 1tTQ, Xj ∼ 1tTQUλV ⇒ X1 + · · ·+Xn ∼ :�KK�Un,λV

Ç "�MF@SQbi P{+2, X ∼ :�KK�Ua,λV- Y ∼ :�KK�Ub,λV- T =
X + Y,W = X

X+Y ⇒ T ∼ :�KK�Ua+ b,λV- W ∼ "2i�Ua, bV
*QM/BiBQM�H 1tT2+i�iBQM �M/ o�`B�M+2

Ç X,Y �`2 BM/2T2M/2Mi ⇒ E(Y |X) = E(Y )

Ç E(h(X)Y |X) = h(X)E(Y |X)

Ç HBM2�`Biv BM 7`QMi55

Ç �/�KǶb G�r, E(E(Y |X)) = E(Y ) f E(E(Y |X,Z)|Z) = E(Y |Z)

Ç 1p2Ƕb G�r, V ar(Y ) = E(V ar(Y |X)) + V ar(E(Y |X))

AM72`2M+2
Ç "�v2bB�M AM72`2M+2, `XpX θ rBi? T`BQ` /Bbi`B#miBQM- X rBi? fX|θ �M/

Q#b2`p2/ X = k ⇒ TQbi2`BQ` fθ|X=k

RX J�S, θ̂ = arg K�tθ f(θ|X = k)

kX Ga1fJa1, θ̂ = E(θ|X = k)

Ç *H�bbB+�H AM72`2M+2, +QMbi�Mi θ- Q#b2`p�iBQM P (X = k) Bb 7mM+iBQM Q7 θ

RX JG1, θ̂ = arg K�tθ P (X = k)

a�KTHBM; �M/ GBKBib
Ç a�KTH2 J2�M, X̄n = 1

n

∑n
j=1 Xj - E(X̄n) = µ- V ar(X̄n) =

σ2

n

Ç a�KTH2 o�`B�M+2, S2
n = 1

n−1

∑n
j=1(Xj − X̄n)2- E(S2

n) = σ2

Ç G�r Q7 G�`;2 LmK#2`b

RX �b n → ∞- P (X̄n → µ) = 1

kX �b n → ∞- ∀ϵ > 0, P (|X̄n − µ| > ϵ) → 0

Ç *Gh, �b n → ∞- √n( X̄n−µ
σ ) → N (0, 1)

RX Y ∼ SQBbUnV ⇒ Y ∼ N Un, nV
kX Y ∼ :�KK�Un,λV ⇒ Y ∼ N Un

λ ,
n
λ2 V

jX Y ∼ "BMUn, pV ⇒ Y ∼ N Unp, npqV

AM2[m�HBiB2b
Ç *�m+?v@a+?r�`ix, |E(XY )| ≤

√
E(X2)E(Y 2)

Ç a2+QM/ JQK2Mi, P (X = 0) ≤ V ar(X)
E(X2)

Ç C2Mb2MǶb, g(x) Bb +QMp2t- E(g(X)) ≥ g(E(X))c +QM+�p2- ≤

Ç J�`FQpǶb, P (|X| ≥ a) ≤ E|X|
a

Ç *?2#ib?2pǶb, P (|X − µ| ≥ a) ≤ σ2

a2

Ç *?2`MQzǶb, P (X ≥ a) ≤ KBMt>0
E(etX)

eta
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Let’s say we have a compound experiment (an experiment with
multiple components). If the 1st component has n1 possible outcomes,
the 2nd component has n2 possible outcomes, . . . , and the rth
component has nr possible outcomes, then overall there are
n1n2 . . . nr possibilities for the whole experiment.

Sampling Table
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The sampling table gives the number of possible samples of size k out
of a population of size n, under various assumptions about how the
sample is collected.

Order Matters Not Matter

With Replacement nk
⇣n + k � 1

k

⌘

Without Replacement
n!

(n � k)!

⇣n
k

⌘

Naive Definition of Probability

If all outcomes are equally likely, the probability of an event A
happening is:

Pnaive(A) =
number of outcomes favorable to A

number of outcomes

Thinking Conditionally

Independence
Independent Events A and B are independent if knowing whether
A occurred gives no information about whether B occurred. More
formally, A and B (which have nonzero probability) are independent if
and only if one of the following equivalent statements holds:

P (A \ B) = P (A)P (B)

P (A|B) = P (A)

P (B|A) = P (B)

Conditional Independence A and B are conditionally independent
given C if P (A \ B|C) = P (A|C)P (B|C). Conditional independence
does not imply independence, and independence does not imply
conditional independence.

Unions, Intersections, and Complements
De Morgan’s Laws A useful identity that can make calculating
probabilities of unions easier by relating them to intersections, and
vice versa. Analogous results hold with more than two sets.

(A [ B)c = Ac \ Bc

(A \ B)c = Ac [ Bc

Joint, Marginal, and Conditional
Joint Probability P (A \ B) or P (A,B) – Probability of A and B.

Marginal (Unconditional) Probability P (A) – Probability of A.

Conditional Probability P (A|B) = P (A,B)/P (B) – Probability of
A, given that B occurred.

Conditional Probability is Probability P (A|B) is a probability
function for any fixed B. Any theorem that holds for probability also
holds for conditional probability.

Probability of an Intersection or Union
Intersections via Conditioning

P (A,B) = P (A)P (B|A)

P (A,B,C) = P (A)P (B|A)P (C|A,B)

Unions via Inclusion-Exclusion

P (A [ B) = P (A) + P (B) � P (A \ B)

P (A [ B [ C) = P (A) + P (B) + P (C)

� P (A \ B) � P (A \ C) � P (B \ C)

+ P (A \ B \ C).

Simpson’s Paradox

Dr. Hibbert Dr. Nick

heart

band-aid

It is possible to have

P (A | B,C) < P (A | Bc, C) and P (A | B,Cc) < P (A | Bc, Cc)

yet also P (A | B) > P (A | Bc).

Law of Total Probability (LOTP)
Let B1, B2, B3, ...Bn be a partition of the sample space (i.e., they are
disjoint and their union is the entire sample space).

P (A) = P (A|B1)P (B1) + P (A|B2)P (B2) + · · · + P (A|Bn)P (Bn)

P (A) = P (A \ B1) + P (A \ B2) + · · · + P (A \ Bn)

For LOTP with extra conditioning, just add in another event C!

P (A|C) = P (A|B1, C)P (B1|C) + · · · + P (A|Bn, C)P (Bn|C)

P (A|C) = P (A \ B1|C) + P (A \ B2|C) + · · · + P (A \ Bn|C)

Special case of LOTP with B and Bc as partition:

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc)

P (A) = P (A \ B) + P (A \ Bc)

Bayes’ Rule
Bayes’ Rule, and with extra conditioning (just add in C!)

P (A|B) =
P (B|A)P (A)

P (B)

P (A|B,C) =
P (B|A,C)P (A|C)

P (B|C)

We can also write

P (A|B,C) =
P (A,B,C)

P (B,C)
=

P (B,C|A)P (A)

P (B,C)

Odds Form of Bayes’ Rule

P (A|B)

P (Ac|B)
=

P (B|A)

P (B|Ac)

P (A)

P (Ac)

The posterior odds of A are the likelihood ratio times the prior odds.

Random Variables and their Distributions

PMF, CDF, and Independence
Probability Mass Function (PMF) Gives the probability that a
discrete random variable takes on the value x.

pX(x) = P (X = x)
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The PMF satisfies

pX(x) � 0 and
X

x

pX(x) = 1
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Cumulative Distribution Function (CDF) Gives the probability
that a random variable is less than or equal to x.

FX(x) = P (X  x)

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

cd
f

●

● ●

● ●

● ●

● ●

●

The CDF is an increasing, right-continuous function with

FX(x) ! 0 as x ! �1 and FX(x) ! 1 as x ! 1

Independence Intuitively, two random variables are independent if
knowing the value of one gives no information about the other.
Discrete r.v.s X and Y are independent if for all values of x and y

P (X = x, Y = y) = P (X = x)P (Y = y)

Expected Value and Indicators

Expected Value and Linearity
Expected Value (a.k.a. mean, expectation, or average) is a weighted
average of the possible outcomes of our random variable.
Mathematically, if x1, x2, x3, . . . are all of the distinct possible values
that X can take, the expected value of X is

E(X) =
P
i
xiP (X = xi)

X
3
2
6
10
1
1
5
4
...

Y
4
2
8

23
–3
0
9
1
...

X + Y
7
4

14
33
–2
1

14
5
...

∑ xi ∑ yi+ ∑ (xi
 + yi)=

E(X) E(Y)+ E(X + Y)=

i=1

n

i=1

n

i=1

n

n
1

n
1

n
1

Linearity For any r.v.s X and Y , and constants a, b, c,

E(aX + bY + c) = aE(X) + bE(Y ) + c

Same distribution implies same mean If X and Y have the same
distribution, then E(X) = E(Y ) and, more generally,

E(g(X)) = E(g(Y ))

Conditional Expected Value is defined like expectation, only
conditioned on any event A.

E(X|A) =
P
x

xP (X = x|A)

Indicator Random Variables
Indicator Random Variable is a random variable that takes on the
value 1 or 0. It is always an indicator of some event: if the event
occurs, the indicator is 1; otherwise it is 0. They are useful for many
problems about counting how many events of some kind occur. Write

IA =

(
1 if A occurs,

0 if A does not occur.

Note that I2
A = IA, IAIB = IA\B , and IA[B = IA + IB � IAIB .

Distribution IA ⇠ Bern(p) where p = P (A).

Fundamental Bridge The expectation of the indicator for event A is
the probability of event A: E(IA) = P (A).

Variance and Standard Deviation

Var(X) = E (X � E(X))2 = E(X2) � (E(X))2

SD(X) =
q

Var(X)

Continuous RVs, LOTUS, UoU

Continuous Random Variables (CRVs)
What’s the probability that a CRV is in an interval? Take the
di↵erence in CDF values (or use the PDF as described later).

P (a  X  b) = P (X  b) � P (X  a) = FX(b) � FX(a)

For X ⇠ N (µ,�2), this becomes

P (a  X  b) = �

✓
b � µ

�

◆
� �

✓
a � µ

�

◆

What is the Probability Density Function (PDF)? The PDF f
is the derivative of the CDF F .

F 0(x) = f(x)

A PDF is nonnegative and integrates to 1. By the fundamental
theorem of calculus, to get from PDF back to CDF we can integrate:

F (x) =

Z x

�1
f(t)dt
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To find the probability that a CRV takes on a value in an interval,
integrate the PDF over that interval.

F (b) � F (a) =

Z b

a
f(x)dx

How do I find the expected value of a CRV? Analogous to the
discrete case, where you sum x times the PMF, for CRVs you integrate
x times the PDF.

E(X) =

Z 1

�1
xf(x)dx

LOTUS

Expected value of a function of an r.v. The expected value of X
is defined this way:

E(X) =
X

x

xP (X = x) (for discrete X)

E(X) =

Z 1

�1
xf(x)dx (for continuous X)

The Law of the Unconscious Statistician (LOTUS) states that
you can find the expected value of a function of a random variable,
g(X), in a similar way, by replacing the x in front of the PMF/PDF by
g(x) but still working with the PMF/PDF of X:

E(g(X)) =
X

x

g(x)P (X = x) (for discrete X)

E(g(X)) =

Z 1

�1
g(x)f(x)dx (for continuous X)

What’s a function of a random variable? A function of a random
variable is also a random variable. For example, if X is the number of
bikes you see in an hour, then g(X) = 2X is the number of bike wheels

you see in that hour and h(X) =
�X

2

�
= X(X�1)

2 is the number of
pairs of bikes such that you see both of those bikes in that hour.

What’s the point? You don’t need to know the PMF/PDF of g(X)
to find its expected value. All you need is the PMF/PDF of X.

Universality of Uniform (UoU)

When you plug any CRV into its own CDF, you get a Uniform(0,1)
random variable. When you plug a Uniform(0,1) r.v. into an inverse
CDF, you get an r.v. with that CDF. For example, let’s say that a
random variable X has CDF

F (x) = 1 � e�x, for x > 0

By UoU, if we plug X into this function then we get a uniformly
distributed random variable.

F (X) = 1 � e�X ⇠ Unif(0, 1)

Similarly, if U ⇠ Unif(0, 1) then F�1(U) has CDF F . The key point is
that for any continuous random variable X, we can transform it into a
Uniform random variable and back by using its CDF.

Moments and MGFs

Moments

Moments describe the shape of a distribution. Let X have mean µ and
standard deviation �, and Z = (X � µ)/� be the standardized version
of X. The kth moment of X is µk = E(Xk) and the kth standardized
moment of X is mk = E(Zk). The mean, variance, skewness, and
kurtosis are important summaries of the shape of a distribution.

Mean E(X) = µ1

Variance Var(X) = µ2 � µ2
1

Skewness Skew(X) = m3

Kurtosis Kurt(X) = m4 � 3



Moment Generating Functions
MGF For any random variable X, the function

MX(t) = E(etX)

is the moment generating function (MGF) of X, if it exists for all
t in some open interval containing 0. The variable t could just as well
have been called u or v. It’s a bookkeeping device that lets us work
with the function MX rather than the sequence of moments.

Why is it called the Moment Generating Function? Because
the kth derivative of the moment generating function, evaluated at 0,
is the kth moment of X.

µk = E(Xk) = M(k)
X (0)

This is true by Taylor expansion of etX since

MX(t) = E(etX) =
1X

k=0

E(Xk)tk

k!
=

1X

k=0

µkt
k

k!

MGF of linear functions If we have Y = aX + b, then

MY (t) = E(et(aX+b)) = ebtE(e(at)X) = ebtMX(at)

Uniqueness If it exists, the MGF uniquely determines the

distribution. This means that for any two random variables X and Y ,
they are distributed the same (their PMFs/PDFs are equal) if and
only if their MGFs are equal.

Summing Independent RVs by Multiplying MGFs. If X and Y
are independent, then

MX+Y (t) = E(et(X+Y )) = E(etX)E(etY ) = MX(t) · MY (t)

The MGF of the sum of two random variables is the product of the
MGFs of those two random variables.

Joint PDFs and CDFs

Joint Distributions
The joint CDF of X and Y is

F (x, y) = P (X  x, Y  y)

In the discrete case, X and Y have a joint PMF

pX,Y (x, y) = P (X = x, Y = y).

In the continuous case, they have a joint PDF

fX,Y (x, y) =
@2

@x@y
FX,Y (x, y).

The joint PMF/PDF must be nonnegative and sum/integrate to 1.

Conditional Distributions
Conditioning and Bayes’ rule for discrete r.v.s

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
=

P (X = x|Y = y)P (Y = y)

P (X = x)

Conditioning and Bayes’ rule for continuous r.v.s

fY |X(y|x) =
fX,Y (x, y)

fX(x)
=

fX|Y (x|y)fY (y)

fX(x)

Hybrid Bayes’ rule

fX(x|A) =
P (A|X = x)fX(x)

P (A)

Marginal Distributions
To find the distribution of one (or more) random variables from a joint
PMF/PDF, sum/integrate over the unwanted random variables.

Marginal PMF from joint PMF

P (X = x) =
X

y

P (X = x, Y = y)

Marginal PDF from joint PDF

fX(x) =

Z 1

�1
fX,Y (x, y)dy

Independence of Random Variables
Random variables X and Y are independent if and only if any of the
following conditions holds:

• Joint CDF is the product of the marginal CDFs
• Joint PMF/PDF is the product of the marginal PMFs/PDFs
• Conditional distribution of Y given X is the marginal

distribution of Y

Write X ?? Y to denote that X and Y are independent.

Multivariate LOTUS
LOTUS in more than one dimension is analogous to the 1D LOTUS.
For discrete random variables:

E(g(X,Y )) =
X

x

X

y

g(x, y)P (X = x, Y = y)

For continuous random variables:

E(g(X,Y )) =

Z 1

�1

Z 1

�1
g(x, y)fX,Y (x, y)dxdy

Covariance and Transformations

Covariance and Correlation
Covariance is the analog of variance for two random variables.

Cov(X,Y ) = E ((X � E(X))(Y � E(Y ))) = E(XY ) � E(X)E(Y )

Note that
Cov(X,X) = E(X2) � (E(X))2 = Var(X)

Correlation is a standardized version of covariance that is always
between �1 and 1.

Corr(X,Y ) =
Cov(X,Y )

p
Var(X)Var(Y )

Covariance and Independence If two random variables are
independent, then they are uncorrelated. The converse is not
necessarily true (e.g., consider X ⇠ N (0, 1) and Y = X2).

X ?? Y �! Cov(X,Y ) = 0 �! E(XY ) = E(X)E(Y )

Covariance and Variance The variance of a sum can be found by

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X,Y )

Var(X1 + X2 + · · · + Xn) =
nX

i=1

Var(Xi) + 2
X

i<j

Cov(Xi, Xj)

If X and Y are independent then they have covariance 0, so

X ?? Y =) Var(X + Y ) = Var(X) + Var(Y )

If X1, X2, . . . , Xn are identically distributed and have the same
covariance relationships (often by symmetry), then

Var(X1 + X2 + · · · + Xn) = nVar(X1) + 2
⇣n
2

⌘
Cov(X1, X2)

Covariance Properties For random variables W,X, Y, Z and
constants a, b:

Cov(X,Y ) = Cov(Y,X)

Cov(X + a, Y + b) = Cov(X,Y )

Cov(aX, bY ) = abCov(X,Y )

Cov(W + X,Y + Z) = Cov(W,Y ) + Cov(W,Z) + Cov(X,Y )

+ Cov(X,Z)

Correlation is location-invariant and scale-invariant For any
constants a, b, c, d with a and c nonzero,

Corr(aX + b, cY + d) = Corr(X,Y )

Transformations

One Variable Transformations Let’s say that we have a random
variable X with PDF fX(x), but we are also interested in some
function of X. We call this function Y = g(X). Also let y = g(x). If g
is di↵erentiable and strictly increasing (or strictly decreasing), then
the PDF of Y is

fY (y) = fX(x)

����
dx

dy

���� = fX(g�1(y))

����
d

dy
g�1(y)

����

The derivative of the inverse transformation is called the Jacobian.

Two Variable Transformations Similarly, let’s say we know the
joint PDF of U and V but are also interested in the random vector
(X,Y ) defined by (X,Y ) = g(U, V ). Let

@(u, v)

@(x, y)
=

 
@u
@x

@u
@y

@v
@x

@v
@y

!

be the Jacobian matrix. If the entries in this matrix exist and are
continuous, and the determinant of the matrix is never 0, then

fX,Y (x, y) = fU,V (u, v)

����

����
@(u, v)

@(x, y)

����

����

The inner bars tells us to take the matrix’s determinant, and the outer
bars tell us to take the absolute value. In a 2 ⇥ 2 matrix,

����

����
a b
c d

����

���� = |ad � bc|

Convolutions

Convolution Integral If you want to find the PDF of the sum of two
independent CRVs X and Y , you can do the following integral:

fX+Y (t) =

Z 1

�1
fX(x)fY (t � x)dx

Example Let X,Y ⇠ N (0, 1) be i.i.d. Then for each fixed t,

fX+Y (t) =

Z 1

�1

1
p
2⇡

e�x2/2 1
p
2⇡

e�(t�x)2/2dx

By completing the square and using the fact that a Normal PDF
integrates to 1, this works out to fX+Y (t) being the N (0, 2) PDF.



Poisson Process

Definition We have a Poisson process of rate � arrivals per unit
time if the following conditions hold:

1. The number of arrivals in a time interval of length t is Pois(�t).

2. Numbers of arrivals in disjoint time intervals are independent.

For example, the numbers of arrivals in the time intervals [0, 5],
(5, 12), and [13, 23) are independent with Pois(5�),Pois(7�),Pois(10�)
distributions, respectively.

0 T1 T2 T3 T4 T5

+ + + + +

Count-Time Duality Consider a Poisson process of emails arriving
in an inbox at rate � emails per hour. Let Tn be the time of arrival of
the nth email (relative to some starting time 0) and Nt be the number
of emails that arrive in [0, t]. Let’s find the distribution of T1. The
event T1 > t, the event that you have to wait more than t hours to get
the first email, is the same as the event Nt = 0, which is the event that
there are no emails in the first t hours. So

P (T1 > t) = P (Nt = 0) = e��t �! P (T1  t) = 1 � e��t

Thus we have T1 ⇠ Expo(�). By the memoryless property and similar
reasoning, the interarrival times between emails are i.i.d. Expo(�), i.e.,
the di↵erences Tn � Tn�1 are i.i.d. Expo(�).

Order Statistics

Definition Let’s say you have n i.i.d. r.v.s X1, X2, . . . , Xn. If you
arrange them from smallest to largest, the ith element in that list is
the ith order statistic, denoted X(i). So X(1) is the smallest in the list
and X(n) is the largest in the list.

Note that the order statistics are dependent, e.g., learning X(4) = 42
gives us the information that X(1), X(2), X(3) are  42 and
X(5), X(6), . . . , X(n) are � 42.

Distribution Taking n i.i.d. random variables X1, X2, . . . , Xn with
CDF F (x) and PDF f(x), the CDF and PDF of X(i) are:

FX(i)
(x) = P (X(i)  x) =

nX

k=i

⇣n
k

⌘
F (x)k(1 � F (x))n�k

fX(i)
(x) = n

⇣n � 1

i � 1

⌘
F (x)i�1(1 � F (x))n�if(x)

Uniform Order Statistics The jth order statistic of
i.i.d. U1, . . . , Un ⇠ Unif(0, 1) is U(j) ⇠ Beta(j, n � j + 1).

Conditional Expectation

Conditioning on an Event We can find E(Y |A), the expected value
of Y given that event A occurred. A very important case is when A is
the event X = x. Note that E(Y |A) is a number. For example:

• The expected value of a fair die roll, given that it is prime, is
1
3 · 2 + 1

3 · 3 + 1
3 · 5 = 10

3 .

• Let Y be the number of successes in 10 independent Bernoulli
trials with probability p of success. Let A be the event that the
first 3 trials are all successes. Then

E(Y |A) = 3 + 7p

since the number of successes among the last 7 trials is Bin(7, p).

• Let T ⇠ Expo(1/10) be how long you have to wait until the
shuttle comes. Given that you have already waited t minutes,
the expected additional waiting time is 10 more minutes, by the
memoryless property. That is, E(T |T > t) = t + 10.

Discrete Y Continuous Y

E(Y ) =
P

y yP (Y = y) E(Y ) =
R1
�1 yfY (y)dy

E(Y |A) =
P

y yP (Y = y|A) E(Y |A) =
R1
�1 yf(y|A)dy

Conditioning on a Random Variable We can also find E(Y |X),
the expected value of Y given the random variable X. This is a

function of the random variable X. It is not a number except in
certain special cases such as if X ?? Y . To find E(Y |X), find
E(Y |X = x) and then plug in X for x. For example:

• If E(Y |X = x) = x3 + 5x, then E(Y |X) = X3 + 5X.

• Let Y be the number of successes in 10 independent Bernoulli
trials with probability p of success and X be the number of
successes among the first 3 trials. Then E(Y |X) = X + 7p.

• Let X ⇠ N (0, 1) and Y = X2. Then E(Y |X = x) = x2 since if
we know X = x then we know Y = x2. And E(X|Y = y) = 0
since if we know Y = y then we know X = ±p

y, with equal

probabilities (by symmetry). So E(Y |X) = X2, E(X|Y ) = 0.

Properties of Conditional Expectation

1. E(Y |X) = E(Y ) if X ?? Y

2. E(h(X)W |X) = h(X)E(W |X) (taking out what’s known)
In particular, E(h(X)|X) = h(X).

3. E(E(Y |X)) = E(Y ) (Adam’s Law, a.k.a. Law of Total
Expectation)

Adam’s Law (a.k.a. Law of Total Expectation) can also be
written in a way that looks analogous to LOTP. For any events
A1, A2, . . . , An that partition the sample space,

E(Y ) = E(Y |A1)P (A1) + · · · + E(Y |An)P (An)

For the special case where the partition is A,Ac, this says

E(Y ) = E(Y |A)P (A) + E(Y |Ac)P (Ac)

Eve’s Law (a.k.a. Law of Total Variance)

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X))

MVN, LLN, CLT

Law of Large Numbers (LLN)

Let X1, X2, X3 . . . be i.i.d. with mean µ. The sample mean is

X̄n =
X1 + X2 + X3 + · · · + Xn

n

The Law of Large Numbers states that as n ! 1, X̄n ! µ with
probability 1. For example, in flips of a coin with probability p of
Heads, let Xj be the indicator of the jth flip being Heads. Then LLN
says the proportion of Heads converges to p (with probability 1).

Central Limit Theorem (CLT)

Approximation using CLT

We use ⇠̇ to denote is approximately distributed. We can use the
Central Limit Theorem to approximate the distribution of a random
variable Y = X1 + X2 + · · · + Xn that is a sum of n i.i.d. random
variables Xi. Let E(Y ) = µY and Var(Y ) = �2

Y . The CLT says

Y ⇠̇N (µY ,�2
Y )

If the Xi are i.i.d. with mean µX and variance �2
X , then µY = nµX

and �2
Y = n�2

X . For the sample mean X̄n, the CLT says

X̄n =
1

n
(X1 + X2 + · · · + Xn) ⇠̇N (µX ,�2

X/n)

Asymptotic Distributions using CLT

We use
D�! to denote converges in distribution to as n ! 1. The

CLT says that if we standardize the sum X1 + · · · + Xn then the
distribution of the sum converges to N (0, 1) as n ! 1:

1

�
p
n
(X1 + · · · + Xn � nµX)

D�! N (0, 1)

In other words, the CDF of the left-hand side goes to the standard
Normal CDF, �. In terms of the sample mean, the CLT says

p
n(X̄n � µX)

�X

D�! N (0, 1)

Markov Chains

Definition
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A Markov chain is a random walk in a state space, which we will
assume is finite, say {1, 2, . . . ,M}. We let Xt denote which element of
the state space the walk is visiting at time t. The Markov chain is the
sequence of random variables tracking where the walk is at all points
in time, X0, X1, X2, . . . . By definition, a Markov chain must satisfy
the Markov property, which says that if you want to predict where
the chain will be at a future time, if we know the present state then
the entire past history is irrelevant. Given the present, the past and

future are conditionally independent. In symbols,

P (Xn+1 = j|X0 = i0, X1 = i1, . . . , Xn = i) = P (Xn+1 = j|Xn = i)

State Properties
A state is either recurrent or transient.

• If you start at a recurrent state, then you will always return
back to that state at some point in the future. ♪You can

check-out any time you like, but you can never leave. ♪

• Otherwise you are at a transient state. There is some positive
probability that once you leave you will never return. ♪You

don’t have to go home, but you can’t stay here. ♪
A state is either periodic or aperiodic.

• If you start at a periodic state of period k, then the GCD of
the possible numbers of steps it would take to return back is
k > 1.

• Otherwise you are at an aperiodic state. The GCD of the
possible numbers of steps it would take to return back is 1.



Transition Matrix

Let the state space be {1, 2, . . . ,M}. The transition matrix Q is the
M ⇥M matrix where element qij is the probability that the chain goes
from state i to state j in one step:

qij = P (Xn+1 = j|Xn = i)

To find the probability that the chain goes from state i to state j in
exactly m steps, take the (i, j) element of Qm.

q(m)
ij = P (Xn+m = j|Xn = i)

If X0 is distributed according to the row vector PMF ~p, i.e.,
pj = P (X0 = j), then the PMF of Xn is ~pQn.

Chain Properties

A chain is irreducible if you can get from anywhere to anywhere. If a
chain (on a finite state space) is irreducible, then all of its states are
recurrent. A chain is periodic if any of its states are periodic, and is
aperiodic if none of its states are periodic. In an irreducible chain, all
states have the same period.

A chain is reversible with respect to ~s if siqij = sjqji for all i, j.
Examples of reversible chains include any chain with qij = qji, with
~s = ( 1

M , 1
M , . . . , 1

M ), and random walk on an undirected network.

Stationary Distribution

Let us say that the vector ~s = (s1, s2, . . . , sM ) be a PMF (written as a
row vector). We will call ~s the stationary distribution for the chain
if ~sQ = ~s. As a consequence, if Xt has the stationary distribution,
then all future Xt+1, Xt+2, . . . also have the stationary distribution.

For irreducible, aperiodic chains, the stationary distribution exists, is
unique, and si is the long-run probability of a chain being at state i.
The expected number of steps to return to i starting from i is 1/si.

To find the stationary distribution, you can solve the matrix equation
(Q0 � I)~s 0 = 0. The stationary distribution is uniform if the columns
of Q sum to 1.

Reversibility Condition Implies Stationarity If you have a PMF ~s
and a Markov chain with transition matrix Q, then siqij = sjqji for
all states i, j implies that ~s is stationary.

Random Walk on an Undirected Network

4

3

1

2

5

If you have a collection of nodes, pairs of which can be connected by
undirected edges, and a Markov chain is run by going from the
current node to a uniformly random node that is connected to it by an
edge, then this is a random walk on an undirected network. The
stationary distribution of this chain is proportional to the degree
sequence (this is the sequence of degrees, where the degree of a node
is how many edges are attached to it). For example, the stationary
distribution of random walk on the network shown above is
proportional to (3, 3, 2, 4, 2), so it’s ( 3

14 ,
3
14 ,

3
14 ,

4
14 ,

2
14 ).

Continuous Distributions

Uniform Distribution
Let us say that U is distributed Unif(a, b). We know the following:

Properties of the Uniform For a Uniform distribution, the
probability of a draw from any interval within the support is
proportional to the length of the interval. See Universality of Uniform

and Order Statistics for other properties.

Example William throws darts really badly, so his darts are uniform
over the whole room because they’re equally likely to appear anywhere.
William’s darts have a Uniform distribution on the surface of the
room. The Uniform is the only distribution where the probability of
hitting in any specific region is proportional to the length/area/volume
of that region, and where the density of occurrence in any one specific
spot is constant throughout the whole support.

Normal Distribution
Let us say that X is distributed N (µ,�2). We know the following:

Central Limit Theorem The Normal distribution is ubiquitous
because of the Central Limit Theorem, which states that the sample
mean of i.i.d. r.v.s will approach a Normal distribution as the sample
size grows, regardless of the initial distribution.

Location-Scale Transformation Every time we shift a Normal
r.v. (by adding a constant) or rescale a Normal (by multiplying by a
constant), we change it to another Normal r.v. For any Normal
X ⇠ N (µ,�2), we can transform it to the standard N (0, 1) by the
following transformation:

Z =
X � µ

�
⇠ N (0, 1)

Standard Normal The Standard Normal, Z ⇠ N (0, 1), has mean 0
and variance 1. Its CDF is denoted by �.

Exponential Distribution
Let us say that X is distributed Expo(�). We know the following:

Story You’re sitting on an open meadow right before the break of
dawn, wishing that airplanes in the night sky were shooting stars,
because you could really use a wish right now. You know that shooting
stars come on average every 15 minutes, but a shooting star is not
“due” to come just because you’ve waited so long. Your waiting time
is memoryless; the additional time until the next shooting star comes
does not depend on how long you’ve waited already.

Example The waiting time until the next shooting star is distributed
Expo(4) hours. Here � = 4 is the rate parameter, since shooting
stars arrive at a rate of 1 per 1/4 hour on average. The expected time
until the next shooting star is 1/� = 1/4 hour.

Expos as a rescaled Expo(1)

Y ⇠ Expo(�) ! X = �Y ⇠ Expo(1)

Memorylessness The Exponential Distribution is the only
continuous memoryless distribution. The memoryless property says
that for X ⇠ Expo(�) and any positive numbers s and t,

P (X > s + t|X > s) = P (X > t)

Equivalently,
X � a|(X > a) ⇠ Expo(�)

For example, a product with an Expo(�) lifetime is always “as good as
new” (it doesn’t experience wear and tear). Given that the product has
survived a years, the additional time that it will last is still Expo(�).

Min of Expos If we have independent Xi ⇠ Expo(�i), then
min(X1, . . . , Xk) ⇠ Expo(�1 + �2 + · · · + �k).

Max of Expos If we have i.i.d. Xi ⇠ Expo(�), then
max(X1, . . . , Xk) has the same distribution as Y1 + Y2 + · · · + Yk,
where Yj ⇠ Expo(j�) and the Yj are independent.
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Let us say that X is distributed Gamma(a,�). We know the following:

Story You sit waiting for shooting stars, where the waiting time for a
star is distributed Expo(�). You want to see n shooting stars before
you go home. The total waiting time for the nth shooting star is
Gamma(n,�).

Example You are at a bank, and there are 3 people ahead of you.
The serving time for each person is Exponential with mean 2 minutes.
Only one person at a time can be served. The distribution of your
waiting time until it’s your turn to be served is Gamma(3, 1

2 ).

Beta Distribution
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Conjugate Prior of the Binomial In the Bayesian approach to
statistics, parameters are viewed as random variables, to reflect our
uncertainty. The prior for a parameter is its distribution before
observing data. The posterior is the distribution for the parameter
after observing data. Beta is the conjugate prior of the Binomial
because if you have a Beta-distributed prior on p in a Binomial, then
the posterior distribution on p given the Binomial data is also
Beta-distributed. Consider the following two-level model:

X|p ⇠ Bin(n, p)

p ⇠ Beta(a, b)

Then after observing X = x, we get the posterior distribution

p|(X = x) ⇠ Beta(a + x, b + n � x)

Order statistics of the Uniform See Order Statistics.

Beta-Gamma relationship If X ⇠ Gamma(a,�),
Y ⇠ Gamma(b,�), with X ?? Y then



• X
X+Y ⇠ Beta(a, b)

• X + Y ?? X
X+Y

This is known as the bank–post o�ce result.

�2 (Chi-Square) Distribution
Let us say that X is distributed �2

n. We know the following:

Story A Chi-Square(n) is the sum of the squares of n independent
standard Normal r.v.s.

Properties and Representations

X is distributed as Z2
1 + Z2

2 + · · · + Z2
n for i.i.d. Zi ⇠ N (0, 1)

X ⇠ Gamma(n/2, 1/2)

Discrete Distributions

Distributions for four sampling schemes
Replace No Replace

Fixed # trials (n) Binomial HGeom
(Bern if n = 1)

Draw until r success NBin NHGeom
(Geom if r = 1)

Bernoulli Distribution
The Bernoulli distribution is the simplest case of the Binomial
distribution, where we only have one trial (n = 1). Let us say that X is
distributed Bern(p). We know the following:

Story A trial is performed with probability p of “success”, and X is
the indicator of success: 1 means success, 0 means failure.

Example Let X be the indicator of Heads for a fair coin toss. Then
X ⇠ Bern( 1

2 ). Also, 1 � X ⇠ Bern( 1
2 ) is the indicator of Tails.

Binomial Distribution
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Bin(10,1/2)

Let us say that X is distributed Bin(n, p). We know the following:

Story X is the number of “successes” that we will achieve in n
independent trials, where each trial is either a success or a failure, each
with the same probability p of success. We can also write X as a sum
of multiple independent Bern(p) random variables. Let X ⇠ Bin(n, p)
and Xj ⇠ Bern(p), where all of the Bernoullis are independent. Then

X = X1 + X2 + X3 + · · · + Xn

Example If Jeremy Lin makes 10 free throws and each one
independently has a 3

4 chance of getting in, then the number of free

throws he makes is distributed Bin(10, 3
4 ).

Properties Let X ⇠ Bin(n, p), Y ⇠ Bin(m, p) with X ?? Y .

• Redefine success n � X ⇠ Bin(n, 1 � p)

• Sum X + Y ⇠ Bin(n + m, p)

• Conditional X|(X + Y = r) ⇠ HGeom(n,m, r)

• Binomial-Poisson Relationship Bin(n, p) is approximately
Pois(�) if p is small.

• Binomial-Normal Relationship Bin(n, p) is approximately
N (np, np(1 � p)) if n is large and p is not near 0 or 1.

Geometric Distribution
Let us say that X is distributed Geom(p). We know the following:

Story X is the number of “failures” that we will achieve before we
achieve our first success. Our successes have probability p.

Example If each pokeball we throw has probability 1
10 to catch Mew,

the number of failed pokeballs will be distributed Geom( 1
10 ).

First Success Distribution
Equivalent to the Geometric distribution, except that it includes the
first success in the count. This is 1 more than the number of failures.
If X ⇠ FS(p) then E(X) = 1/p.

Negative Binomial Distribution
Let us say that X is distributed NBin(r, p). We know the following:

Story X is the number of “failures” that we will have before we
achieve our rth success. Our successes have probability p.

Example Thundershock has 60% accuracy and can faint a wild
Raticate in 3 hits. The number of misses before Pikachu faints
Raticate with Thundershock is distributed NBin(3, 0.6).

Hypergeometric Distribution
Let us say that X is distributed HGeom(w, b, n). We know the
following:

Story In a population of w desired objects and b undesired objects,
X is the number of “successes” we will have in a draw of n objects,
without replacement. The draw of n objects is assumed to be a
simple random sample (all sets of n objects are equally likely).

Examples Here are some HGeom examples.

• Let’s say that we have only b Weedles (failure) and w Pikachus
(success) in Viridian Forest. We encounter n Pokemon in the
forest, and X is the number of Pikachus in our encounters.

• The number of Aces in a 5 card hand.

• You have w white balls and b black balls, and you draw n balls.
You will draw X white balls.

• You have w white balls and b black balls, and you draw n balls
without replacement. The number of white balls in your sample
is HGeom(w, b, n); the number of black balls is HGeom(b, w, n).

• Capture-recapture A forest has N elk, you capture n of them,
tag them, and release them. Then you recapture a new sample
of size m. How many tagged elk are now in the new sample?
HGeom(n,N � n,m)

Poisson Distribution
Let us say that X is distributed Pois(�). We know the following:

Story There are rare events (low probability events) that occur many
di↵erent ways (high possibilities of occurences) at an average rate of �
occurrences per unit space or time. The number of events that occur
in that unit of space or time is X.

Example A certain busy intersection has an average of 2 accidents
per month. Since an accident is a low probability event that can
happen many di↵erent ways, it is reasonable to model the number of
accidents in a month at that intersection as Pois(2). Then the number
of accidents that happen in two months at that intersection is
distributed Pois(4).

Properties Let X ⇠ Pois(�1) and Y ⇠ Pois(�2), with X ?? Y .

1. Sum X + Y ⇠ Pois(�1 + �2)

2. Conditional X|(X + Y = n) ⇠ Bin
⇣
n,

�1
�1+�2

⌘

3. Chicken-egg If there are Z ⇠ Pois(�) items and we randomly
and independently “accept” each item with probability p, then
the number of accepted items Z1 ⇠ Pois(�p), and the number of
rejected items Z2 ⇠ Pois(�(1 � p)), and Z1 ?? Z2.

Multivariate Distributions

Multinomial Distribution

Let us say that the vector ~X = (X1, X2, X3, . . . , Xk) ⇠ Multk(n, ~p)
where ~p = (p1, p2, . . . , pk).

Story We have n items, which can fall into any one of the k buckets
independently with the probabilities ~p = (p1, p2, . . . , pk).

Example Let us assume that every year, 100 students in the Harry
Potter Universe are randomly and independently sorted into one of
four houses with equal probability. The number of people in each of the
houses is distributed Mult4(100, ~p), where ~p = (0.25, 0.25, 0.25, 0.25).
Note that X1 + X2 + · · · + X4 = 100, and they are dependent.

Joint PMF For n = n1 + n2 + · · · + nk,

P ( ~X = ~n) =
n!

n1!n2! . . . nk!
p
n1
1 p

n2
2 . . . p

nk
k

Marginal PMF, Lumping, and Conditionals Marginally,
Xi ⇠ Bin(n, pi) since we can define “success” to mean category i. If
you lump together multiple categories in a Multinomial, then it is still
Multinomial. For example, Xi + Xj ⇠ Bin(n, pi + pj) for i 6= j since
we can define “success” to mean being in category i or j. Similarly, if
k = 6 and we lump categories 1-2 and lump categories 3-5, then

(X1 + X2, X3 + X4 + X5, X6) ⇠ Mult3(n, (p1 + p2, p3 + p4 + p5, p6))

Conditioning on some Xj also still gives a Multinomial:

X1, . . . , Xk�1|Xk = nk ⇠ Multk�1

✓
n � nk,

✓
p1

1 � pk
, . . . ,

pk�1

1 � pk

◆◆

Variances and Covariances We have Xi ⇠ Bin(n, pi) marginally, so
Var(Xi) = npi(1 � pi). Also, Cov(Xi, Xj) = �npipj for i 6= j.

Multivariate Uniform Distribution
See the univariate Uniform for stories and examples. For the 2D
Uniform on some region, probability is proportional to area. Every
point in the support has equal density, of value 1

area of region . For the
3D Uniform, probability is proportional to volume.

Multivariate Normal (MVN) Distribution

A vector ~X = (X1, X2, . . . , Xk) is Multivariate Normal if every linear
combination is Normally distributed, i.e., t1X1 + t2X2 + · · · + tkXk is
Normal for any constants t1, t2, . . . , tk. The parameters of the
Multivariate Normal are the mean vector ~µ = (µ1, µ2, . . . , µk) and
the covariance matrix where the (i, j) entry is Cov(Xi, Xj).

Properties The Multivariate Normal has the following properties.

• Any subvector is also MVN.

• If any two elements within an MVN are uncorrelated, then they
are independent.

• The joint PDF of a Bivariate Normal (X,Y ) with N (0, 1)
marginal distributions and correlation ⇢ 2 (�1, 1) is

fX,Y (x, y) =
1

2⇡⌧
exp

✓
�

1

2⌧2
(x2 + y2 � 2⇢xy)

◆
,

with ⌧ =
p

1 � ⇢2.



Distribution Properties

Important CDFs
Standard Normal �

Exponential(�) F (x) = 1 � e��x, for x 2 (0,1)

Uniform(0,1) F (x) = x, for x 2 (0, 1)

Convolutions of Random Variables
A convolution of n random variables is simply their sum. For the
following results, let X and Y be independent.

1. X ⇠ Pois(�1), Y ⇠ Pois(�2) �! X + Y ⇠ Pois(�1 + �2)

2. X ⇠ Bin(n1, p), Y ⇠ Bin(n2, p) �! X + Y ⇠ Bin(n1 + n2, p).
Bin(n, p) can be thought of as a sum of i.i.d. Bern(p) r.v.s.

3. X ⇠ Gamma(a1,�), Y ⇠ Gamma(a2,�)
�! X + Y ⇠ Gamma(a1 + a2,�). Gamma(n,�) with n an
integer can be thought of as a sum of i.i.d. Expo(�) r.v.s.

4. X ⇠ NBin(r1, p), Y ⇠ NBin(r2, p)
�! X + Y ⇠ NBin(r1 + r2, p). NBin(r, p) can be thought of as
a sum of i.i.d. Geom(p) r.v.s.

5. X ⇠ N (µ1,�
2
1), Y ⇠ N (µ2,�

2
2)

�! X + Y ⇠ N (µ1 + µ2,�
2
1 + �2

2)

Special Cases of Distributions
1. Bin(1, p) ⇠ Bern(p)

2. Beta(1, 1) ⇠ Unif(0, 1)

3. Gamma(1,�) ⇠ Expo(�)

4. �2
n ⇠ Gamma

�
n
2 , 1

2

�

5. NBin(1, p) ⇠ Geom(p)

Inequalities

1. Cauchy-Schwarz |E(XY )| 
p

E(X2)E(Y 2)

2. Markov P (X � a)  E|X|
a for a > 0

3. Chebyshev P (|X � µ| � a)  �2

a2 for E(X) = µ,Var(X) = �2

4. Jensen E(g(X)) � g(E(X)) for g convex; reverse if g is
concave

Formulas

Geometric Series

1 + r + r2 + · · · + rn�1 =
n�1X

k=0

rk =
1 � rn

1 � r

1 + r + r2 + · · · =
1

1 � r
if |r| < 1

Exponential Function (ex)

ex =
1X

n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ · · · = lim

n!1

✓
1 +

x

n

◆n

Gamma and Beta Integrals
You can sometimes solve complicated-looking integrals by
pattern-matching to a gamma or beta integral:
Z 1

0
xt�1e�x dx = �(t)

Z 1

0
xa�1(1 � x)b�1 dx =

�(a)�(b)

�(a + b)

Also, �(a + 1) = a�(a), and �(n) = (n � 1)! if n is a positive integer.

Euler’s Approximation for Harmonic Sums

1 +
1

2
+

1

3
+ · · · +

1

n
⇡ logn + 0.577 . . .

Stirling’s Approximation for Factorials

n! ⇡
p
2⇡n

✓
n

e

◆n

Miscellaneous Definitions

Medians and Quantiles Let X have CDF F . Then X has median
m if F (m) � 0.5 and P (X � m) � 0.5. For X continuous, m satisfies
F (m) = 1/2. In general, the ath quantile of X is min{x : F (x) � a};
the median is the case a = 1/2.

log Statisticians generally use log to refer to natural log (i.e., base e).

i.i.d r.v.s Independent, identically-distributed random variables.

Example Problems

Contributions from Sebastian Chiu

Calculating Probability

A textbook has n typos, which are randomly scattered amongst its n
pages, independently. You pick a random page. What is the
probability that it has no typos? Answer: There is a

�
1 � 1

n

�

probability that any specific typo isn’t on your page, and thus a
✓
1 �

1

n

◆n

probability that there are no typos on your page. For n

large, this is approximately e�1 = 1/e.

Linearity and Indicators (1)

In a group of n people, what is the expected number of distinct
birthdays (month and day)? What is the expected number of birthday
matches? Answer: Let X be the number of distinct birthdays and Ij
be the indicator for the jth day being represented.

E(Ij) = 1 � P (no one born on day j) = 1 � (364/365)n

By linearity, E(X) = 365 (1 � (364/365)n) . Now let Y be the

number of birthday matches and Ji be the indicator that the ith pair
of people have the same birthday. The probability that any two

specific people share a birthday is 1/365, so E(Y ) =
⇣n
2

⌘
/365 .

Linearity and Indicators (2)

This problem is commonly known as the hat-matching problem.
There are n people at a party, each with hat. At the end of the party,
they each leave with a random hat. What is the expected number of
people who leave with the right hat? Answer: Each hat has a 1/n
chance of going to the right person. By linearity, the average number

of hats that go to their owners is n(1/n) = 1 .

Linearity and First Success
This problem is commonly known as the coupon collector problem.
There are n coupon types. At each draw, you get a uniformly random
coupon type. What is the expected number of coupons needed until
you have a complete set? Answer: Let N be the number of coupons
needed; we want E(N). Let N = N1 + · · · + Nn, where N1 is the
draws to get our first new coupon, N2 is the additional draws needed
to draw our second new coupon and so on. By the story of the First
Success, N2 ⇠ FS((n� 1)/n) (after collecting first coupon type, there’s
(n � 1)/n chance you’ll get something new). Similarly,
N3 ⇠ FS((n � 2)/n), and Nj ⇠ FS((n � j + 1)/n). By linearity,

E(N) = E(N1) + · · · + E(Nn) =
n

n
+

n

n � 1
+ · · · +

n

1
= n

nX

j=1

1

j

This is approximately n(log(n) + 0.577) by Euler’s approximation.

Orderings of i.i.d. random variables
I call 2 UberX’s and 3 Lyfts at the same time. If the time it takes for
the rides to reach me are i.i.d., what is the probability that all the
Lyfts will arrive first? Answer: Since the arrival times of the five cars
are i.i.d., all 5! orderings of the arrivals are equally likely. There are
3!2! orderings that involve the Lyfts arriving first, so the probability

that the Lyfts arrive first is
3!2!

5!
= 1/10 . Alternatively, there are

�5
3

�

ways to choose 3 of the 5 slots for the Lyfts to occupy, where each of
the choices are equally likely. One of these choices has all 3 of the

Lyfts arriving first, so the probability is 1/
⇣5
3

⌘
= 1/10 .

Expectation of Negative Hypergeometric
What is the expected number of cards that you draw before you pick
your first Ace in a shu✏ed deck (not counting the Ace)? Answer:
Consider a non-Ace. Denote this to be card j. Let Ij be the indicator
that card j will be drawn before the first Ace. Note that Ij = 1 says
that j is before all 4 of the Aces in the deck. The probability that this
occurs is 1/5 by symmetry. Let X be the number of cards drawn
before the first Ace. Then X = I1 + I2 + ...+ I48, where each indicator
corresponds to one of the 48 non-Aces. Thus,

E(X) = E(I1) + E(I2) + ... + E(I48) = 48/5 = 9.6 .

Minimum and Maximum of RVs
What is the CDF of the maximum of n independent Unif(0,1) random
variables? Answer: Note that for r.v.s X1, X2, . . . , Xn,

P (min(X1, X2, . . . , Xn) � a) = P (X1 � a,X2 � a, . . . , Xn � a)

Similarly,

P (max(X1, X2, . . . , Xn)  a) = P (X1  a,X2  a, . . . , Xn  a)

We will use this principle to find the CDF of U(n), where
U(n) = max(U1, U2, . . . , Un) and Ui ⇠ Unif(0, 1) are i.i.d.

P (max(U1, U2, . . . , Un)  a) = P (U1  a, U2  a, . . . , Un  a)

= P (U1  a)P (U2  a) . . . P (Un  a)

= an

for 0 < a < 1 (and the CDF is 0 for a  0 and 1 for a � 1).

Pattern-matching with ex Taylor series

For X ⇠ Pois(�), find E

✓
1

X + 1

◆
. Answer: By LOTUS,

E

✓
1

X + 1

◆
=

1X

k=0

1

k + 1

e���k

k!
=

e��

�

1X

k=0

�k+1

(k + 1)!
=

e��

�
(e� � 1)



Adam’s Law and Eve’s Law
William really likes speedsolving Rubik’s Cubes. But he’s pretty bad
at it, so sometimes he fails. On any given day, William will attempt
N ⇠ Geom(s) Rubik’s Cubes. Suppose each time, he has probability p
of solving the cube, independently. Let T be the number of Rubik’s
Cubes he solves during a day. Find the mean and variance of T .
Answer: Note that T |N ⇠ Bin(N, p). So by Adam’s Law,

E(T ) = E(E(T |N)) = E(Np) =
p(1 � s)

s

Similarly, by Eve’s Law, we have that

Var(T ) = E(Var(T |N)) + Var(E(T |N)) = E(Np(1 � p)) + Var(Np)

=
p(1 � p)(1 � s)

s
+

p2(1 � s)

s2
=

p(1 � s)(p + s(1 � p))

s2

MGF – Finding Moments

Find E(X3) for X ⇠ Expo(�) using the MGF of X. Answer: The
MGF of an Expo(�) is M(t) = �

��t . To get the third moment, we can
take the third derivative of the MGF and evaluate at t = 0:

E(X3) =
6

�3

But a much nicer way to use the MGF here is via pattern recognition:
note that M(t) looks like it came from a geometric series:

1

1 � t
�

=
1X

n=0

✓
t

�

◆n

=
1X

n=0

n!

�n

tn

n!

The coe�cient of tn

n! here is the nth moment of X, so we have

E(Xn) = n!
�n for all nonnegative integers n.

Markov chains (1)
Suppose Xn is a two-state Markov chain with transition matrix

Q =

✓ 0 1

0 1 � ↵ ↵
1 � 1 � �

◆

Find the stationary distribution ~s = (s0, s1) of Xn by solving ~sQ = ~s,
and show that the chain is reversible with respect to ~s. Answer: The
equation ~sQ = ~s says that

s0 = s0(1 � ↵) + s1� and s1 = s0(↵) + s0(1 � �)

By solving this system of linear equations, we have

~s =

✓
�

↵ + �
,

↵

↵ + �

◆

To show that the chain is reversible with respect to ~s, we must show
siqij = sjqji for all i, j. This is done if we can show s0q01 = s1q10.
And indeed,

s0q01 =
↵�

↵ + �
= s1q10

Markov chains (2)
William and Sebastian play a modified game of Settlers of Catan,
where every turn they randomly move the robber (which starts on the
center tile) to one of the adjacent hexagons.

Robber

(a) Is this Markov chain irreducible? Is it aperiodic? Answer:

Yes to both. The Markov chain is irreducible because it can
get from anywhere to anywhere else. The Markov chain is
aperiodic because the robber can return back to a square in
2, 3, 4, 5, . . . moves, and the GCD of those numbers is 1.

(b) What is the stationary distribution of this Markov chain?
Answer: Since this is a random walk on an undirected graph,
the stationary distribution is proportional to the degree
sequence. The degree for the corner pieces is 3, the degree for
the edge pieces is 4, and the degree for the center pieces is 6.
To normalize this degree sequence, we divide by its sum. The
sum of the degrees is 6(3) + 6(4) + 7(6) = 84. Thus the
stationary probability of being on a corner is 3/84 = 1/28, on
an edge is 4/84 = 1/21, and in the center is 6/84 = 1/14.

(c) What fraction of the time will the robber be in the center tile

in this game, in the long run? Answer: By the above, 1/14 .

(d) What is the expected amount of moves it will take for the
robber to return to the center tile? Answer: Since this chain is
irreducible and aperiodic, to get the expected time to return we
can just invert the stationary probability. Thus on average it

will take 14 turns for the robber to return to the center tile.

Problem-Solving Strategies

Contributions from Jessy Hwang, Yuan Jiang, Yuqi Hou

1. Getting started. Start by defining relevant events and

random variables. (“Let A be the event that I pick the fair
coin”; “Let X be the number of successes.”) Clear notion is
important for clear thinking! Then decide what it is that you’re
supposed to be finding, in terms of your notation (“I want to
find P (X = 3|A)”). Think about what type of object your
answer should be (a number? A random variable? A PMF? A
PDF?) and what it should be in terms of.

Try simple and extreme cases. To make an abstract experiment
more concrete, try drawing a picture or making up numbers
that could have happened. Pattern recognition: does the
structure of the problem resemble something we’ve seen before?

2. Calculating probability of an event. Use counting
principles if the naive definition of probability applies. Is the
probability of the complement easier to find? Look for
symmetries. Look for something to condition on, then apply
Bayes’ Rule or the Law of Total Probability.

3. Finding the distribution of a random variable. First make
sure you need the full distribution not just the mean (see next
item). Check the support of the random variable: what values
can it take on? Use this to rule out distributions that don’t fit.
Is there a story for one of the named distributions that fits the
problem at hand? Can you write the random variable as a
function of an r.v. with a known distribution, say Y = g(X)?

4. Calculating expectation. If it has a named distribution,
check out the table of distributions. If it’s a function of an r.v.
with a named distribution, try LOTUS. If it’s a count of
something, try breaking it up into indicator r.v.s. If you can
condition on something natural, consider using Adam’s law.

5. Calculating variance. Consider independence, named
distributions, and LOTUS. If it’s a count of something, break it
up into a sum of indicator r.v.s. If it’s a sum, use properties of
covariance. If you can condition on something natural, consider
using Eve’s Law.

6. Calculating E(X2). Do you already know E(X) or Var(X)?
Recall that Var(X) = E(X2) � (E(X))2. Otherwise try
LOTUS.

7. Calculating covariance. Use the properties of covariance. If
you’re trying to find the covariance between two components of
a Multinomial distribution, Xi, Xj , then the covariance is
�npipj for i 6= j.

8. Symmetry. If X1, . . . , Xn are i.i.d., consider using symmetry.

9. Calculating probabilities of orderings. Remember that all
n! ordering of i.i.d. continuous random variables X1, . . . , Xn

are equally likely.

10. Determining independence. There are several equivalent
definitions. Think about simple and extreme cases to see if you
can find a counterexample.

11. Do a painful integral. If your integral looks painful, see if
you can write your integral in terms of a known PDF (like
Gamma or Beta), and use the fact that PDFs integrate to 1?

12. Before moving on. Check some simple and extreme cases,
check whether the answer seems plausible, check for biohazards.

Biohazards

Contributions from Jessy Hwang

1. Don’t misuse the naive definition of probability. When
answering “What is the probability that in a group of 3 people,
no two have the same birth month?”, it is not correct to treat
the people as indistinguishable balls being placed into 12 boxes,
since that assumes the list of birth months {January, January,
January} is just as likely as the list {January, April, June},
even though the latter is six times more likely.

2. Don’t confuse unconditional, conditional, and joint

probabilities. In applying P (A|B) = P (B|A)P (A)
P (B) , it is not

correct to say “P (B) = 1 because we know B happened”; P (B)
is the prior probability of B. Don’t confuse P (A|B) with
P (A,B).

3. Don’t assume independence without justification. In the
matching problem, the probability that card 1 is a match and
card 2 is a match is not 1/n2. Binomial and Hypergeometric
are often confused; the trials are independent in the Binomial
story and dependent in the Hypergeometric story.

4. Don’t forget to do sanity checks. Probabilities must be
between 0 and 1. Variances must be � 0. Supports must make
sense. PMFs must sum to 1. PDFs must integrate to 1.

5. Don’t confuse random variables, numbers, and events.
Let X be an r.v. Then g(X) is an r.v. for any function g. In
particular, X2, |X|, F (X), and IX>3 are r.v.s.
P (X2 < X|X � 0), E(X),Var(X), and g(E(X)) are numbers.
X = 2 and F (X) � �1 are events. It does not make sense to
write

R1
�1 F (X)dx, because F (X) is a random variable. It does

not make sense to write P (X), because X is not an event.



6. Don’t confuse a random variable with its distribution.
To get the PDF of X2, you can’t just square the PDF of X.
The right way is to use transformations. To get the PDF of
X + Y , you can’t just add the PDF of X and the PDF of Y .
The right way is to compute the convolution.

7. Don’t pull non-linear functions out of expectations.
E(g(X)) does not equal g(E(X)) in general. The St.
Petersburg paradox is an extreme example. See also Jensen’s
inequality. The right way to find E(g(X)) is with LOTUS.

Distributions in R

Command What it does
help(distributions) shows documentation on distributions

dbinom(k,n,p) PMF P (X = k) for X ⇠ Bin(n, p)
pbinom(x,n,p) CDF P (X  x) for X ⇠ Bin(n, p)
qbinom(a,n,p) ath quantile for X ⇠ Bin(n, p)
rbinom(r,n,p) vector of r i.i.d. Bin(n, p) r.v.s
dgeom(k,p) PMF P (X = k) for X ⇠ Geom(p)

dhyper(k,w,b,n) PMF P (X = k) for X ⇠ HGeom(w, b, n)
dnbinom(k,r,p) PMF P (X = k) for X ⇠ NBin(r, p)

dpois(k,r) PMF P (X = k) for X ⇠ Pois(r)
dbeta(x,a,b) PDF f(x) for X ⇠ Beta(a, b)
dchisq(x,n) PDF f(x) for X ⇠ �2

n
dexp(x,b) PDF f(x) for X ⇠ Expo(b)

dgamma(x,a,r) PDF f(x) for X ⇠ Gamma(a, r)
dlnorm(x,m,s) PDF f(x) for X ⇠ LN (m, s2)
dnorm(x,m,s) PDF f(x) for X ⇠ N (m, s2)

dt(x,n) PDF f(x) for X ⇠ tn
dunif(x,a,b) PDF f(x) for X ⇠ Unif(a, b)

The table above gives R commands for working with various named
distributions. Commands analogous to pbinom, qbinom, and rbinom
work for the other distributions in the table. For example, pnorm,
qnorm, and rnorm can be used to get the CDF, quantiles, and random
generation for the Normal. For the Multinomial, dmultinom can be used
for calculating the joint PMF and rmultinom can be used for generating
random vectors. For the Multivariate Normal, after installing and
loading the mvtnorm package dmvnorm can be used for calculating the
joint PDF and rmvnorm can be used for generating random vectors.

Recommended Resources

• Introduction to Probability Book
(http://bit.ly/introprobability)

• Stat 110 Online (http://stat110.net)

• Stat 110 Quora Blog (https://stat110.quora.com/)

• Quora Probability FAQ (http://bit.ly/probabilityfaq)

• R Studio (https://www.rstudio.com)

• LaTeX File (github.com/wzchen/probability cheatsheet)

Please share this cheatsheet with friends!

http://wzchen.com/probability-cheatsheet

http://bit.ly/introprobability
http://stat110.net
https://stat110.quora.com/
http://bit.ly/probabilityfaq
https://www.rstudio.com
https://github.com/wzchen/probability_cheatsheet
http://wzchen.com/probability-cheatsheet


Table of Distributions

Distribution PMF/PDF and Support Expected Value Variance MGF

Bernoulli

Bern(p)

P (X = 1) = p

P (X = 0) = q = 1� p p pq q + pet

Binomial

Bin(n, p)

P (X = k) =
�n
k

�
pkqn�k

k 2 {0, 1, 2, . . . n} np npq (q + pet)n

Geometric

Geom(p)

P (X = k) = qkp

k 2 {0, 1, 2, . . . } q/p q/p2 p
1�qet

, qet < 1

Negative Binomial

NBin(r, p)

P (X = n) =
�r+n�1

r�1

�
prqn

n 2 {0, 1, 2, . . . } rq/p rq/p2 (
p

1�qet
)
r, qet < 1

Hypergeometric

HGeom(w, b, n)

P (X = k) =
⇣
w
k

⌘⇣
b

n�k

⌘
/
⇣
w+b
n

⌘

k 2 {0, 1, 2, . . . , n} µ =
nw
b+w

⇣
w+b�n
w+b�1

⌘
nµ

n (1� µ
n ) messy

Poisson

Pois(�)

P (X = k) = e���k

k!

k 2 {0, 1, 2, . . . } � � e�(e
t�1)

Uniform

Unif(a, b)

f(x) = 1
b�a

x 2 (a, b) a+b
2

(b�a)2

12
etb�eta

t(b�a)

Normal

N (µ,�2
)

f(x) = 1
�
p
2⇡

e�(x � µ)2/(2�2)

x 2 (�1,1) µ �2 etµ+
�2t2

2

Exponential

Expo(�)

f(x) = �e��x

x 2 (0,1)
1
�

1
�2

�
��t , t < �

Gamma

Gamma(a,�)

f(x) = 1
�(a) (�x)

ae��x 1
x

x 2 (0,1)
a
�

a
�2

⇣
�

��t

⌘a
, t < �

Beta

Beta(a, b)

f(x) = �(a+b)
�(a)�(b)x

a�1
(1� x)b�1

x 2 (0, 1) µ =
a

a+b
µ(1�µ)
(a+b+1) messy

Log-Normal

LN (µ,�2
)

1
x�

p
2⇡

e�(log x�µ)2/(2�2)

x 2 (0,1) ✓ = eµ+�2/2 ✓2(e�
2 � 1) doesn’t exist

Chi-Square

�2
n

1
2n/2�(n/2)

xn/2�1e�x/2

x 2 (0,1) n 2n (1� 2t)�n/2, t < 1/2

Student-t
tn

�((n+1)/2)p
n⇡�(n/2)

(1 + x2/n)�(n+1)/2

x 2 (�1,1) 0 if n > 1
n

n�2 if n > 2 doesn’t exist



Stat 110 Final Review, Fall 2011

Prof. Joe Blitzstein

1 General Information

The final will be on Thursday 12/15, from 2 PM to 5 PM. No books, notes, computers,
cell phones, or calculators are allowed, except that you may bring four pages of
standard-sized paper (8.5” x 11”) with anything you want written (or typed) on
both sides. There will be approximately 8 problems, equally weighted. The material
covered will be cumulative since probability is cumulative.

To study, I recommend solving lots and lots of practice problems! It’s a good
idea to work through as many of the problems on this handout as possible without
looking at solutions (and then discussing with others and looking at solutions to
check your answers and for any problems where you were really stuck), and to take
at least two of the practice finals under timed conditions using only four pages of
notes. Carefully going through class notes, homeworks, and handouts (especially this
handout and the midterm review handout) is also important, as long as it is done
actively (intermixing reading, thinking, solving problems, and asking questions).

2 Topics

• Combinatorics: multiplication rule, tree diagrams, binomial coe�cients, per-
mutations and combinations, sampling with/without replacement when order
does/doesn’t matter, inclusion-exclusion, story proofs.

• Basic Probability: sample spaces, events, axioms of probability, equally likely
outcomes, inclusion-exclusion, unions, intersections, and complements.

• Conditional Probability: definition and meaning, writing P (A1\A2\ · · ·\An)
as a product, Bayes’ Rule, Law of Total Probability, thinking conditionally,
prior vs. posterior probability, independence vs. conditional independence.

• Random Variables: definition and interpretations, stories, discrete vs. contin-
uous, distributions, CDFs, PMFs, PDFs, MGFs, functions of a r.v., indicator
r.v.s, memorylessness of the Exponential, universality of the Uniform, Poisson
approximation, Poisson processes, Beta as conjugate prior for the Binomial.
sums (convolutions), location and scale.
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• Expected Value: linearity, fundamental bridge, variance, standard deviation,
covariance, correlation, using expectation to prove existence, LOTUS.

• Conditional Expectation: definition and meaning, taking out what’s known,
conditional variance, Adam’s Law (iterated expectation), Eve’s Law.

• Important Discrete Distributions: Bernoulli, Binomial, Geometric, Negative
Binomial, Hypergeometric, Poisson.

• Important Continuous Distributions: Uniform, Normal, Exponential, Gamma,
Beta, Chi-Square, Student-t.

• Jointly Distributed Random Variables: joint, conditional, and marginal distri-
butions, independence, Multinomial, Multivariate Normal, change of variables,
order statistics.

• Convergence: Law of Large Numbers, Central Limit Theorem.

• Inequalities: Cauchy-Schwarz, Markov, Chebyshev, Jensen.

• Markov chains: Markov property, transition matrix, irreducibility, stationary
distributions, reversibility.

• Strategies: conditioning, symmetry, linearity, indicator r.v.s, stories, checking
whether answers make sense (e.g., looking at simple and extreme cases and
avoiding category errors).

• Some Important Examples: birthday problem, matching problem (de Mont-
mort), Monty Hall, gambler’s ruin, prosecutor’s fallacy, testing for a disease,
capture-recapture (elk problem), coupon (toy) collector, St. Petersburg para-
dox, Simpson’s paradox, two envelope paradox, waiting time for HH vs. waiting
time for HT, store with a random number of customers, bank-post o�ce ex-
ample, Bayes’ billiards, random walk on a network, chicken and egg.
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3 Important Distributions

3.1 Table of Distributions

The table below will be provided on the final (included as the last page). This is
meant to help avoid having to memorize formulas for the distributions (or having to
take up a lot of space on your pages of notes). Here 0 < p < 1 and q = 1 � p. The
parameters for Gamma and Beta are positive real numbers; n, r, and w are positive
integers, as is b for the Hypergeometric.

Name Param. PMF or PDF Mean Variance

Bernoulli p P (X = 1) = p, P (X = 0) = q p pq

Binomial n, p
�
n

k

�
p
k
q
n�k

, for k 2 {0, 1, . . . , n} np npq

Geometric p q
k
p, for k 2 {0, 1, 2, . . . } q/p q/p

2

NegBinom r, p
�
r+n�1
r�1

�
p
r
q
n
, n 2 {0, 1, 2, . . . } rq/p rq/p

2

Hypergeom w, b, n
(wk)(

b
n�k)

(w+b
n )

, for k 2 {0, 1, . . . , n} µ = nw

w+b
(w+b�n

w+b�1 )n
µ

n
(1� µ

n
)

Poisson �
e
��

�
k

k! , for k 2 {0, 1, 2, . . . } � �

Uniform a < b
1

b�a
, for x 2 (a, b) a+b

2
(b�a)2

12

Normal µ, �
2 1

�
p
2⇡
e
�(x�µ)2/(2�2)

µ �
2

Exponential � �e
��x

, for x > 0 1/� 1/�2

Gamma a,� �(a)�1(�x)ae��x
x
�1
, for x > 0 a/� a/�

2

Beta a, b
�(a+b)
�(a)�(b)x

a�1(1� x)b�1, for 0 < x < 1 µ = a

a+b

µ(1�µ)
a+b+1

�
2

n
1

2n/2�(n/2)
x
n/2�1

e
�x/2, for x > 0 n 2n

Student-t n
�((n+1)/2)p
n⇡�(n/2)(1 + x

2
/n)�(n+1)/2 0 if n > 1 n

n�2 if n > 2
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3.2 Connections Between Distributions

The table above summarizes the PMFs/PDFs of the important distributions, and
their means and variances, but it does not say where each distribution comes from
(stories), or how the distributions interrelate. Some of these connections between
distributions are listed below.

Also note that some of the important distributions are special cases of others.
Bernoulli is a special case of Binomial; Geometric is a special case of Negative Bi-
nomial; Unif(0,1) is a special case of Beta; and Exponential and �

2 are both special
cases of Gamma.

1. Binomial: If X1, . . . , Xn are i.i.d. Bern(p), then X1 + · · ·+Xn ⇠ Bin(n, p).

2. Neg. Binom.: IfG1, . . . , Gr are i.i.d. Geom(p), thenG1+· · ·+Gr ⇠ NBin(r, p).

3. Location and Scale: If Z ⇠ N (0, 1), then µ+ �Z ⇠ N (µ, �2).

If U ⇠ Unif(0, 1) and a < b, then a+ (b� a)U ⇠ Unif(a, b).

If X ⇠ Expo(1), then �
�1
X ⇠ Expo(�).

If Y ⇠ Gamma(a,�), then �Y ⇠ Gamma(a, 1).

4. Symmetry: If X ⇠ Bin(n, 1/2), then n�X ⇠ Bin(n, 1/2).

If U ⇠ Unif(0, 1), then 1� U ⇠ Unif(0, 1).

If Z ⇠ N (0, 1), then �Z ⇠ N (0, 1).

5. Universality of Uniform: Let F be the CDF of a continuous r.v., such that
F

�1 exists. If U ⇠ Unif(0, 1), then F
�1(U) has CDF F . Conversely, if X ⇠ F ,

then F (X) ⇠ Unif(0, 1).

6. Uniform and Beta: Unif(0, 1) is the same distribution as Beta(1, 1). The jth
order statistic of n i.i.d. Unif(0, 1) r.v.s is Beta(j, n� j + 1).

7. Beta and Binomial: Beta is the conjugate prior to Binomial, in the sense
that if X|p ⇠ Bin(n, p) and the prior is p ⇠ Beta(a, b), then the posterior is
p|X ⇠ Beta(a+X, b+ n�X).

8. Gamma: If X1, . . . , Xn are i.i.d. Expo(�), then X1+ · · ·+Xn ⇠ Gamma(n,�).

9. Gamma and Poisson: In a Poisson process of rate �, the number of arrivals
in a time interval of length t is Pois(�t), while the time of the nth arrival is
Gamma(n,�).
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10. Gamma and Beta: IfX ⇠ Gamma(a,�), Y ⇠ Gamma(b,�) are independent,
then X/(X + Y ) ⇠ Beta(a, b) is independent of X + Y ⇠ Gamma(a+ b,�).

11. Chi-Square: �2
n
is the same distribution as Gamma(n/2, 1/2).

12. Student-t: If Z ⇠ N (0, 1) and Y ⇠ �
2
n
are independent, then Zp

Y/n
has the

Student-t distribution with n degrees of freedom. For n = 1, this becomes the
Cauchy distribution, which we can also think of as the distribution of Z1/Z2

with Z1, Z2 i.i.d. N (0, 1).

4 Sums of Independent Random Variables

Let X1, X2, . . . , Xn be independent random variables. The table below shows the
distribution of their sum, X1+X2+ · · ·+Xn, for various important cases depending
on the distribution ofXi. The central limit theorem says that a sum of a large number
of i.i.d. r.v.s will be approximately Normal, while these are exact distributions.

Xi

P
n

i=1 Xi

Bernoulli(p) Binomial(n, p)

Binomial(mi, p) Binomial(
P

n

i=1 mi, p)

Geometric(p) NBin(n, p)

NBin(ri, p) NBin(
P

n

i=1 ri, p)

Poisson(�i) Poisson(
P

n

i=1 �i)

Unif(0,1) Triangle(0,1,2) (n = 2)

N (µi, �
2
i
) N (

P
n

i=1 µi,
P

n

i=1 �
2
i
)

Exponential(�) Gamma(n,�)

Gamma(↵i,�) Gamma(
P

n

i=1 ↵i,�)

Z
2
i
, for Zi ⇠ N (0, 1) �

2
n
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5 Review of Some Useful Results

5.1 De Morgan’s Laws

(A1 [ A2 · · · [ An)
c = A

c

1 \ A
c

2 · · · \ A
c

n
,

(A1 \ A2 · · · \ An)
c = A

c

1 [ A
c

2 · · · [ A
c

n
.

5.2 Complements

P (Ac) = 1� P (A).

5.3 Unions

P (A [ B) = P (A) + P (B)� P (A \ B);

P (A1 [ A2 [ · · · [ An) =
nX

i=1

P (Ai), if the Ai are disjoint;

P (A1 [ A2 [ · · · [ An) 
nX

i=1

P (Ai);

P (A1[A2[· · ·[An) =
nX

k=1

 
(�1)k+1

X

i1<i2<···<ik

P (Ai1 \ Ai2 \ · · · \ Aik
)

!
(Inclusion-Exclusion).

5.4 Intersections

P (A \ B) = P (A)P (B|A) = P (B)P (A|B),

P (A1 \ A2 \ · · · \ An) = P (A1)P (A2|A1)P (A3|A1, A2) · · ·P (An|A1, . . . , An�1).

5.5 Law of Total Probability

If E1, E2, . . . , En are a partition of the sample space S (i.e., they are disjoint and
their union is all of S) and P (Ei) 6= 0 for all i, then

P (A) =
nX

i=1

P (A|Ei)P (Ei).
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An analogous formula holds for conditioning on a continuous r.v. X with PDF f(x):

P (A) =

Z 1

�1
P (A|X = x)f(x)dx.

Similarly, to go from a joint PDF f(x, y) for (X, Y ) to the marginal PDF of Y ,
integrate over all values of x:

fY (y) =

Z 1

�1
f(x, y)dx.

5.6 Bayes’ Rule

P (A|B) =
P (B|A)P (A)

P (B)
.

Often the denominator P (B) is then expanded by the Law of Total Probability. For
continuous r.v.s X and Y , Bayes’ Rule becomes

fY |X(y|x) =
fX|Y (x|y)fY (y)

fX(x)
.

5.7 Expected Value, Variance, and Covariance

Expected value is linear : for any random variables X and Y and constant c,

E(X + Y ) = E(X) + E(Y ),

E(cX) = cE(X).

Variance can be computed in two ways:

Var(X) = E(X � EX)2 = E(X2)� (EX)2.

Constants come out from variance as the constant squared:

Var(cX) = c
2Var(X).

For the variance of the sum, there is a covariance term:

Var(X + Y ) = Var(X) + Var(Y ) + 2Cov(X, Y ),

where

Cov(X, Y ) = E((X � EX)(Y � EY )) = E(XY )� (EX)(EY ).
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So if X and Y are uncorrelated, then the variance of the sum is the sum of the vari-
ances. Recall that independent implies uncorrelated but not vice versa. Covariance
is symmetric:

Cov(Y,X) = Cov(X, Y ),

and covariances of sums can be expanded as

Cov(X + Y, Z +W ) = Cov(X,Z) + Cov(X,W ) + Cov(Y, Z) + Cov(Y,W ).

Note that for c a constant,
Cov(X, c) = 0,

Cov(cX, Y ) = cCov(X, Y ).

The correlation of X and Y , which is between �1 and 1 , is

Corr(X, Y ) =
Cov(X, Y )

SD(X)SD(Y )
.

This is also the covariance of the standardized versions of X and Y .

5.8 Law of the Unconscious Statistician (LOTUS)

LetX be a discrete random variable and h be a real-valued function. Then Y = h(X)
is a random variable. To compute EY using the definition of expected value, we
would need to first find the PMF of Y and use EY =

P
y
yP (Y = y). The Law of

the Unconscious Statistician says we can use the PMF of X directly:

Eh(X) =
X

x

h(x)P (X = x).

Similarly, for X a continuous r.v. with PDF fX(x), we can find the expected value
of Y = h(X) by integrating h(x) times the PDF of X, without first finding fY (y):

Eh(X) =

Z 1

�1
h(x)fX(x)dx.

5.9 Indicator Random Variables

Let A and B be events. Indicator r.v.s bridge between probability and expectation:
P (A) = E(IA), where IA is the indicator r.v. for A. It is often useful to think of
a “counting” r.v. as a sum of indicator r.v.s. Indicator r.v.s have many pleasant
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properties. For example, (IA)k = IA for any positive number k, so it’s easy to handle
moments of indicator r.v.s. Also note that

IA\B = IAIB,

IA[B = IA + IB � IAIB.

5.10 Symmetry

There are many beautiful and useful forms of symmetry in statistics. For example:

1. If X and Y are i.i.d., then P (X < Y ) = P (Y < X). More generally, if
X1, . . . , Xn are i.i.d., then P (X1 < X2 < . . .Xn) = P (Xn < Xn�1 < · · · < X1),
and likewise all n! orderings are equally likely (in the continuous case it follows
that P (X1 < X2 < . . .Xn) = 1

n! , while in the discrete case we also have to
consider ties).

2. If we shu✏e a deck of cards and deal the first two cards, then the probability
is 1/52 that the second card is the Ace of Spades, since by symmetry it’s
equally likely to be any card; it’s not necessary to do a law of total probability
calculation conditioning on the first card.

3. Consider the Hypergeometric, thought of as the distribution of the number of
white balls, where we draw n balls from a jar with w white balls and b black
balls (without replacement). By symmetry and linearity, we can immediately
get that the expected value is n w

w+b
, even though the trials are not independent,

as the jth ball is equally likely to be any of the balls, and linearity still holds
with dependent r.v.s.

4. By symmetry we can see immediately that if T is Cauchy, then 1/T is also
Cauchy (since if we flip the ratio of two i.i.d. N (0, 1) r.v.s, we still have the
ratio of two i.i.d. N (0, 1) r.v.s!).

5. E(X1|X1 +X2) = E(X2|X1 +X2) by symmetry if X1 and X2 are i.i.d. So by
linearity, E(X1|X1+X2)+E(X2|X1+X2) = E(X1+X2|X1+X2) = X1+X2,

which gives E(X1|X1 +X2) = (X1 +X2)/2.
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5.11 Change of Variables

Let Y = g(X), where g is a di↵erentiable function from Rn to itself whose inverse
exists, and X = (X1, . . . , Xn) is a continuous random vector with PDF fX. The PDF
of Y can be found using the Jacobian of the transformation g:

fY(y) = fX(x)

����
@x

@y

���� ,

where x = g
�1(y) and |@x

@y | is the absolute value of the Jacobian determinant of g�1

(here |@x
@y | can either be found directly or by using the reciprocal of |@y

@x |).

In the case n = 1, this says that if Y = g(X) where g is di↵erentiable with g
0(x) > 0

everywhere, then

fY (y) = fX(x)
dx

dy
,

which is easily remembered if written in the form

fY (y)dy = fX(x)dx.

Remember when using this that fY (y) is a function of y (found by solving for x in
terms of y), and the bounds for y should be specified. For example, if y = e

x and x

ranges over R, then y ranges over (0,1).

5.12 Order Statistics

LetX1, . . . , Xn be i.i.d. continuous r.v.s with PDF f and CDF F . The order statistics
are obtained by sorting the Xi’s, with X(1)  X(2)  · · ·  X(n). The marginal PDF
of the jth order statistic is

fX(j)
(x) = n

✓
n� 1

j � 1

◆
f(x)F (x)j�1(1� F (x))n�j

.

5.13 Moment Generating Functions

The moment generating function of X is the function

MX(t) = E(etX),

if this exists for all t in some open interval containing 0. For X1, . . . , Xn independent,
the MGF of the sum Sn = X1 + · · ·+Xn is

MSn(t) = MX1(t) · · ·MXn(t),
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which is often much easier to deal with than a convolution. The name “moment
generating function” comes from the fact that the derivatives of MX at 0 give the
moments of X:

M
0
X
(0) = E(X),M 00

X
(0) = E(X2),M 000

X
(0) = E(X3), . . . .

Sometimes these can be computed “all at once” without explicitly taking derivatives,
by finding the Taylor series forMX(t), e.g., the MGF of X ⇠ Expo(1) is 1

1�t
for t < 1,

which is the geometric series
P1

j=0 t
n =

P1
j=0 n!

t
n

n! for |t| < 1. So the nth moment of

X is n! (the coe�cient of t
n

n! ).

5.14 Conditional Expectation

The conditional expected value E(Y |X = x) is a number (for each x) which is the
average value of Y , given the information that X = x. The definition is analogous
to the definition of EY : just replace the PMF or PDF by the conditional PMF or
conditional PDF.

It is often very convenient to just directly condition on X to obtain E(Y |X), which
is a random variable (it is a function of X). This intuitively says to average Y ,
treating X as if it were a known constant: E(Y |X = x) is a function of x, and
E(Y |X) is obtained from E(Y |X = x) by “changing x to X”. For example, if
E(Y |X = x) = x

3
, then E(Y |X) = X

3.

Important properties of conditional expectation:

E(Y1 + Y2|X) = E(Y1|X) + E(Y2|X) (Linearity);

E(Y |X) = E(Y ) if X and Y are independent;

E(h(X)Y |X) = h(X)E(Y |X) (Taking out what’s known);

E(Y ) = E(E(Y |X)) (Iterated Expectation/Adam’s Law);

Var(Y ) = E(Var(Y |X)) + Var(E(Y |X)) (Eve’s Law).

The latter two identities are often useful for finding the mean and variance of Y :
first condition on some choice of X where the conditional distribution of Y given X

is easier to work with than the unconditional distribution of Y , and then account for
the randomness of X.
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5.15 Convergence

Let X1, X2, . . . be i.i.d. random variables with mean µ and variance �2. The sample
mean is defined as

X̄n =
1

n

nX

i=1

Xi.

The Strong Law of Large Numbers says that with probability 1, the sample mean
converges to the true mean:

X̄n ! µ with probability 1.

The Weak Law of Large Numbers (which follows from Chebyshev’s Inequality) says
that X̄n will be very close to µ with very high probability: for any ✏ > 0,

P (|X̄n � µ| > ✏) ! 0 as n ! 1.

The Central Limit Theorem says that the sum of a large number of i.i.d. random
variables is approximately Normal in distribution. More precisely, standardize the
sum X1+ · · ·+Xn (by subtracting its mean and dividing by its standard deviation);
then the standardized sum approaches N (0, 1) in distribution (i.e., the CDF of the
standardized sum converges to �). So

(X1 + · · ·+Xn)� nµ

�
p
n

! N (0, 1) in distribution.

In terms of the sample mean,
p
n

�
(X̄n � µ) ! N (0, 1) in distribution.

5.16 Inequalities

When probabilities and expected values are hard to compute exactly, it is useful to
have inequalities. One simple but handy inequality is Markov’s Inequality:

P (X > a)  E|X|
a

,

for any a > 0. Let X have mean µ and variance �2. Using Markov’s Inequality with
(X � µ)2 in place of X gives Chebyshev’s Inequality:

P (|X � µ| > a)  �
2
/a

2
.
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For convex functions g (convexity of g is equivalent to g
00(x) � 0 for all x, assuming

this exists), there is Jensen’s Inequality (the reverse inequality holds for concave g):

E(g(X)) � g(E(X)) for g convex.

The Cauchy-Schwarz inequality bounds the expected product of X and Y :

|E(XY )| 
p

E(X2)E(Y 2).

If X and Y have mean 0 and variance 1, this reduces to saying that the correlation
is between -1 and 1. It follows that correlation is always between -1 and 1.

5.17 Markov Chains

Consider a Markov chain X0, X1, . . . with transition matrix Q = (qij), and let v be
a row vector listing the initial probabilities of being in each state. Then vQ

n is the
row vector listing the probabilities of being in each state after n steps, i.e., the jth
component is P (Xn = j).

A vector s of probabilities (adding to 1) is stationary for the chain if sQ = s; by the
above, if a chain starts out with a stationary distribution then the distribution stays
the same forever. Any irreducible Markov chain has a unique stationary distribution
s, and the chain converges to it: P (Xn = i) ! si as n ! 1.

If s is a vector of probabilities (adding to 1) that satisfies the reversibility condition
siqij = sjqji for all states i, j, then it automatically follows that s is a stationary
distribution for the chain; not all chains have this condition hold, but for those that
do it is often easier to show that s is stationary using the reversibility condition than
by showing sQ = s.
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6 Common Mistakes in Probability

6.1 Category errors

A category error is a mistake that not only happens to be wrong, but also it is wrong
in every possible universe. If someone answers the question “How many students are
in Stat 110?” with “10, since it’s one ten,” that is wrong (and a very bad approxima-
tion to the truth); but there is no logical reason the enrollment couldn’t be 10, aside
from the logical necessity of learning probability for reasoning about uncertainty in
the world. But answering the question with “-42” or “⇡” or “pink elephants” would
be a category error. To help avoid being categorically wrong, always think about
what type an answer should have. Should it be an integer? A nonnegative integer?
A number between 0 and 1? A random variable? A distribution?

• Probabilities must be between 0 and 1.

Example: When asked for an approximation to P (X > 5) for a certain
r.v. X with mean 7, writing “P (X > 5) ⇡ E(X)/5.” This makes two mis-
takes: Markov’s inequality gives P (X > 5)  E(X)/5, but this is an upper

bound, not an approximation; and here E(X)/5 = 1.4, which is silly as an
approximation to a probability since 1.4 > 1.

• Variances must be nonnegative.

Example: For X and Y independent r.v.s, writing that “Var(X � Y ) =
Var(X)� Var(Y )”, which can immediately be seen to be wrong from the fact
that it becomes negative if Var(Y ) > Var(X) (and 0 if X and Y are i.i.d.).
The correct formula is Var(X �Y ) = Var(X)+Var(�Y )� 2Cov(X, Y ), which
is Var(X) + Var(Y ) if X and Y are uncorrelated.

• Correlations must be between �1 and 1.

Example: It is common to confuse covariance and correlation; they are related
by Corr(X, Y ) = Cov(X, Y )/(SD(X)SD(Y )), which is between -1 and 1.

• The range of possible values must make sense.

Example: Two people each have 100 friends, and we are interested in the dis-
tribution of X = (number of mutual friends). Then writing “X ⇠ N (µ, �2)”
doesn’t make sense since X is an integer (sometimes we use the Normal as an
approximation to, say, Binomials, but exact answers should be given unless an
approximation is specifically asked for); “X ⇠ Pois(�)” or “X ⇠ Bin(500, 1/2)”
don’t make sense since X has possible values 0, 1, . . . , 100.
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• Units should make sense.

Example: A common careless mistake is to divide by the variance rather than
the standard deviation when standardizing. Thinking of X as having units
makes it clear whether to divide by variance or standard deviation, e.g., if X
is measured in light years, then E(X) and SD(X) are also measured in light
years (whereas Var(X) is measured in squared light years), so the standardized
r.v. X�E(X)

SD(X) is unitless (as desired).

Thinking about units also helps explain the change of variables formula,

fX(x)dx = fY (y)dy.

If, for example, X is measured in nanoseconds and Y = X
3, then the units of

fX(x) inverse nanoseconds and the units of fY (y) are inverse cubed nanosec-
onds, and we need the dx and dy to make both sides be unitless (remember
that we can think of fX(x)dx as the probability that X is in a tiny interval of
length dx, centered at x).

• A number can’t equal a random variable (unless the r.v. is actually a constant).
Quantities such as E(X), P (X > 1), FX(1),Cov(X, Y ) are numbers. We often
use the notation “X = x”, but this is shorthand for an event (it is the set of
all possible outcomes of the experiment where X takes the value x).

Example: A store has N ⇠ Pois(�) customers on a certain day, each of
whom spends an average of µ dollars. Let X be the total amount spent by the
customers. Then “E(X) = Nµ” doesn’t make sense, since E(X) is a number,
while the righthand side is an r.v.

Example: Writing something like “Cov(X, Y ) = 3 if Z = 0 and Cov(X, Y ) =
1 if Z = 1” doesn’t make sense, as Cov(X, Y ) is just one number. Similarly,
students sometimes write “E(Y ) = 3 when X = 1” when they mean E(Y |X =
1) = 3. This is both conceptually wrong since E(Y ) is a number, the overall
average of Y , and careless notation that could lead, e.g., to getting “E(X) = 1
if X = 1, and E(X) = 0 if X = 0” rather than EX = p for X ⇠ Bern(p).

• Don’t replace a r.v. by its mean, or confuse E(g(X)) with g(EX).

Example: On the bidding for an unknown asset problem (#6 on the final
from 2008), a common mistake is to replace the random asset value V by its
mean, which completely ignores the variability of V .
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Example: If X � 1 ⇠ Geom(1/2), then 2E(X) = 4, but E(2X) is infinite (as
in the St. Petersburg Paradox), so confusing the two is infinitely wrong. In
general, if g is convex then Jensen’s inequality says that E(g(X)) � g(EX).

• An event is not a random variable.

Example: If A is an event and X is an r.v., it does not make sense to write
“E(A)” or “P (X)”. There is of course a deep connection between events and
r.v.s, in that for any event A there is a corresponding indicator r.v. IA, and
given an r.v. X and a number x, we have events X = x and X  x.

• Dummy variables in an integral can’t make their way out of the integral.

Example: In LOTUS for a r.v. X with PDF f , the letter x in E(g(X)) =R1
�1 g(x)f(x)dx is a dummy variable; we could just as well write

R1
�1 g(t)f(t)dt

or
R1
�1 g(u)f(u)du or even

R1
�1 g(2)f(2)d2, but the x (or whatever this

dummy variable is called) can’t migrate out of the integral.

• A random variable is not the same thing as its distribution! See Section 6.4.

• The conditional expectation E(Y |X) must be a function of X (possibly a con-
stant function, but it must be computable just in terms of X). See Section 6.5.

6.2 Notational paralysis

Another common mistake is a reluctance to introduce notation. This can be both
a symptom and a cause of not seeing the structure of a problem. Be sure to define
your notation clearly, carefully distinguishing between constants, random variables,
and events.

• Give objects names if you want to work with them.

Example: Suppose that we are interested in a LogNormal r.v. X (so log(X) ⇠
N (µ, �2) for some µ, �

2). Then log(X) is clearly an important object, so we
should give it a name, say Y = log(X). Then, X = e

Y and, for example, we
can easily obtain the moments of X using the MGF of Y .

Example: Suppose that we want to show that

E(cos4(X2 + 1)) � (E(cos2(X2 + 1)))2.

The essential pattern is that there is a r.v. on the right and its square on the left;
so let Y = cos2(X2 + 1), which turns the desired inequality into the statement
E(Y 2) � (EY )2, which we know is true because variance is nonnegative.
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• Introduce clear notation for events and r.v.s of interest.

Example: In the Calvin and Hobbes problem (from HW 3 and the final from
2010), clearly the event “Calvin wins the match” is important (so give it a
name) and the r.v. “how many of the first two games Calvin wins” is important
(so give it a name). Make sure that events you define really are events (they
are subsets of the sample space, and it must make sense to talk about whether
the event occurs) and that r.v.s you define really are r.v.s (they are functions
mapping the sample space to the real line, and it must make sense to talk about
their distributions and talk about them as a numerical summary of some aspect
of the random experiment).

• Think about location and scale when applicable.

Example: If Yj ⇠ Expo(�), it may be very convenient to work with Xj = �Yj,
which is Expo(1). In studying X ⇠ N (µ, �2), it may be very convenient to
write X = µ+ �Z where Z ⇠ N (0, 1) is the standardized version of X.

6.3 Common sense and checking answers

Whenever possible (i.e., when not under severe time pressure), look for simple ways
to check your answers, or at least to check that they are plausible. This can be done
in various ways, such as using the following methods.

1. Miracle checks. Does your answer seem intuitively plausible? Is there a cat-
egory error? Did asymmetry appear out of nowhere when there should be
symmetry?

2. Checking simple and extreme cases. What is the answer to a simpler version
of the problem? What happens if n = 1 or n = 2, or as n ! 1, if the problem
involves showing something for all n?

3. Looking for alternative approaches and connections with other problems. Is
there another natural way to think about the problem? Does the problem
relate to other problems we’ve seen?

• Probability is full of counterintuitive results, but not impossible results!

Example: Suppose that we have P (snow Saturday) = P (snow Sunday) =
1/2. Then we can’t say “P (snow over the weekend) = 1”; clearly there is
some chance of no snow, and of course the mistake is to ignore the need for
disjointness.
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Example: In finding E(eX) for X ⇠ Pois(�), obtaining an answer that can
be negative, or an answer that isn’t an increasing function of � (intuitively, it
is clear that larger � should give larger average values of eX).

• Check simple and extreme cases whenever possible.

Example: Suppose we want to derive the mean and variance of a Hyperge-
ometric, which is the distribution of the number of white balls if we draw n

balls without replacement from a bag containing w white balls and b black
balls. Suppose that using indicator r.v.s, we (correctly) obtain that the mean
is µ = nw

w+b
and the variance is (w+b�n

w+b�1 )n
µ

n
(1� µ

n
).

Let’s check that this makes sense for the simple case n = 1: then the mean and
variance reduce to those of a Bern(w/(w + b)), which makes sense since with
only 1 draw, it doesn’t matter whether sampling is with replacement.

Now let’s consider an extreme case where the total number of balls (w + b) is
extremely large compared with n. Then it shouldn’t matter much whether the
sampling is with or without replacement, so the mean and variance should be
very close to those of a Bin(n,w/(b + w)), and indeed this is the case. If we
had an answer that did not make sense in simple and extreme cases, we could
then look harder for a mistake or explanation.

Example: Let X1, X2, . . . , X1000 be i.i.d. with a continuous distribution, and
consider the question of whether the event X1 < X2 is independent of the
event X1 < X3. Many students guess intuitively that they are independent.
But now consider the more extreme question of whether P (X1 < X2|X1 <

X3, X1 < X4, . . . , X1 < X1000) is P (X1 < X2). Here most students guess
intuitively (and correctly) that

P (X1 < X2|X1 < X3, X1 < X4, . . . , X1 < X1000) > P (X1 < X2),

since the evidence that X1 is less than all of X3, . . . , X1000 suggests that X1 is
very small. Yet this more extreme case is the same in principle, just di↵erent
in degree. Similarly, the Monty Hall problem is easier to understand with
1000 doors than with 3 doors. To show algebraically that X1 < X2 is not
independent of X1 < X3, note that P (X1 < X2) = 1/2, while

P (X1 < X2|X1 < X3) =
P (X1 < X2, X1 < X3)

P (X1 < X3)
=

1/3

1/2
=

2

3
,

where the numerator is 1/3 since the smallest of X1, X2, X3 is equally likely to
be any of them.
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• Check that PMFs are nonnegative and sum to 1, and PDFs are nonnegative
and integrate to 1 (or that it is at least plausible), when it is not too messy.

Example: Writing that the PDF of X is “f(x) = 1
5e

�5x for all x > 0 (and
0 otherwise)” is immediately seen to be wrong by integrating (the constant in
front should be 5, which can also be seen by recognizing this as an Expo(5).
Writing that the PDF is “f(x) = 1+e

�x

1+x
for all x > 0 (and 0 otherwise)”

doesn’t make sense since even though the integral is hard to do directly, clearly
1+e

�x

1+x
>

1
1+x

, and
R1
0

1
1+x

dx is infinite.

Example: Consider the following problem: “You are invited to attend 6 wed-
dings next year, independently with all months of the year equally likely. What
is the probability that no two weddings are in the same month?” A common
mistake is to treat the weddings as indistinguishable. But no matter how
generic and cliched weddings can be sometimes, there must be some way to
distinguish two weddings!

It often helps to make up concrete names, e.g., saying “ok, we need to look at
the possible schedulings of the weddings of Daenerys and Drogo, of Cersei and
Robert, . . . ”. There are 126 equally likely possibilities and, for example, it is
much more likely to have 1 wedding per month in January through June than to
have all 6 weddings in January (whereas treating weddings as indistinguishable
would suggest having these be equal).

6.4 Random variables vs. distributions

A random variable is not the same thing as its distribution! We call this confusion
sympathetic magic, and the consequences of this confusion are often disastrous. Every
random variable has a distribution (which can always be expressed using a CDF,
which can be expressed by a PMF in the discrete case, and which can be expressed
by a PDF in the continuous case).

Every distribution can be used as a blueprint for generating r.v.s (for example,
one way to do this is using Universality of the Uniform). But that doesn’t mean
that doing something to a r.v. corresponds to doing it to the distribution of the
r.v. Confusing a distribution with a r.v. with that distribution is like confusing a
map of a city with the city itself, or a blueprint of a house with the house itself. The
word is not the thing, the map is not the territory.

• A function of a r.v. is a r.v.
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Example: Let X be discrete with possible values 0, 1, 2, . . . and PMF pj =
P (X = j), and let Y = X + 3. Then Y is discrete with possible values
3, 4, 5, . . . , and its PMF is given by P (Y = k) = P (X = k � 3) = pk�3 for
k 2 {3, 4, 5, . . . }. In the continuous case, if Y = g(X) with g di↵erentiable
and strictly increasing, then we can use the change of variables formula to
find the PDF of Y from the PDF of X. If we only need E(Y ) and not the
distribution of Y , we can use LOTUS. A common mistake is not seeing why
these transformations of X are themselves r.v.s and how to handle them.

Example: For X, Y i.i.d., writing that “Emax(X, Y ) = EX since max(X, Y )
is either X or Y , both of which have mean EX”; this misunderstands how and
why max(X, Y ) is a r.v. Of course, we should have Emax(X, Y ) � EX since
max(X, Y ) � X.

• Avoid sympathetic magic.

Example: Is it possible to have two r.v.s X, Y which have the same distribu-
tion but are never equal, i.e., the event X = Y never occurs?

Example: In finding the PDF of XY , writing something like “fX(x)fY (y).”
This is a category error since if we let W = XY , we want a function fW (w), not
a function of two variables x and y. The mistake is in thinking that the PDF of
the product is the product of the PDFs, which comes from not understanding
well what a distribution really is.

Example: For r.v.s X and Y with PDFs fX and fY respectively, the event
{X < Y } is very di↵erent conceptually from the inequality fX < fY . In fact,
it is impossible that for all t, fX(t) < fY (t), since both sides integrate to 1.

• A CDF F (x) = P (X  x) is a way to specify the distribution of X, and is
a function defined for all real values of x. Here X is the r.v., and x is any
number; we could just as well have written F (t) = P (X  t).

Example: Why must a CDF F (x) be defined for all x and increasing every-
where, and why is it not true that a CDF integrates to 1?

6.5 Conditioning

It is easy to make mistakes with conditional probability so it is important to think
carefully about what to condition on and how to carry that out. Conditioning is the

soul of statistics.
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• Condition on all the evidence!

Example: In the Monty Hall problem, if Monty opens door 2 then we can’t
just use “P (door 1 has car|door 2 doesn’t have car) = 1/2,” since this does not
condition on all the evidence: we know not just that door 2 does not have the
car, but also that Monty opened door 2. How the information was collected is

itself information. Why is this additional information relevant? To see this,
contrast the problem as stated with the variant where Monty randomly chooses
to open one of the 2 doors not picked by the contestant (so there is a chance of
revealing the car and spoiling the game): di↵erent information is obtained in
the two scenarios. This is another example where looking at an extreme case
helps (consider the analogue of the Monty Hall problem with a billion doors).

Example: In the murder problem, a common mistake (often made by defense
attorneys, intentionally or otherwise) is to focus attention on P (murder|abuse),
which is irrelevant since we know the woman has been murdered, and we are
interested in the probability of guilt given all the evidence (including the fact
that the murder occurred).

• Don’t destroy information.

Example: Let X ⇠ Bern(1/2) and Y = 1 + W with W ⇠ Bern(1/2) inde-
pendent of X. Then writing “E(X2|X = Y ) = E(Y 2) = 2.5” is wrong (in
fact, E(X2|X = Y ) = 1 since if X = Y , then X = 1 ), where the mistake is
destroying the information X = Y , thinking we’re done with that information
once we have plugged in Y for X. A similar mistake is easy to make in the two
envelope paradox.

Example: On the bidding for an unknown asset problem (#6 on the final
from 2008), a very common mistake is to forget to condition on the bid being
accepted. In fact, should have E(V |bid accepted) < E(V ) since if the bid is
accepted, it restricts how much the asset could be worth (intuitively, this is
similar to“buyer’s remorse”: it is common (though not necessarily rational) for
someone to regret making an o↵er if the o↵er is accepted immediately, thinking
that is a sign that a lower o↵er would have su�ced).

• Independence shouldn’t be assumed without justification, and it is important
to be careful not to implicitly assume independence without justification.

Example: For X1, . . . , Xn i.i.d., we have Var(X1 + ... + Xn) = nVar(X1),
but this is not equal to Var(X1 + ... + X1) = Var(nX1) = n

2Var(X1). For
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example, if X and Y are i.i.d. N (µ, �2), then X + Y ⇠ N (2µ, 2�2), while
X +X = 2X ⇠ N (2µ, 4�2).

Example: Is it always true that if X ⇠ Pois(�) and Y ⇠ Pois(�), then
X + Y ⇠ Pois(2�)? What is an example of a sum of Bern(p)’s which is not
Binomial?

Example: In the two envelope paradox, it is not true that the amount of
money in the first envelope is independent of the indicator of which envelope
has more money.

• Independence is completely di↵erent from disjointness!

Example: Sometimes students try to visualize independent events A and B

with two non-overlapping ovals in a Venn diagram. Such events in fact can’t

be independent (unless one has probability 0), since learning that A happened
gives a great deal of information about B: it implies that B did not occur.

• Independence is a symmetric property: if A is independent of B, then B is
independent of A. There’s no such thing as unrequited independence.

Example: If it is non-obvious whether A provides information about B but
obvious that B provides information about A, then A and B can’t be indepen-
dent.

• The marginal distributions can be extracted from the joint distribution, but
knowing the marginal distributions does not determine the joint distribution.

Example: Calculations that are purely based on the marginal CDFs FX and
FY of dependent r.v.s X and Y may not shed much light on events such as
{X < Y } which involve X and Y jointly.

• Keep the distinction between prior and posterior probabilities clear.

Example: Suppose that we observe evidence E. Then writing “P (E) = 1
since we know for sure that E happened” is careless; we have P (E|E) = 1, but
P (E) is the prior probability (the probability before E was observed).

• Don’t confuse P (A|B) with P (B|A).
Example: This mistake is also known as the prosecutor’s fallacy since it is
often made in legal cases (but not always by the prosecutor!). For example, the
prosecutor may argue that the probability of guilt given the evidence is very
high by attempting to show that the probability of the evidence given innocence
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is very low, but in and of itself this is insu�cient since it does not use the prior
probability of guilt. Bayes’ rule thus becomes Bayes’ ruler, measuring the
weight of the evidence by relating P (A|B) to P (B|A) and showing us how to
update our beliefs based on evidence.

• Don’t confuse P (A|B) with P (A,B).

Example: The law of total probability is often wrongly written without the
weights as “P (A) = P (A|B) + P (A|Bc)” rather than P (A) = P (A,B) +
P (A,Bc) = P (A|B)P (B) + P (A|Bc)P (Bc).

• The expression Y |X does not denote a r.v.; it is notation indicating that in
working with Y , we should use the conditional distribution of Y given X (i.e.,
treat X as a known constant). The expression E(Y |X) is a r.v., and is a
function of X (we have summed or integrated over the possible values of Y ).

Example: Writing “E(Y |X) = Y ” is wrong, except if Y is a function of X,
e.g., E(X3|X) = X

3; by definition, E(Y |X) must be g(X) for some function
g, so any answer for E(Y |X) that is not of this form is a category error.
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7 Stat 110 Final from 2006

1. The number of fish in a certain lake is a Pois(�) random variable. Worried that
there might be no fish at all, a statistician adds one fish to the lake. Let Y be the
resulting number of fish (so Y is 1 plus a Pois(�) random variable).

(a) Find E(Y 2) (simplify).

(b) Find E(1/Y ) (in terms of �; do not simplify yet).

(c) Find a simplified expression for E(1/Y ). Hint: k!(k + 1) = (k + 1)!.

24



2. Write the most appropriate of , �, =, or ? in the blank for each part (where “?”
means that no relation holds in general.) It is not necessary to justify your answers
for full credit; some partial credit is available for justified answers that are flawed
but on the right track.

In (c) through (f),X and Y are i.i.d. (independent identically distributed) positive
random variables. Assume that the various expected values exist.

(a) (probability that a roll of 2 fair dice totals 9) (probability that a roll of 2
fair dice totals 10)

(b) (probability that 65% of 20 children born are girls) (probability that 65%
of 2000 children born are girls)

(c) E(
p
X)

p
E(X)

(d) E(sinX) sin(EX)

(e) P (X + Y > 4) P (X > 2)P (Y > 2)

(f) E ((X + Y )2) 2E(X2) + 2(EX)2
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3. A fair die is rolled twice, with outcomes X for the 1st roll and Y for the 2nd roll.

(a) Compute the covariance of X + Y and X � Y (simplify).

(b) Are X + Y and X � Y independent? Justify your answer clearly.

(c) Find the moment generating function MX+Y (t) of X+Y (your answer should be
a function of t and can contain unsimplified finite sums).
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4. A post o�ce has 2 clerks. Alice enters the post o�ce while 2 other customers,
Bob and Claire, are being served by the 2 clerks. She is next in line. Assume that
the time a clerk spends serving a customer has the Expo(�) distribution.

(a) What is the probability that Alice is the last of the 3 customers to be done being
served? (Simplify.) Justify your answer. Hint: no integrals are needed.

(b) Let X and Y be independent Expo(�) r.v.s. Find the CDF of min(X, Y ).

(c) What is the expected total time that Alice needs to spend at the post o�ce?
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5. Bob enters a casino with X0 = 1 dollar and repeatedly plays the following game:
with probability 1/3, the amount of money he has increases by a factor of 3; with
probability 2/3, the amount of money he has decreases by a factor of 3. Let Xn be
the amount of money he has after playing this game n times. Thus, Xn+1 is 3Xn

with probability 1/3 and is 3�1
Xn with probability 2/3.

(a) Compute E(X1), E(X2) and, in general, E(Xn). (Simplify.)

(b) What happens to E(Xn) as n ! 1? Let Yn be the number of times out of the
first n games that Bob triples his money. What happens to Yn/n as n ! 1?

(c) Does Xn converge to some number c as n ! 1 (with probability 1) and if so,
what is c? Explain.
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6. Let X and Y be independent standard Normal r.v.s and let R2 = X
2+Y

2 (where
R > 0 is the distance from (X, Y ) to the origin).

(a) The distribution of R2 is an example of three of the “important distributions”
listed on the last page. State which three of these distributions R2 is an instance of,
specifying the parameter values.

(b) Find the PDF of R. (Simplify.) Hint: start with the PDF fW (w) of W = R
2.

(c) Find P (X > 2Y + 3) in terms of the standard Normal CDF �. (Simplify.)

(d) Compute Cov(R2
, X). Are R

2 and X independent?
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7. Let U1, U2, . . . , U60 be i.i.d. Unif(0,1) and X = U1 + U2 + · · ·+ U60.

(a) Which important distribution is the distribution of X very close to? Specify
what the parameters are, and state which theorem justifies your choice.

(b) Give a simple but accurate approximation for P (X > 17). Justify briefly.

(c) Find the moment generating function (MGF) of X.
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8. Let X1, X2, . . . , Xn be i.i.d. random variables with E(X1) = 3, and consider the
sum Sn = X1 +X2 + · · ·+Xn.

(a) What is E(X1X2X3|X1)? (Simplify. Your answer should be a function of X1.)

(b) What is E(X1|Sn) + E(X2|Sn) + · · ·+ E(Xn|Sn)? (Simplify.)

(c) What is E(X1|Sn)? (Simplify.) Hint: use (b) and symmetry.
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9. An urn contains red, green, and blue balls. Balls are chosen randomly with
replacement (each time, the color is noted and then the ball is put back.) Let r, g, b
be the probabilities of drawing a red, green, blue ball respectively (r + g + b = 1).

(a) Find the expected number of balls chosen before obtaining the first red ball, not
including the red ball itself. (Simplify.)

(b) Find the expected number of di↵erent colors of balls obtained before getting the
first red ball. (Simplify.)

(c) Find the probability that at least 2 of n balls drawn are red, given that at least
1 is red. (Simplify; avoid sums of large numbers of terms, and

P
or · · · notation.)
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10. LetX0, X1, X2, . . . be an irreducible Markov chain with state space {1, 2, . . . ,M},
M � 3, transition matrix Q = (qij), and stationary distribution s = (s1, . . . , sM).
The initial state X0 is given the stationary distribution, i.e., P (X0 = i) = si.

(a) On average, how many of X0, X1, . . . , X9 equal 3? (In terms of s; simplify.)

(b) Let Yn = (Xn � 1)(Xn � 2). For M = 3, find an example of Q (the transition
matrix for the original chain X0, X1, . . . ) where Y0, Y1, . . . is Markov, and another
example of Q where Y0, Y1, . . . is not Markov. Mark which is which and briefly
explain. In your examples, make qii > 0 for at least one i and make sure it is
possible to get from any state to any other state eventually.

(c) If each column of Q sums to 1, what is s? Verify using the definition of stationary.
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8 Stat 110 Final from 2007

1. Consider the birthdays of 100 people. Assume people’s birthdays are independent,
and the 365 days of the year (exclude the possibility of February 29) are equally likely.

(a) Find the expected number of birthdays represented among the 100 people, i.e.,
the expected number of days that at least 1 of the people has as his or her birthday
(your answer can involve unsimplified fractions but should not involve messy sums).

(b) Find the covariance between how many of the people were born on January 1
and how many were born on January 2.
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2. Let X and Y be positive random variables, not necessarily independent. Assume
that the various expected values below exist. Write the most appropriate of , �, =,
or ? in the blank for each part (where “?” means that no relation holds in general.) It
is not necessary to justify your answers for full credit; some partial credit is available
for justified answers that are flawed but on the right track.

(a) (E(XY ))2 E(X2)E(Y 2)

(b) P (|X + Y | > 2) 1
10E((X + Y )4)

(c) E(ln(X + 3)) ln(E(X + 3))

(d) E(X2
e
X) E(X2)E(eX)

(e) P (X + Y = 2) P (X = 1)P (Y = 1)

(f) P (X + Y = 2) P ({X � 1} [ {Y � 1})

35



3. Let X and Y be independent Pois(�) random variables. Recall that the moment
generating function (MGF) of X is M(t) = e

�(et�1)
.

(a) Find the MGF of X + 2Y (simplify).

(b) Is X + 2Y also Poisson? Show that it is, or that it isn’t (whichever is true).

(c) Let g(t) = lnM(t) be the log of the MGF of X. Expanding g(t) as a Taylor series

g(t) =
1X

j=1

cj

j!
t
j

(the sum starts at j = 1 because g(0) = 0), the coe�cient cj is called the jth
cumulant of X. Find cj in terms of �, for all j � 1 (simplify).
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4. Consider the following conversation from an episode of The Simpsons :

Lisa: Dad, I think he’s an ivory dealer! His boots are ivory, his hat is

ivory, and I’m pretty sure that check is ivory.

Homer: Lisa, a guy who’s got lots of ivory is less likely to hurt Stampy

than a guy whose ivory supplies are low.

Here Homer and Lisa are debating the question of whether or not the man (named
Blackheart) is likely to hurt Stampy the Elephant if they sell Stampy to him. They
clearly disagree about how to use their observations about Blackheart to learn about
the probability (conditional on the evidence) that Blackheart will hurt Stampy.

(a) Define clear notation for the various events of interest here.

(b) Express Lisa’s and Homer’s arguments (Lisa’s is partly implicit) as conditional
probability statements in terms of your notation from (a).

(c) Assume it is true that someone who has a lot of a commodity will have less desire
to acquire more of the commodity. Explain what is wrong with Homer’s reasoning
that the evidence about Blackheart makes it less likely that he will harm Stampy.
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5. Empirically, it is known that 49% of children born in the U.S. are girls (and 51%
are boys). Let N be the number of children who will be born in the U.S. in March
2009, and assume that N is a Pois(�) random variable, where � is known. Assume
that births are independent (e.g., don’t worry about identical twins).

Let X be the number of girls who will be born in the U.S. in March 2009, and let Y
be the number of boys who will be born then (note the importance of choosing good
notation: boys have a Y chromosome).

(a) Find the joint distribution of X and Y . (Give the joint PMF.)

(b) Find E(N |X) and E(N2|X).
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6. Let X1, X2, X3 be independent with Xi ⇠ Expo(�i) (so with possibly di↵erent
rates). A useful fact (which you may use) is that P (X1 < X2) =

�1
�1+�2

.

(a) Find E(X1 +X2 +X3|X1 > 1, X2 > 2, X3 > 3) in terms of �1,�2,�3.

(b) Find P (X1 = min(X1, X2, X3)), the probability that the first of the three Expo-
nentials is the smallest. Hint: re-state this in terms of X1 and min(X2, X3).

(c) For the case �1 = �2 = �3 = 1, find the PDF of max(X1, X2, X3). Is this one of
the “important distributions”?
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7. Let X1, X2, . . . be i.i.d. random variables with CDF F (x). For every number x,
let Rn(x) count how many of X1, . . . , Xn are less than or equal to x.

(a) Find the mean and variance of Rn(x) (in terms of n and F (x)).

(b) Assume (for this part only) that X1, . . . , X4 are known constants. Sketch an
example showing what the graph of the function R4(x)

4 might look like. Is the function
R4(x)

4 necessarily a CDF? Explain briefly.

(c) Show that Rn(x)
n

! F (x) as n ! 1 (with probability 1).
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8. (a) Let T be a Student-t r.v. with 1 degree of freedom, and let W = 1/T . Find
the PDF of W (simplify). Is this one of the “important distributions”?

Hint: no calculus is needed for this (though it can be used to check your answer).

(b) Let Wn ⇠ �
2
n
(the Chi-Square distribution with n degrees of freedom), for each

n � 1. Do there exist an and bn such that an(Wn � bn) ! N (0, 1) in distribution as
n ! 1? If so, find them; if not, explain why not.

(c) Let Z ⇠ N (0, 1) and Y = |Z|. Find the PDF of Y , and approximate P (Y < 2).
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9. Consider a knight randomly moving around on a 4 by 4 chessboard:

! A! ! B! ! C ! ! D

4

3

2

1

The 16 squares are labeled in a grid, e.g., the knight is currently at the square B3,
and the upper left square is A4. Each move of the knight is an L-shape: two squares
horizontally followed by one square vertically, or vice versa. For example, from B3
the knight can move to A1, C1, D2, or D4; from A4 it can move to B2 or C3. Note
that from a white square, the knight always moves to a gray square and vice versa.

At each step, the knight moves randomly, each possibility equally likely. Consider
the stationary distribution of this Markov chain, where the states are the 16 squares.

(a) Which squares have the highest stationary probability? Explain very briefly.

(b) Compute the stationary distribution (simplify). Hint: random walk on a graph.
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9 Stat 110 Final from 2008

1. Joe’s iPod has 500 di↵erent songs, consisting of 50 albums of 10 songs each. He
listens to 11 random songs on his iPod, with all songs equally likely and chosen
independently (so repetitions may occur).

(a) What is the PMF of how many of the 11 songs are from his favorite album?

(b) What is the probability that there are 2 (or more) songs from the same album
among the 11 songs he listens to? (Do not simplify.)

(c) A pair of songs is a “match” if they are from the same album. If, say, the 1st,
3rd, and 7th songs are all from the same album, this counts as 3 matches. Among
the 11 songs he listens to, how many matches are there on average? (Simplify.)
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2. Let X and Y be positive random variables, not necessarily independent. Assume
that the various expressions below exist. Write the most appropriate of , �, =, or
? in the blank for each part (where “?” means that no relation holds in general.) It
is not necessary to justify your answers for full credit; some partial credit is available
for justified answers that are flawed but on the right track.

(a) P (X + Y > 2) EX+EY

2

(b) P (X + Y > 3) P (X > 3)

(c) E(cos(X)) cos(EX)

(d) E(X1/3) (EX)1/3

(e) E(XY ) (EX)EY

(f) E (E(X|Y ) + E(Y |X)) EX + EY
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3. (a) A woman is pregnant with twin boys. Twins may be either identical or
fraternal (non-identical). In general, 1/3 of twins born are identical. Obviously,
identical twins must be of the same sex; fraternal twins may or may not be. Assume
that identical twins are equally likely to be both boys or both girls, while for fraternal
twins all possibilities are equally likely. Given the above information, what is the
probability that the woman’s twins are identical?

(b) A certain genetic characteristic is of interest. For a random person, this has a
numerical value given by a N (0, �2) r.v. Let X1 and X2 be the values of the genetic
characteristic for the twin boys from (a). If they are identical, then X1 = X2; if they
are fraternal, then X1 and X2 have correlation ⇢. Find Cov(X1, X2) in terms of ⇢, �2

.
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4. (a) Consider i.i.d. Pois(�) r.v.s X1, X2, . . . . The MGF of Xj is M(t) = e
�(et�1).

Find the MGF Mn(t) of the sample mean X̄n = 1
n

P
n

j=1 Xj. (Hint: it may help to do
the n = 2 case first, which itself is worth a lot of partial credit, and then generalize.)

(b) Find the limit of Mn(t) as n ! 1. (You can do this with almost no calculation
using a relevant theorem; or you can use (a) and that ex ⇡ 1 + x if x is very small.)
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5. A post o�ce has 2 clerks. Alice enters the post o�ce while 2 other customers,
Bob and Claire, are being served by the 2 clerks. She is next in line. Assume that
the time a clerk spends serving a customer has the Expo(�) distribution.

(a) What is the probability that Alice is the last of the 3 customers to be done being
served? Justify your answer. Hint: no integrals are needed.

(b) Let X and Y be independent Expo(�) r.v.s. Find the CDF of min(X, Y ).

(c) What is the expected total time that Alice needs to spend at the post o�ce?
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6. You are given an amazing opportunity to bid on a mystery box containing a
mystery prize! The value of the prize is completely unknown, except that it is worth
at least nothing, and at most a million dollars. So the true value V of the prize is
considered to be Uniform on [0,1] (measured in millions of dollars).

You can choose to bid any amount b (in millions of dollars). You have the chance
to get the prize for considerably less than it is worth, but you could also lose money
if you bid too much. Specifically, if b <

2
3V , then the bid is rejected and nothing

is gained or lost. If b � 2
3V , then the bid is accepted and your net payo↵ is V � b

(since you pay b to get a prize worth V ). What is your optimal bid b (to maximize
the expected payo↵)?
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7. (a) Let Y = e
X , with X ⇠ Expo(3). Find the mean and variance of Y (simplify).

(b) For Y1, . . . , Yn i.i.d. with the same distribution as Y from (a), what is the approx-
imate distribution of the sample mean Ȳn = 1

n

P
n

j=1 Yj when n is large? (Simplify,
and specify all parameters.)
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8.

1

2

3

4

5

6

7

(a) Consider a Markov chain on the state space {1, 2, . . . , 7} with the states arranged
in a “circle” as shown above, and transitions given by moving one step clockwise or
counterclockwise with equal probabilities. For example, from state 6, the chain moves
to state 7 or state 5 with probability 1/2 each; from state 7, the chain moves to state
1 or state 6 with probability 1/2 each. The chain starts at state 1.

Find the stationary distribution of this chain.

(b) Consider a new chain obtained by “unfolding the circle.” Now the states are
arranged as shown below. From state 1 the chain always goes to state 2, and from
state 7 the chain always goes to state 6. Find the new stationary distribution.

1 2 3 4 5 6 7
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10 Stat 110 Final from 2009

1. A group of n people play “Secret Santa” as follows: each puts his or her name on
a slip of paper in a hat, picks a name randomly from the hat (without replacement),
and then buys a gift for that person. Unfortunately, they overlook the possibility
of drawing one’s own name, so some may have to buy gifts for themselves (on the
bright side, some may like self-selected gifts better). Assume n � 2.

(a) Find the expected number of people who pick their own names (simplify).

(b) Find the expected number of pairs of people, A and B, such that A picks B’s
name and B picks A’s name (where A 6= B and order doesn’t matter; simplify).

(c) Let X be the number of people who pick their own names. Which of the “im-
portant distributions” are conceivable as the distribution of X, just based on the
possible values X takes (you do not need to list parameter values for this part)?

(d) What is the approximate distribution of X if n is large (specify the parameter
value or values)? What does P (X = 0) converge to as n ! 1?
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2. Let X and Y be positive random variables, not necessarily independent. Assume
that the various expected values below exist. Write the most appropriate of , �, =,
or ? in the blank for each part (where “?” means that no relation holds in general.) It
is not necessary to justify your answers for full credit; some partial credit is available
for justified answers that are flawed but on the right track.

(a) E(X3)
p

E(X2)E(X4)

(b) P (|X + Y | > 2) 1
16E((X + Y )4)

(c) E(
p
X + 3)

p
E(X + 3)

(d) E(sin2(X)) + E(cos2(X)) 1

(e) E(Y |X + 3) E(Y |X)

(f) E(E(Y 2|X)) (EY )2
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3. Let Z ⇠ N (0, 1). Find the 4th moment E(Z4) in the following two di↵erent ways:

(a) using what you know about how certain powers of Z are related to other distri-
butions, along with information from the table of distributions.

(b) using the MGF M(t) = e
t
2
/2, by writing down its Taylor series and using how

the coe�cients relate to moments of Z, not by tediously taking derivatives of M(t).

Hint: you can get this series immediately from the Taylor series for ex.
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4. A chicken lays n eggs. Each egg independently does or doesn’t hatch, with
probability p of hatching. For each egg that hatches, the chick does or doesn’t survive
(independently of the other eggs), with probability s of survival. Let N ⇠ Bin(n, p)
be the number of eggs which hatch, X be the number of chicks which survive, and
Y be the number of chicks which hatch but don’t survive (so X + Y = N).

(a) Find the distribution of X, preferably with a clear explanation in words rather
than with a computation. If X has one of the “important distributions,” say which
(including its parameters).

(b) Find the joint PMF of X and Y (simplify).

(c) Are X and Y independent? Give a clear explanation in words (of course it makes
sense to see if your answer is consistent with your answer to (b), but you can get
full credit on this part even without doing (b); conversely, it’s not enough to just say
“by (b), . . . ” without further explanation).
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5. Suppose we wish to approximate the following integral (denoted by b):

b =

Z 1

�1
(�1)bxce�x

2
/2
dx,

where bxc is the greatest integer less than or equal to x (e.g., b3.14c = 3).

(a) Write down a function g(x) such that E(g(X)) = b forX ⇠ N (0, 1) (your function
should not be in terms of b, and should handle normalizing constants carefully).

(b) Write down a function h(u) such that E(h(U)) = b for U ⇠ Unif(0, 1) (your
function should not be in terms of b, and can be in terms of the function g from (a)
and the standard Normal CDF �).

(c) Let X1, X2, . . . , Xn be i.i.d. N (0, 1) with n large, and let g be as in (a). What
is the approximate distribution of 1

n
(g(X1) + · · ·+ g(Xn))? Simplify the parameters

fully (in terms of b and n), and mention which theorems you are using.
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6. Let X1 be the number of emails received by a certain person today and let X2 be
the number of emails received by that person tomorrow, with X1 and X2 i.i.d.

(a) Find E(X1|X1 +X2) (simplify).

(b) For the case Xj ⇠ Pois(�), find the conditional distribution of X1 given X1+X2,
i.e., P (X1 = k|X1+X2 = n) (simplify). Is this one of the “important distributions”?
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7. Let X1, X2, X3 be independent with Xi ⇠ Expo(�i) (so with possibly di↵erent
rates). A useful fact (which you may use) is that P (X1 < X2) =

�1
�1+�2

.

(a) Find E(X1 +X2 +X3|X1 > 1, X2 > 2, X3 > 3) in terms of �1,�2,�3.

(b) Find P (X1 = min(X1, X2, X3)), the probability that the first of the three Expo-
nentials is the smallest. Hint: re-state this in terms of X1 and min(X2, X3).

(c) For the case �1 = �2 = �3 = 1, find the PDF of max(X1, X2, X3). Is this one of
the “important distributions”?
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8. Let Xn be the price of a certain stock at the start of the nth day, and assume
that X0, X1, X2, . . . follows a Markov chain with transition matrix Q (assume for
simplicity that the stock price can never go below 0 or above a certain upper bound,
and that it is always rounded to the nearest dollar).

(a) A lazy investor only looks at the stock once a year, observing the values on days
0, 365, 2 · 365, 3 · 365, . . . . So the investor observes Y0, Y1, . . . , where Yn is the price
after n years (which is 365n days; you can ignore leap years). Is Y0, Y1, . . . also a
Markov chain? Explain why or why not; if so, what is its transition matrix?

(b) The stock price is always an integer between $0 and $28. From each day to the
next, the stock goes up or down by $1 or $2, all with equal probabilities (except for
days when the stock is at or near a boundary, i.e., at $0, $1, $27, or $28).

If the stock is at $0, it goes up to $1 or $2 on the next day (after receiving
government bailout money). If the stock is at $28, it goes down to $27 or $26 the
next day. If the stock is at $1, it either goes up to $2 or $3, or down to $0 (with
equal probabilities); similarly, if the stock is at $27 it either goes up to $28, or down
to $26 or $25. Find the stationary distribution of the chain (simplify).
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11 Stat 110 Final from 2010

1. Calvin and Hobbes play a match consisting of a series of games, where Calvin has
probability p of winning each game (independently). They play with a “win by two”
rule: the first player to win two games more than his opponent wins the match.

(a) What is the probability that Calvin wins the match (in terms of p)?

Hint: condition on the results of the first k games (for some choice of k).

(b) Find the expected number of games played.

Hint: consider the first two games as a pair, then the next two as a pair, etc.
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2. A DNA sequence can be represented as a sequence of letters, where the “alphabet”
has 4 letters: A,C,T,G. Suppose such a sequence is generated randomly, where the
letters are independent and the probabilities of A,C,T,G are p1, p2, p3, p4 respectively.

(a) In a DNA sequence of length 115, what is the expected number of occurrences
of the expression “CATCAT” (in terms of the pj)? (Note that, for example, the
expression “CATCATCAT” counts as 2 occurrences.)

(b) What is the probability that the first A appears earlier than the first C appears,
as letters are generated one by one (in terms of the pj)?

(c) For this part, assume that the pj are unknown. Suppose we treat p2 as a Unif(0, 1)
r.v. before observing any data, and that then the first 3 letters observed are “CAT”.
Given this information, what is the probability that the next letter is C?
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3. Let X and Y be i.i.d. positive random variables. Assume that the various ex-
pressions below exist. Write the most appropriate of , �, =, or ? in the blank for
each part (where “?” means that no relation holds in general). It is not necessary
to justify your answers for full credit; some partial credit is available for justified
answers that are flawed but on the right track.

(a) E(eX+Y ) e
2E(X)

(b) E(X2
e
X)

p
E(X4)E(e2X)

(c) E(X|3X) E(X|2X)

(d) E(X7
Y ) E(X7

E(Y |X))

(e) E(X
Y
+ Y

X
) 2

(f) P (|X � Y | > 2) Var(X)
2
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4. Let X be a discrete r.v. whose distinct possible values are x0, x1, . . . , and let
pk = P (X = xk). The entropy of X is defined to be H(X) = �

P1
k=0 pk log2(pk).

(a) Find H(X) for X ⇠ Geom(p).

Hint: use properties of logs, and interpret part of the sum as an expected value.

(b) Find H(X3) for X ⇠ Geom(p), in terms of H(X).

(c) Let X and Y be i.i.d. discrete r.v.s. Show that P (X = Y ) � 2�H(X).

Hint: Consider E(log2(W )), where W is a r.v. taking value pk with probability pk.
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5. Let Z1, . . . , Zn ⇠ N (0, 1) be i.i.d.

(a) As a function of Z1, create an Expo(1) r.v. X (your answer can also involve the
standard Normal CDF �).

(b) Let Y = e
�R

, where R =
p

Z
2
1 + · · ·+ Z2

n
. Write down (but do not evaluate) an

integral for E(Y ).

(c) Let X1 = 3Z1 � 2Z2 and X2 = 4Z1 + 6Z2. Determine whether X1 and X2 are
independent (being sure to mention which results you’re using).
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6. Let X1, X2, . . . be i.i.d. positive r.v.s. with mean µ, and let Wn = X1
X1+···+Xn

.

(a) Find E(Wn).

Hint: consider X1
X1+···+Xn

+ X2
X1+···+Xn

+ · · ·+ Xn
X1+···+Xn

.

(b) What random variable does nWn converge to as n ! 1?

(c) For the case that Xj ⇠ Expo(�), find the distribution of Wn, preferably without
using calculus. (If it is one of the “important distributions” state its name and
specify the parameters; otherwise, give the PDF.)
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7. A task is randomly assigned to one of two people (with probability 1/2 for each
person). If assigned to the first person, the task takes an Expo(�1) length of time
to complete (measured in hours), while if assigned to the second person it takes an
Expo(�2) length of time to complete (independent of how long the first person would
have taken). Let T be the time taken to complete the task.

(a) Find the mean and variance of T .

(b) Suppose instead that the task is assigned to both people, and let X be the time
taken to complete it (by whoever completes it first, with the two people working in-
dependently). It is observed that after 24 hours, the task has not yet been completed.
Conditional on this information, what is the expected value of X?
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1 21
1/2

31/2
1/4

5/12

41/3
1/6

7/12

51/4
1/8

7/8

8. Find the stationary distribution of the Markov chain shown above, without using
matrices. The number above each arrow is the corresponding transition probability.
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Stat 110 Final Review Solutions, Fall 2011

Prof. Joe Blitzstein (Department of Statistics, Harvard University)

1 Solutions to Stat 110 Final from 2006

1. The number of fish in a certain lake is a Pois(�) random variable. Worried that
there might be no fish at all, a statistician adds one fish to the lake. Let Y be the
resulting number of fish (so Y is 1 plus a Pois(�) random variable).

(a) Find E(Y 2) (simplify).

We have Y = X + 1 with X ⇠ Pois(�), so Y
2 = X

2 + 2X + 1. So

E(Y 2) = E(X2 + 2X + 1) = E(X2) + 2E(X) + 1 = (�+ �
2) + 2�+ 1 = �

2 + 3�+ 1,

since E(X2) = Var(X) + (EX)2 = �+ �
2.

(b) Find E(1/Y ) (in terms of �; do not simplify yet).

By LOTUS,

E(
1

Y
) = E(

1

X + 1
) =

1X

k=0

1

k + 1
e
��

�
k

k!

(c) Find a simplified expression for E(1/Y ). Hint: k!(k + 1) = (k + 1)!.

1X

k=0

1

k + 1
e
��

�
k

k!
= e

��

1X

k=0

�
k

(k + 1)!
=

e
��

�

1X

k=0

�
k+1

(k + 1)!
=

e
��

�
(e� � 1) =

1

�
(1� e

��).
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2. Write the most appropriate of , �, =, or ? in the blank for each part (where “?”
means that no relation holds in general.) It is not necessary to justify your answers
for full credit; some partial credit is available for justified answers that are flawed
but on the right track.

In (c) through (f),X and Y are i.i.d. (independent identically distributed) positive
random variables. Assume that the various expected values exist.

(a) (probability that a roll of 2 fair dice totals 9) � (probability that a roll of 2 fair
dice totals 10)

The probability on the left is 4/36 and that on the right is 3/36 as there is only one
way for both dice to show 5’s.

(b) (probability that 65% of 20 children born are girls) � (probability that 65% of
2000 children born are girls)

With a large number of births, by the LLN it becomes likely that the fraction that
are girls is close to 1/2.

(c) E(
p
X) 

p
E(X)

By Jensen’s inequality (or since Var(
p
X) � 0).

(d) E(sinX) ? sin(EX)

The inequality can go in either direction. For example, let X be 0 or ⇡ with equal
probabilities. Then E(sinX) = 0, sin(EX) = 1. But if we let X be ⇡/2 or 5⇡/2
with equal probabilities, then E(sinX) = 1, sin(EX) = �1.

(e) P (X + Y > 4) � P (X > 2)P (Y > 2)

The righthand side is P (X > 2, Y > 2) by independence. The � then holds since
the event X > 2, Y > 2 is a subset of the event X + Y > 4.

(f) E ((X + Y )2) = 2E(X2) + 2(EX)2

The lefthand side is

E(X2) + E(Y 2) + 2E(XY ) = E(X2) + E(Y 2) + 2E(X)E(Y ) = 2E(X2) + 2(EX)2

since X and Y are i.i.d.
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3. A fair die is rolled twice, with outcomes X for the 1st roll and Y for the 2nd roll.

(a) Compute the covariance of X + Y and X � Y (simplify).

Cov(X + Y,X � Y ) = Cov(X,X)� Cov(X, Y ) + Cov(Y,X)� Cov(Y, Y ) = 0.

(b) Are X + Y and X � Y independent? Justify your answer clearly.

They are not independent: information about X + Y may give information about
X � Y . For example, if we know that X + Y = 12, then X = Y = 6, so X � Y = 0.

(c) Find the moment generating function MX+Y (t) of X+Y (your answer should be
a function of t and can contain unsimplified finite sums).

Since X and Y are i.i.d., LOTUS gives

MX+Y (t) = E(et(X+Y )) = E(etX)E(etY ) =

 
1

6

6X

k=1

e
kt

!2
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4. A post o�ce has 2 clerks. Alice enters the post o�ce while 2 other customers,
Bob and Claire, are being served by the 2 clerks. She is next in line. Assume that
the time a clerk spends serving a customer has the Expo(�) distribution.

(a) What is the probability that Alice is the last of the 3 customers to be done being
served? (Simplify.) Justify your answer. Hint: no integrals are needed.

Alice begins to be served when either Bob or Claire leaves. By the memoryless
property, the additional time needed to serve whichever of Bob or Claire is still there
is Expo(�). The time it takes to serve Alice is also Expo(�), so by symmetry the
probability is 1/2 that Alice is the last to be done being served.

(b) Let X and Y be independent Expo(�) r.v.s. Find the CDF of min(X, Y ).

Use the order statistics results, or compute it directly:

P (min(X, Y ) > z) = P (X > z, Y > z) = P (X > z)P (Y > z) = e
�2�z

,

so min(X, Y ) has the Expo(2�) distribution, with CDF F (z) = 1� e
�2�z.

(c) What is the expected total time that Alice needs to spend at the post o�ce?

The expected time spent waiting in line is 1
2� by (b). The expected time spent being

served is 1
�
. So the expected total time is

1

2�
+

1

�
=

3

2�
.
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5. Bob enters a casino with X0 = 1 dollar and repeatedly plays the following game:
with probability 1/3, the amount of money he has increases by a factor of 3; with
probability 2/3, the amount of money he has decreases by a factor of 3. Let Xn be
the amount of money he has after playing this game n times. Thus, Xn+1 is 3Xn

with probability 1/3 and is 3�1
Xn with probability 2/3.

(a) Compute E(X1), E(X2) and, in general, E(Xn). (Simplify.)

E(X1) =
1

3
· 3 + 2

3
· 1/3 =

11

9

E(Xn+1) can be found by conditioning on Xn.

E(Xn+1|Xn) =
1

3
· 3Xn +

2

3
· 3�1

Xn =
11

9
Xn,

so

E(Xn+1) = E(E(Xn+1|Xn)) =
11

9
E(Xn).

Then

E(X2) = (
11

9
)2 =

121

81
and in general,

E(Xn) = (
11

9
)n.

(b) What happens to E(Xn) as n ! 1? Let Yn be the number of times out of the
first n games that Bob triples his money. What happens to Yn/n as n ! 1?

By the above, E(Xn) ! 1 as n ! 1. By LLN, Yn/n ! 1
3 a.s. as n ! 1.

(c) Does Xn converge to some number c as n ! 1 and if so, what is c? Explain.

In the long run, Bob will win about 1/3 of the time and lose about 2/3 of the time.
Note that a win and a loss cancel each other out (due to multiplying and dividing
by 3), so Xn will get very close to 0. In terms of Yn from (b), with probability 1

Xn = 3Yn3�(n�Yn) = 3n(2
Yn
n �1) ! 0.

because Yn/n approaches 1/3. So Xn converges to 0 (with probability 1).
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6. Let X and Y be independent standard Normal r.v.s and let R2 = X
2+Y

2 (where
R > 0 is the distance from (X, Y ) to the origin).

(a) The distribution of R2 is an example of three of the “important distributions”
listed on the last page. State which three of these distributions R2 is an instance of,
specifying the parameter values. (For example, if it were Geometric with p = 1/3,
the distribution would be Geom(1/3) and also NBin(1,1/3).)

It is �2
2, Expo(1/2), and Gamma(1,1/2).

(b) Find the PDF of R. (Simplify.) Hint: start with the PDF fW (w) of W = R
2.

R =
p
W with fW (w) = 1

2e
�w/2 gives

fR(r) = fW (w)|dw/dr| = 1

2
e
�w/22r = re

�r
2
/2
, for r > 0.

(This is known as the Rayleigh distribution.)

(c) Find P (X > 2Y + 3) in terms of the standard Normal CDF �. (Simplify.)

P (X > 2Y + 3) = P (X � 2Y > 3) = 1� �

✓
3p
5

◆

since X � 2Y ⇠ N (0, 5).

(d) Compute Cov(R2
, X). Are R

2 and X independent?

They are not independent since knowing X gives information about R
2, e.g., X2

being large implies that R2 is large. But R2 and X are uncorrelated:

Cov(R2
, X) = Cov(X2+Y

2
, X) = Cov(X2

, X)+Cov(Y 2
, X) = E(X3)�(EX

2)(EX)+0 = 0.
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7. Let U1, U2, . . . , U60 be i.i.d. Unif(0,1) and X = U1 + U2 + · · ·+ U60.

(a) Which important distribution is the distribution of X very close to? Specify
what the parameters are, and state which theorem justifies your choice.

By the Central Limit Theorem, the distribution is approximately N (30, 5) since
E(X) = 30,Var(X) = 60/12 = 5.

(b) Give a simple but accurate approximation for P (X > 17). Justify briefly.

P (X > 17) = 1�P (X  17) = 1�P

✓
X � 30p

5
 �13p

5

◆
⇡ 1��

✓
�13p

5

◆
= �

✓
13p
5

◆
.

Since 13/
p
5 > 5, and we already have �(3) ⇡ 0.9985 by the 68-95-99.7% rule, the

value is extremely close to 1.

(c) Find the moment generating function (MGF) of X.

The MGF of U1 is E(etU1) =
R 1

0 e
tu
du = 1

t
(et � 1) for t 6= 0, and the MGF of U1 is 1

for t = 0. Thus, the MGF of X is 1 for t = 0, and for t 6= 0 it is

E(etX) = E(et(U1+···+U60)) =
�
E(etU1)

�60
=

(et � 1)60

t60
.
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8. Let X1, X2, . . . , Xn be i.i.d. random variables with E(X1) = 3, and consider the
sum Sn = X1 +X2 + · · ·+Xn.

(a) What is E(X1X2X3|X1)? (Simplify. Your answer should be a function of X1.)

E(X1X2X3|X1) = X1E(X2X3|X1) = X1E(X2)E(X3) = 9X1.

(b) What is E(X1|Sn) + E(X2|Sn) + · · ·+ E(Xn|Sn)? (Simplify.)

By linearity, it is E(Sn|Sn), which is Sn.

(c) What is E(X1|Sn)? (Simplify.) Hint: use (b) and symmetry.

By symmetry, E(Xj|Sn) = E(X1|Sn) for all j. Then by (b),

nE(X1|Sn) = Sn,

so

E(X1|Sn) =
Sn

n
.
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9. An urn contains red, green, and blue balls. Balls are chosen randomly with
replacement (each time, the color is noted and then the ball is put back.) Let r, g, b
be the probabilities of drawing a red, green, blue ball respectively (r + g + b = 1).

(a) Find the expected number of balls chosen before obtaining the first red ball, not
including the red ball itself. (Simplify.)

The distribution is Geom(r), so the expected value is 1�r

r
.

(b) Find the expected number of di↵erent colors of balls obtained before getting the
first red ball. (Simplify.)

Use indicator random variables: let I1 be 1 if green is obtained before red, and 0
otherwise, and define I2 similarly for blue. Then

E(I1) = P (green before red) =
g

g + r

since “green before red” means that the first nonblue ball is green. Similarly, E(I2) =
b/(b+ r), so the expected number of colors obtained before getting red is

E(I1 + I2) =
g

g + r
+

b

b+ r
.

(c) Find the probability that at least 2 of n balls drawn are red, given that at least
1 is red. (Simplify; avoid sums of large numbers of terms, and

P
or · · · notation.)

P (at least 2| at least 1) = P (at least 2)

P (at least 1)
=

1� (1� r)n � nr(1� r)n�1

1� (1� r)n
.
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10. LetX0, X1, X2, . . . be an irreducible Markov chain with state space {1, 2, . . . ,M},
M � 3, transition matrix Q = (qij), and stationary distribution s = (s1, . . . , sM).
The initial state X0 is given the stationary distribution, i.e., P (X0 = i) = si.

(a) On average, how many of X0, X1, . . . , X9 equal 3? (In terms of s; simplify.)

Since X0 has the stationary distribution, all of X0, X1, . . . have the stationary dis-
tribution. By indicator random variables, the expected value is 10s3.

(b) Let Yn = (Xn � 1)(Xn � 2). For M = 3, find an example of Q (the transition
matrix for the original chain X0, X1, . . . ) where Y0, Y1, . . . is Markov, and another
example of P where Y0, Y1, . . . is not Markov. Mark which is which and briefly
explain. In your examples, make qii > 0 for at least one i and make sure it is
possible to get from any state to any other state eventually.

Note that Yn is 0 if Xn is 1 or 2, and Yn is 2 otherwise. So the Yn process can
be viewed as merging states 1 and 2 of the Xn-chain into one state. Knowing the
history of Yn’s means knowing when the Xn-chain is in State 3, without being able
to distinguish State 1 from State 2.

If q13 = q23, then Yn is Markov since given Yn, even knowing the past X0, . . . , Xn

does not a↵ect the transition probabilities. But if q13 6= q23, then the Yn past history
can give useful information about Xn, a↵ecting the transition probabilities. So one
example (not the only possible example!) is

Q1 =

0

@
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1

A (Markov) Q2 =

0

@
1
2

1
2 0

1
3

1
3

1
3

1 0 0

1

A (not Markov).

(c) If each column of Q sums to 1, what is s? Verify using the definition of stationary.

The stationary distribution is uniform over all states:

s = (1/M, 1/M, . . . , 1/M).

This is because

�
1/M 1/M . . . 1/M

�
Q =

1

M

�
1 1 . . . 1

�
Q =

�
1/M 1/M . . . 1/M

�
,

where the matrix multiplication was done by noting that multiplying a row vector
of 1’s times Q gives the column sums of Q.
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2 Solutions to Stat 110 Final from 2007

1. Consider the birthdays of 100 people. Assume people’s birthdays are independent,
and the 365 days of the year (exclude the possibility of February 29) are equally likely.

(a) Find the expected number of birthdays represented among the 100 people, i.e.,
the expected number of days that at least 1 of the people has as his or her birthday
(your answer can involve unsimplified fractions but should not involve messy sums).

Define indicator r.v.s Ij where Ij = 1 if the jth day of the year appears on the list
of all the birthdays. Then EIj = P (Ij = 1) = 1� (364365)

100, so

E(
365X

j=1

Ij) = 365

✓
1� (

364

365
)100
◆
.

(b) Find the covariance between how many of the people were born on January 1
and how many were born on January 2.

Let Xj be the number of people born on January j. Then

Cov(X1, X2) = � 100

3652
.

To see this, we can use the result about covariances in the Multinomial, or we can
solve the problem directly as follows (or with various other methods). Let Aj be the
indicator for the jth person having been born on January 1, and define Bj similarly
for January 2. Then

E(X1X2) = E

 
(
X

i

Ai)(
X

j

Bj)

!
= E(

X

i,j

AiBj) = 100 · 99( 1

365
)2

since AiBi = 0, while Ai and Bj are independent for i 6= j. So

Cov(X1, X2) = 100 · 99( 1

365
)2 � (

100

365
)2 = � 100

3652
.
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2. Let X and Y be positive random variables, not necessarily independent. Assume
that the various expected values below exist. Write the most appropriate of , �, =,
or ? in the blank for each part (where “?” means that no relation holds in general.) It
is not necessary to justify your answers for full credit; some partial credit is available
for justified answers that are flawed but on the right track.

(a) (E(XY ))2  E(X2)E(Y 2) (by Cauchy-Schwarz)

(b) P (|X + Y | > 2)  1
10E((X + Y )4) (by Markov’s Inequality)

(c) E(ln(X + 3))  ln(E(X + 3)) (by Jensen)

(d) E(X2
e
X) � E(X2)E(eX) (since X

2 and e
X are positively correlated)

(e) P (X + Y = 2) ? P (X = 1)P (Y = 1) (What if X, Y are independent? What if
X ⇠ Bern(1/2) and Y = 1�X?)

(f) P (X + Y = 2)  P ({X � 1} [ {Y � 1}) (left event is a subset of right event)
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3. Let X and Y be independent Pois(�) random variables. Recall that the moment
generating function (MGF) of X is M(t) = e

�(et�1)
.

(a) Find the MGF of X + 2Y (simplify).

E(et(X+2Y )) = E(etX)E(e2tY ) = e
�(et�1)

e
�(e2t�1) = e

�(et+e
2t�2)

.

(b) Is X + 2Y also Poisson? Show that it is, or that it isn’t (whichever is true).

No, it is not Poisson. This can be seen by noting that the MGF from (a) is not of
the form of a Poisson MGF, or by noting that E(X + 2Y ) = 3�, Var(X + 2Y ) = 5�
are not equal, whereas any Poisson random variable has mean equal to its variance.

(c) Let g(t) = lnM(t) be the log of the MGF of X. Expanding g(t) as a Taylor series

g(t) =
1X

j=1

cj

j!
t
j

(the sum starts at j = 1 because g(0) = 0), the coe�cient cj is called the jth
cumulant of X. Find cj in terms of �, for all j � 1 (simplify).

Using the Taylor series for et,

g(t) = �(et � 1) =
1X

j=1

�
t
j

j!
,

so cj = � for all j � 1.
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4. Consider the following conversation from an episode of The Simpsons :

Lisa: Dad, I think he’s an ivory dealer! His boots are ivory, his hat is

ivory, and I’m pretty sure that check is ivory.

Homer: Lisa, a guy who’s got lots of ivory is less likely to hurt Stampy

than a guy whose ivory supplies are low.

Here Homer and Lisa are debating the question of whether or not the man (named
Blackheart) is likely to hurt Stampy the Elephant if they sell Stampy to him. They
clearly disagree about how to use their observations about Blackheart to learn about
the probability (conditional on the evidence) that Blackheart will hurt Stampy.

(a) Define clear notation for the various events of interest here.

Let H be the event that the man will hurt Stampy, let L be the event that a man
has lots of ivory, and let D be the event that the man is an ivory dealer.

(b) Express Lisa’s and Homer’s arguments (Lisa’s is partly implicit) as conditional
probability statements in terms of your notation from (a).

Lisa observes that L is true. She suggests (reasonably) that this evidence makes
D more likely, i.e., P (D|L) > P (D). Implicitly, she suggests that this makes it
likely that the man will hurt Stampy, i.e., P (H|L) > P (H|Lc). Homer argues that
P (H|L) < P (H|Lc).

(c) Assume it is true that someone who has a lot of a commodity will have less desire
to acquire more of the commodity. Explain what is wrong with Homer’s reasoning
that the evidence about Blackheart makes it less likely that he will harm Stampy.

Homer does not realize that observing that Blackheart has so much ivory makes it
much more likely that Blackheart is an ivory dealer, which in turn makes it more likely
that the man will hurt Stampy. (This is an example of Simpson’s Paradox.) It may
be true that, controlling for whether or not Blackheart is a dealer, having high ivory
supplies makes it less likely that he will harm Stampy: P (H|L,D) < P (H|Lc

, D) and
P (H|L,Dc) < P (H|Lc

, D
c). However, this does not imply that P (H|L) < P (H|Lc).
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5. Empirically, it is known that 49% of children born in the U.S. are girls (and 51%
are boys). Let N be the number of children who will be born in the U.S. in March
2009, and assume that N is a Pois(�) random variable, where � is known. Assume
that births are independent (e.g., don’t worry about identical twins).

Let X be the number of girls who will be born in the U.S. in March 2009, and let Y
be the number of boys who will be born then (note the importance of choosing good
notation: boys have a Y chromosome).

(a) Find the joint distribution of X and Y . (Give the joint PMF.)

Note that the problem is equivalent to the chicken and egg problem (the structure
is identical). So X and Y are independent with X ⇠ Pois(0.49�), Y ⇠ Pois(0.51�).
The joint PMF is

P (X = i, Y = j) = (e�0.49�(0.49�)i/i!)(e�0.51�(0.51�)j/j!).

(b) Find E(N |X) and E(N2|X).

Since X and Y are independent,

E(N |X) = E(X + Y |X) = X + E(Y |X) = X + EY = X + 0.51�,

E(N2|X) = E(X2+2XY +Y
2|X) = X

2+2XE(Y )+E(Y 2) = (X+0.51�)2+0.51�.

15



6. Let X1, X2, X3 be independent with Xi ⇠ Expo(�i) (independent Exponentials
with possibly di↵erent rates). A useful fact (which you may use) is that P (X1 <

X2) =
�1

�1+�2
.

(a) Find E(X1 +X2 +X3|X1 > 1, X2 > 2, X3 > 3) in terms of �1,�2,�3.

By linearity, independence, and the memoryless property, we get

E(X1|X1 > 1) + E(X2|X2 > 2) + E(X3|X3 > 3) = �
�1
1 + �

�1
2 + �

�1
3 + 6.

(b) Find P (X1 = min(X1, X2, X3)), the probability that the first of the three Expo-
nentials is the smallest. Hint: re-state this in terms of X1 and min(X2, X3).

The desired probability is P (X1  min(X2, X3)). Noting that min(X2, X3) ⇠
Expo(�2 + �3) is independent of X1, we have

P (X1  min(X2, X3)) =
�1

�1 + �2 + �3
.

(c) For the case �1 = �2 = �3 = 1, find the PDF of max(X1, X2, X3). Is this one of
the “important distributions”?

Let M = max(X1, X2, X3). Using the order statistics results from class or by directly
computing the CDF and taking the derivative, for x > 0 we have

fM(x) = 3(1� e
�x)2e�x

.

This is not one of the “important distributions”. (The form is reminiscent of a Beta,
but a Beta takes values between 0 and 1, while M can take any positive real value;
in fact, B ⇠ Beta(1, 3) if we make the transformation B = e

�M .)
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7. Let X1, X2, . . . be i.i.d. random variables with CDF F (x). For every number x,
let Rn(x) count how many of X1, . . . , Xn are less than or equal to x.

(a) Find the mean and variance of Rn(x) (in terms of n and F (x)).

Let Ij(x) be 1 if Xj  x and 0 otherwise. Then

Rn(x) =
nX

j=1

Ij(x) ⇠ Bin(n, F (x)),

so ERn(x) = nF (x) and Var(Rn(x)) = nF (x)(1� F (x)).

(b) Assume (for this part only) that X1, . . . , X4 are known constants. Sketch an
example showing what the graph of the function R4(x)

4 might look like. Is the function
R4(x)

4 necessarily a CDF? Explain briefly.

For X1, . . . , X4 distinct, the graph of R4(x)
4 starts at 0 and then has 4 jumps, each of

size 0.25 (it jumps every time one of the Xi’s is reached).

The R4(x)
4 is the CDF of a discrete random variable with possible valuesX1, X2, X3, X4.

(c) Show that Rn(x)
n

! F (x) as n ! 1 (with probability 1).

As in (a), Rn(x) is the sum of n i.i.d. Bern(p) r.v.s, where p = F (x). So by the Law
of Large Numbers, Rn(x)

n
! F (x) as n ! 1 (with probability 1).

17



8. (a) Let T be a Student-t r.v. with 1 degree of freedom, and let W = 1/T . Find
the PDF of W (simplify). Is this one of the “important distributions”?

Hint: no calculus is needed for this (though it can be used to check your answer).

Recall that a Student-t with 1 degree of freedom (also known as a Cauchy) can be
represented as a ratio X/Y with X and Y are i.i.d. N (0, 1). But then the reciprocal
Y/X is of the same form! So W is also Student-t with 1 degree of freedom, and PDF
fW (w) = 1

⇡(1+w2) .

(b) Let Wn ⇠ �
2
n
(the Chi-squared distribution with n degrees of freedom), for each

n � 1. Do there exist an and bn such that an(Wn � bn) ! N (0, 1) in distribution as
n ! 1? If so, find them; if not, explain why not.

Write Wn =
P

n

i=1 Z
2
i
with the Zi i.i.d. N (0, 1). By the CLT, the claim is true with

bn = E(Wn) = n and an =
1p

Var(Wn)
=

1p
2n

.

(c) Let Z ⇠ N (0, 1) and Y = |Z|. Find the PDF of Y , and approximate P (Y < 2).

For y � 0, the CDF of Y is

P (Y  y) = P (|Z|  y) = P (�y  Z  y) = �(y)� �(�y),

so the PDF of Y is

fY (y) =
1p
2⇡

e
�y

2
/2 +

1p
2⇡

e
�y

2
/2 = 2

1p
2⇡

e
�y

2
/2
.

By the 68-95-99.7% Rule, P (Y < 2) ⇡ 0.95.
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9. Consider a knight randomly moving around on a 4 by 4 chessboard:

! A! ! B! ! C ! ! D

4

3

2

1

The 16 squares are labeled in a grid, e.g., the knight is currently at the square B3,
and the upper left square is A4. Each move of the knight is an L-shape: two squares
horizontally followed by one square vertically, or vice versa. For example, from B3
the knight can move to A1, C1, D2, or D4; from A4 it can move to B2 or C3. Note
that from a white square, the knight always moves to a gray square and vice versa.

At each step, the knight moves randomly, each possibility equally likely. Consider
the stationary distribution of this Markov chain, where the states are the 16 squares.

(a) Which squares have the highest stationary probability? Explain very briefly.

The four center squares (B2, B3, C2, C3) have the highest stationary probability
since they are the most highly connected squares: for each of these squares, the
number of possible moves to/from the square is maximized.

(b) Compute the stationary distribution (simplify). Hint: random walk on a graph.

Use symmetry to note that there are only three “types” of square: there are 4 center
squares, 4 corner squares (such as A4), and 8 edge squares (such as B4; exclude
corner squares from being considered edge squares). Recall from the Markov chain
handout that the stationary probability of a state for random walk on an undirected
network is proportional to its degree.

A center square here has degree 4, a corner square has degree 2, and an edge square
has degree 3. So these have probabilities 4a, 2a, 3a respectively for some a. To find
a, count the number of squares of each type to get 4a(4) + 2a(4) + 3a(8) = 1, giving
a = 1/48. Thus, each center square has stationary probability 4/48 = 1/12; each
corner square has stationary probability 2/48 = 1/24; and each edge square has
stationary probability 3/48 = 1/16.
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3 Solutions to Stat 110 Final from 2008

1. Joe’s iPod has 500 di↵erent songs, consisting of 50 albums of 10 songs each. He
listens to 11 random songs on his iPod, with all songs equally likely and chosen
independently (so repetitions may occur).

(a) What is the PMF of how many of the 11 songs are from his favorite album?

The distribution is Bin(n, p) with n = 11, p = 1
50 (thinking of getting a song from

the favorite album as a “success”). So the PMF is

✓
11

k

◆✓
1

50

◆k ✓49

50

◆11�k

, for 0  k  11.

(b) What is the probability that there are 2 (or more) songs from the same album
among the 11 songs he listens to? (Do not simplify.)

This is a form of the birthday problem.

P (at least 1 match) = 1� P (no matches) = 1� 50 · 49 · · · · 40
5011

= 1� 49!

39! · 5010 .

(c) A pair of songs is a “match” if they are from the same album. If, say, the 1st,
3rd, and 7th songs are all from the same album, this counts as 3 matches. Among
the 11 songs he listens to, how many matches are there on average? (Simplify.)

Defining an indicator r.v. Ijk for the event that the jth and kth songs match, we
have E(Ijk) = P (Ijk = 1) = 1/50, so the expected number of matches is

✓
11

2

◆
1

50
=

11 · 10
2 · 50 =

110

100
= 1.1.
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2. Let X and Y be positive random variables, not necessarily independent. Assume
that the various expressions below exist. Write the most appropriate of , �, =, or
? in the blank for each part (where “?” means that no relation holds in general.) It
is not necessary to justify your answers for full credit; some partial credit is available
for justified answers that are flawed but on the right track.

(a) P (X + Y > 2)  EX+EY

2 (by Markov and linearity)

(b) P (X + Y > 3) � P (X > 3) (since X > 3 implies X + Y > 3 since Y > 0)

(c) E(cos(X))? cos(EX) (e.g., let W ⇠ Bern(1/2) and X = aW + b for various a, b)

(d) E(X1/3)  (EX)1/3 (by Jensen)

(e) E(XY )?(EX)EY (take X constant or Y constant as examples)

(f) E (E(X|Y ) + E(Y |X)) = EX + EY (by linearity and Adam’s Law)
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3. (a) A woman is pregnant with twin boys. Twins may be either identical or
fraternal (non-identical). In general, 1/3 of twins born are identical. Obviously,
identical twins must be of the same sex; fraternal twins may or may not be. Assume
that identical twins are equally likely to be both boys or both girls, while for fraternal
twins all possibilities are equally likely. Given the above information, what is the
probability that the woman’s twins are identical?

By Bayes’ Rule,

P (identical|BB) =
P (BB|identical)P (identical)

P (BB)
=

1
2 ·

1
3

1
2 ·

1
3 +

1
4 ·

2
3

= 1/2.

(b) A certain genetic characteristic is of interest. For a random person, this has a
numerical value given by a N (0, �2) r.v. Let X1 and X2 be the values of the genetic
characteristic for the twin boys from (a). If they are identical, then X1 = X2; if they
are fraternal, then X1 and X2 have correlation ⇢. Find Cov(X1, X2) in terms of ⇢, �2

.

Since the means are 0, Cov(X1, X2) = E(X1X2) � (EX1)(EX2) = E(X1X2). We
find this by conditioning on whether the twins are identical or fraternal:

E(X1X2) = E(X1X2|identical)
1

2
+E(X1X2|fraternal)

1

2
= E(X2

1 )
1

2
+⇢�

21

2
=

�
2

2
(1+⇢).
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4. (a) Consider i.i.d. Pois(�) r.v.s X1, X2, . . . . The MGF of Xj is M(t) = e
�(et�1).

Find the MGF Mn(t) of the sample mean X̄n = 1
n

P
n

j=1 Xj. (Hint: it may help to do
the n = 2 case first, which itself is worth a lot of partial credit, and then generalize.)

The MGF is
E(e

t
n (X1+···+Xn)) =

⇣
E(e

t
nX1)

⌘n
= e

n�(et/n�1)
,

since the Xj are i.i.d. and E(e
t
nX1) is the MGF of X1 evaluated at t/n.

(b) Find the limit of Mn(t) as n ! 1. (You can do this with almost no calculation
using a relevant theorem; or you can use (a) and that ex ⇡ 1 + x if x is very small.)

By the Law of Large Numbers, X̄n ! � with probability 1. The MGF of the constant
� (viewed as a r.v. that always equals �) is et�. Thus, Mn(t) ! e

t� as n ! 1.
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5. A post o�ce has 2 clerks. Alice enters the post o�ce while 2 other customers,
Bob and Claire, are being served by the 2 clerks. She is next in line. Assume that
the time a clerk spends serving a customer has the Expo(�) distribution.

(a) What is the probability that Alice is the last of the 3 customers to be done being
served? Justify your answer. Hint: no integrals are needed.

Alice begins to be served when either Bob or Claire leaves. By the memoryless
property, the additional time needed to serve whichever of Bob or Claire is still there
is Expo(�). The time it takes to serve Alice is also Expo(�), so by symmetry the
probability is 1/2 that Alice is the last to be done being served.

(b) Let X and Y be independent Expo(�) r.v.s. Find the CDF of min(X, Y ).

Use the order statistics results, or compute it directly:

P (min(X, Y ) > z) = P (X > z, Y > z) = P (X > z)P (Y > z) = e
�2�z

,

so min(X, Y ) has the Expo(2�) distribution, with CDF F (z) = 1� e
�2�z.

(c) What is the expected total time that Alice needs to spend at the post o�ce?

The expected time spent waiting in line is 1
2� by (b). The expected time spent being

served is 1
�
. So the expected total time is

1

2�
+

1

�
=

3

2�
.
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6. You are given an amazing opportunity to bid on a mystery box containing a
mystery prize! The value of the prize is completely unknown, except that it is worth
at least nothing, and at most a million dollars. So the true value V of the prize is
considered to be Uniform on [0,1] (measured in millions of dollars).

You can choose to bid any amount b (in millions of dollars). You have the chance
to get the prize for considerably less than it is worth, but you could also lose money
if you bid too much. Specifically, if b <

2
3V , then the bid is rejected and nothing

is gained or lost. If b � 2
3V , then the bid is accepted and your net payo↵ is V � b

(since you pay b to get a prize worth V ). What is your optimal bid b (to maximize
the expected payo↵)?

We choose a bid b � 0, which cannot be defined in terms of the unknown V . The
expected payo↵ can be found by conditioning on whether the bid is accepted. The
term where the bid is rejected is 0, so the expected payo↵ is

E(V � b|b � 2

3
V )P (b � 2

3
V ) =

✓
E(V |V  3

2
b)� b

◆
P (V  3

2
b).

For b � 2/3, the bid is definitely accepted but we lose money on average, so assume
b < 2/3. Then

✓
E(V |V  3

2
b)� b

◆
P (V  3

2
b) = (

3

4
b� b)

3

2
b = �3

8
b
2
,

since given that V  3
2b, the conditional distribution of V is Uniform on [0, 32b].

The above expression is negative except at b = 0, so the optimal bid is 0: one should
not play this game! What’s the moral of this story? First, investing in an asset
without any information about its value is a bad idea. Second, condition on all the

information. It is crucial in the above calculation to use E(V |V  3
2b) rather than

E(V ) = 1/2; knowing that the bid was accepted gives information about how much
the mystery prize is worth!
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7. (a) Let Y = e
X , with X ⇠ Expo(3). Find the mean and variance of Y (simplify).

By LOTUS,

E(Y ) =

Z 1

0

e
x(3e�3x)dx =

3

2
,

E(Y 2) =

Z 1

0

e
2x(3e�3x)dx = 3.

So E(Y ) = 3/2,Var(Y ) = 3� 9/4 = 3/4.

(b) For Y1, . . . , Yn i.i.d. with the same distribution as Y from (a), what is the approx-
imate distribution of the sample mean Ȳn = 1

n

P
n

j=1 Yj when n is large? (Simplify,
and specify all parameters.)

By the CLT, Ȳn is approximately N (32 ,
3
4n) for large n.
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8.

1

2

3

4

5

6

7

(a) Consider a Markov chain on the state space {1, 2, . . . , 7} with the states arranged
in a “circle” as shown above, and transitions given by moving one step clockwise or
counterclockwise with equal probabilities. For example, from state 6, the chain moves
to state 7 or state 5 with probability 1/2 each; from state 7, the chain moves to state
1 or state 6 with probability 1/2 each. The chain starts at state 1.

Find the stationary distribution of this chain.

The symmetry of the chain suggests that the stationary distribution should be uni-
form over all the states. To verify this, note that the reversibility condition is satis-
fied. So the stationary distribution is (1/7, 1/7, . . . , 1/7).

(b) Consider a new chain obtained by “unfolding the circle.” Now the states are
arranged as shown below. From state 1 the chain always goes to state 2, and from
state 7 the chain always goes to state 6. Find the new stationary distribution.

1 2 3 4 5 6 7

By the results from class for random walk on an undirected network, the station-
ary probabilities are proportional to the degrees. So we just need to normalize
(1, 2, 2, 2, 2, 2, 1), obtaining (1/12, 1/6, 1/6, 1/6, 1/6, 1/6, 1/12).
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4 Solutions to Stat 110 Final from 2009

1. A group of n people play “Secret Santa” as follows: each puts his or her name on
a slip of paper in a hat, picks a name randomly from the hat (without replacement),
and then buys a gift for that person. Unfortunately, they overlook the possibility
of drawing one’s own name, so some may have to buy gifts for themselves (on the
bright side, some may like self-selected gifts better). Assume n � 2.

(a) Find the expected number of people who pick their own names (simplify).

Let Ij be the indicator r.v. for the jth person picking his or her own name. Then
E(Ij) = P (Ij = 1) = 1

n
. By linearity, the expected number is n · E(Ij) = 1.

(b) Find the expected number of pairs of people, A and B, such that A picks B’s
name and B picks A’s name (where A 6= B and order doesn’t matter; simplify).

Let Iij the the indicator r.v. for the ith and jth persons having such a “swap” (for
i < j). Then E(Iij) = P (i picks j)P (j picks i|i picks j) = 1

n(n�1) .

Alternatively, we can get this by counting: there are n! permutations for who picks
whom, of which (n � 2)! have i pick j and j pick i, giving (n�2)!

n! = 1
n(n�1) . So by

linearity, the expected number is
�
n

2

�
· 1
n(n�1) =

1
2 .

(c) Let X be the number of people who pick their own names. Which of the “im-
portant distributions” are conceivable as the distribution of X, just based on the
possible values X takes (you do not need to list parameter values for this part)?

SinceX is an integer between 0 and n, the only conceivable “important distributions”
are Binomial and Hypergeometric. Going further (which was not required), note that
X actually can’t equal n � 1, since if n � 1 people pick their own names then the
remaining person must too. So the possible values are the integers from 0 to n except
for n� 1, which rules out all of the “important distributions”.

(d) What is the approximate distribution of X if n is large (specify the parameter
value or values)? What does P (X = 0) converge to as n ! 1?

By the Poisson Paradigm, X is approximately Pois(1) for large n. As n ! 1,
P (X = 0) ! 1/e, which is the probability of a Pois(1) r.v. being 0.
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2. Let X and Y be positive random variables, not necessarily independent. Assume
that the various expected values below exist. Write the most appropriate of , �, =,
or ? in the blank for each part (where “?” means that no relation holds in general.) It
is not necessary to justify your answers for full credit; some partial credit is available
for justified answers that are flawed but on the right track.

(a) E(X3) 
p

E(X2)E(X4) (by Cauchy-Schwarz)

(b) P (|X + Y | > 2)  1
16E((X + Y )4) (by Markov, taking 4th powers first)

(c) E(
p
X + 3) 

p
E(X + 3) (by Jensen with a concave function)

(d) E(sin2(X)) + E(cos2(X)) = 1 (by linearity)

(e) E(Y |X + 3) = E(Y |X) (knowing X + 3 is equivalent to knowing X)

(f) E(E(Y 2|X)) � (EY )2 (by Adam’s Law and Jensen)
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3. Let Z ⇠ N (0, 1). Find the 4th moment E(Z4) in the following two di↵erent ways:

(a) using what you know about how certain powers of Z are related to other distri-
butions, along with information from the table of distributions.

Let W = Z
2, which we know is �

2
1. By the table, E(W ) = 1,Var(W ) = 2. So

E(Z4) = E(W 2) = Var(W ) + (EW )2 = 2 + 1 = 3.

(b) using the MGF M(t) = e
t
2
/2, by writing down its Taylor series and using how

the coe�cients relate to moments of Z, not by tediously taking derivatives of M(t).

Hint: you can get this series immediately from the Taylor series for ex.

Plugging t
2
/2 in for x in e

x =
P1

n=0
x
n

n! , we have

e
t
2
/2 =

1X

n=0

t
2n

n! · 2n .

The t
4 term is

1

2! · 22 t
4 =

1

8
t
4 =

3

4!
t
4
,

so the 4th moment is 3, which agrees with (a).
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4. A chicken lays n eggs. Each egg independently does or doesn’t hatch, with
probability p of hatching. For each egg that hatches, the chick does or doesn’t survive
(independently of the other eggs), with probability s of survival. Let N ⇠ Bin(n, p)
be the number of eggs which hatch, X be the number of chicks which survive, and
Y be the number of chicks which hatch but don’t survive (so X + Y = N).

(a) Find the distribution of X, preferably with a clear explanation in words rather
than with a computation. If X has one of the “important distributions,” say which
(including its parameters).

We will give a story proof that X ⇠ Bin(n, ps). Consider any one of the n eggs.
With probability p, it hatches. Given that it hatches, with probability s the chick
survives. So the probability is ps of the egg hatching a chick which survives. Thus,
X ⇠ Bin(n, ps).

(b) Find the joint PMF of X and Y (simplify).

As in the chicken-egg problem from class, condition on N and note that only the
N = i+ j term is nonzero: for any nonnegative integers i, j with i+ j  n,

P (X = i, Y = j) = P (X = i, Y = j|N = i+ j)P (N = i+ j)

= P (X = i|N = i+ j)P (N = i+ j)

=

✓
i+ j

i

◆
s
i(1� s)j

✓
n

i+ j

◆
p
i+j(1� p)n�i�j

=
n!

i!j!(n� i� j)!
(ps)i(p(1� s))j(1� p)n�i�j

.

(c) Are X and Y independent? Give a clear explanation in words (of course it makes
sense to see if your answer is consistent with your answer to (b), but you can get
full credit on this part even without doing (b); conversely, it’s not enough to just say
“by (b), . . . ” without further explanation).

They are not independent, unlike in the chicken-egg problem from class (where N

was Poisson). To see this, consider extreme cases: if X = n, then clearly Y = 0.
This shows that X can yield information about Y .
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5. Suppose we wish to approximate the following integral (denoted by b):

b =

Z 1

�1
(�1)bxce�x

2
/2
dx,

where bxc is the greatest integer less than or equal to x (e.g., b3.14c = 3).

(a) Write down a function g(x) such that E(g(X)) = b forX ⇠ N (0, 1) (your function
should not be in terms of b, and should handle normalizing constants carefully).

There are many possible solutions. By LOTUS, we can take g(x) =
p
2⇡(�1)bxc.

We can also just calculate b: by symmetry, b = 0 since b�xc = �bxc � 1 except
when x is an integer, so the integral from �1 to 0 cancels that from 0 to 1, so we
can simply take g(x) = 0.

(b) Write down a function h(u) such that E(h(U)) = b for U ⇠ Unif(0, 1) (your
function should not be in terms of b, and can be in terms of the function g from (a)
and the standard Normal CDF �).

By Universality of the Uniform, ��1(U) ⇠ N (0, 1), so define X = ��1(U). Then
E(g(��1(U))) = b, so we can take h(u) = g(��1(u)).

(c) Let X1, X2, . . . , Xn be i.i.d. N (0, 1) with n large, and let g be as in (a). What
is the approximate distribution of 1

n
(g(X1) + · · ·+ g(Xn))? Simplify the parameters

fully (in terms of b and n), and mention which theorems you are using.

For the choice of g obtained from LOTUS, we have E(g(X)) = b and Var(g(X)) =
2⇡�b

2 (since g(x)2 = 2⇡), so by the CLT, the approximate distribution is N (b, (2⇡�
b
2)/n).

For the choice g(x) = 0, the distribution is degenerate, giving probability 1 to the
value 0.
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6. Let X1 be the number of emails received by a certain person today and let X2 be
the number of emails received by that person tomorrow, with X1 and X2 i.i.d.

(a) Find E(X1|X1 +X2) (simplify).

By symmetry, E(X1|X1 +X2) = E(X2|X1 +X2). By linearity,

E(X1|X1 +X2) + E(X2|X1 +X2) = E(X1 +X2|X1 +X2) = X1 +X2.

So
E(X1|X1 +X2) = (X1 +X2)/2.

(b) For the case Xj ⇠ Pois(�), find the conditional distribution of X1 given X1+X2,
i.e., P (X1 = k|X1+X2 = n) (simplify). Is this one of the “important distributions”?

By Bayes’ Rule and the fact that X1 +X2 ⇠ Pois(2�),

P (X1 = k|X1 +X2 = n) = P (X1 +X2 = n|X1 = k)P (X1 = k)/P (X1 +X2 = n)

= P (X2 = n� k)P (X1 = k)/P (X1 +X2 = n)

=
e
��

�
n�k

(n� k)!

e
��

�
k

k!
e
2�(2�)�n

n!

=

✓
n

k

◆✓
1

2

◆n

.

Thus, the conditional distribution is Bin(n, 1/2). Note that the � disappeared! This
is not a coincidence; there is an important statistical reason for this, but that is a
story for another day and another course.
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7. Let X1, X2, X3 be independent with Xi ⇠ Expo(�i) (so with possibly di↵erent
rates). A useful fact (which you may use) is that P (X1 < X2) =

�1
�1+�2

.

(a) Find E(X1 +X2 +X3|X1 > 1, X2 > 2, X3 > 3) in terms of �1,�2,�3.

By linearity, independence, and the memoryless property, we get

E(X1|X1 > 1) + E(X2|X2 > 2) + E(X3|X3 > 3) = �
�1
1 + �

�1
2 + �

�1
3 + 6.

(b) Find P (X1 = min(X1, X2, X3)), the probability that the first of the three Expo-
nentials is the smallest. Hint: re-state this in terms of X1 and min(X2, X3).

The desired probability is P (X1  min(X2, X3)). Noting that min(X2, X3) ⇠
Expo(�2 + �3) is independent of X1, we have

P (X1  min(X2, X3)) =
�1

�1 + �2 + �3
.

(c) For the case �1 = �2 = �3 = 1, find the PDF of max(X1, X2, X3). Is this one of
the “important distributions”?

Let M = max(X1, X2, X3). Using the order statistics results from class or by directly
computing the CDF and taking the derivative, for x > 0 we have

fM(x) = 3(1� e
�x)2e�x

.

This is not one of the “important distributions”. (The form is reminiscent of a Beta,
but a Beta takes values between 0 and 1, while M can take any positive real value;
in fact, B ⇠ Beta(1, 3) if we make the transformation B = e

�M .)
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8. Let Xn be the price of a certain stock at the start of the nth day, and assume
that X0, X1, X2, . . . follows a Markov chain with transition matrix Q (assume for
simplicity that the stock price can never go below 0 or above a certain upper bound,
and that it is always rounded to the nearest dollar).

(a) A lazy investor only looks at the stock once a year, observing the values on days
0, 365, 2 · 365, 3 · 365, . . . . So the investor observes Y0, Y1, . . . , where Yn is the price
after n years (which is 365n days; you can ignore leap years). Is Y0, Y1, . . . also a
Markov chain? Explain why or why not; if so, what is its transition matrix?

Yes, it is a Markov chain: given the whole past history Y0, Y1, . . . , Yn, only the most
recent information Yn matters for predicting Yn+1, because X0, X1, . . . is Markov.
The transition matrix of Y0, Y1, . . . is Q365, since the kth power of Q gives the k-step
transition probabilities.

(b) The stock price is always an integer between $0 and $28. From each day to the
next, the stock goes up or down by $1 or $2, all with equal probabilities (except for
days when the stock is at or near a boundary, i.e., at $0, $1, $27, or $28).
If the stock is at $0, it goes up to $1 or $2 on the next day (after receiving government
bailout money). If the stock is at $28, it goes down to $27 or $26 the next day. If the
stock is at $1, it either goes up to $2 or $3, or down to $0 (with equal probabilities);
similarly, if the stock is at $27 it either goes up to $28, or down to $26 or $25. Find
the stationary distribution of the chain (simplify).

This is an example of random walk on an undirected network, so we know the
stationary probability of each node is proportional to its degree. The degrees are
(2, 3, 4, 4, . . . , 4, 4, 3, 2), where there are 29� 4 = 25 4’s. The sum of these degrees is
110 (coincidentally?). Thus, the stationary distribution is

(
2

110
,

3

110
,

4

110
,

4

110
, . . . ,

4

110
,

4

110
,

3

110
,

2

110
),

with 25 4
110 ’s.
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5 Solutions to Stat 110 Final from 2010

1. Calvin and Hobbes play a match consisting of a series of games, where Calvin has
probability p of winning each game (independently). They play with a “win by two”
rule: the first player to win two games more than his opponent wins the match.

(a) What is the probability that Calvin wins the match (in terms of p)?

Hint: condition on the results of the first k games (for some choice of k).

Let C be the event that Calvin wins the match, X ⇠ Bin(2, p) be how many of the
first 2 games he wins, and q = 1� p. Then

P (C) = P (C|X = 0)q2 + P (C|X = 1)(2pq) + P (C|X = 2)p2 = 2pqP (C) + p
2
,

so P (C) = p
2

1�2pq . This can also be written as p
2

p2+q2
since p + q = 1. (Also, the

problem can be thought of as gambler’s ruin where each player starts out with $2.)

Miracle check : Note that this should (and does) reduce to 1 for p = 1, 0 for p = 0,
and 1

2 for p = 1
2 . Also, it makes sense that the probability of Hobbes winning, which

is 1� P (C) = q
2

p2+q2
, can also be obtained by swapping p and q.

(b) Find the expected number of games played.

Hint: consider the first two games as a pair, then the next two as a pair, etc.

Think of the first 2 games, the 3rd and 4th, the 5th and 6th, etc. as “mini-matches.”
The match ends right after the first mini-match which isn’t a tie. The probability of
a mini-match not being a tie is p2 + q

2, so the number of mini-matches needed is 1
plus a Geom(p2 + q

2) r.v. Thus, the expected number of games is 2
p2+q2

.

Miracle check : For p = 0 or p = 1, this reduces to 2. The expected number of games
is maximized when p = 1

2 , which makes sense intuitively. Also, it makes sense that
the result is symmetric in p and q.
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2. A DNA sequence can be represented as a sequence of letters, where the “alphabet”
has 4 letters: A,C,T,G. Suppose such a sequence is generated randomly, where the
letters are independent and the probabilities of A,C,T,G are p1, p2, p3, p4 respectively.

(a) In a DNA sequence of length 115, what is the expected number of occurrences
of the expression “CATCAT” (in terms of the pj)? (Note that, for example, the
expression “CATCATCAT” counts as 2 occurrences.)

Let Ij be the indicator r.v. of “CATCAT” appearing starting at position j, for
1  j  110. Then E(Ij) = (p1p2p3)2, so the expected number is 110(p1p2p3)2.

Miracle check : Stat 115 is the bioinformatics course here and Stat 110 is this course,
so 109(p1p2p3)2 would have been a much less aesthetically pleasing result (this kind
of “o↵ by one” error is extremely common in programming, but is not hard to avoid
by doing a quick check). The number of occurrences is between 0 and 110, so the
expected value should also be between 0 and 110.

(b) What is the probability that the first A appears earlier than the first C appears,
as letters are generated one by one (in terms of the pj)?

Consider the first letter which is an A or a C (call it X; alternatively, condition on
the first letter of the sequence). This gives

P (A before C) = P (X is A|X is A or C) =
P (X is A)

P (X is A or C)
=

p1

p1 + p2
.

Miracle check : The answer should be 1/2 for p1 = p2, should go to 0 as p1 !
0, should be increasing in p1 and decreasing in p2, and finding P (A before C) by
1� P (A before C) should agree with finding it by swapping p1, p2.

(c) For this part, assume that the pj are unknown. Suppose we treat p2 as a Unif(0, 1)
r.v. before observing any data, and that then the first 3 letters observed are “CAT”.
Given this information, what is the probability that the next letter is C?

Let X be the number of C’s in the data (so X = 1 is observed here). The prior is
p2 ⇠ Beta(1, 1), so the posterior is p2|X = 1 ⇠ Beta(2, 3) (by the connection between
Beta and Binomial, or by Bayes’ Rule). Given p2, the indicator of the next letter
being C is Bern(p2). So given X (but not given p2), the probability of the next letter
being C is E(p2|X) = 2

5 .

Miracle check : It makes sense that the answer should be strictly in between 1/2 (the
mean of the prior distribution) and 1/3 (the observed frequency of C’s in the data).
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3. Let X and Y be i.i.d. positive random variables. Assume that the various ex-
pressions below exist. Write the most appropriate of , �, =, or ? in the blank for
each part (where “?” means that no relation holds in general). It is not necessary
to justify your answers for full credit; some partial credit is available for justified
answers that are flawed but on the right track.

(a) E(eX+Y ) � e
2E(X) (write E(eX+Y ) = E(eXeY ) = E(eX)E(eY ) = E(eX)E(eX)

using the fact that X, Y are i.i.d., and then apply Jensen)

(b) E(X2
e
X) 

p
E(X4)E(e2X) (by Cauchy-Schwarz)

(c) E(X|3X) = E(X|2X) (knowing 2X is equivalent to knowing 3X)

(d) E(X7
Y ) = E(X7

E(Y |X)) (by Adam’s law and taking out what’s known)

(e) E(X
Y
+ Y

X
) � 2 (since E(X

Y
) = E(X)E( 1

Y
) � EX

EY
= 1, and similarly E( Y

X
) � 1)

(f) P (|X � Y | > 2)  Var(X)
2 (by Chebyshev, applied to the r.v. W = X � Y , which

has variance 2Var(X): P (|W � E(W )| > 2)  Var(W )/4 = Var(X)/2)
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4. Let X be a discrete r.v. whose distinct possible values are x0, x1, . . . , and let
pk = P (X = xk). The entropy of X is defined to be H(X) = �

P1
k=0 pk log2(pk).

(a) Find H(X) for X ⇠ Geom(p).

Hint: use properties of logs, and interpret part of the sum as an expected value.

H(X) = �
1X

k=0

(pqk) log2(pq
k)

= � log2(p)
1X

k=0

pq
k � log2(q)

1X

k=0

kpq
k

= � log2(p)�
q

p
log2(q),

with q = 1 � p, since the first series is the sum of a Geom(p) PMF and the second
series is the expected value of a Geom(p) r.v.

Miracle check : entropy must be positive (unless X is a constant), since it is the aver-
age “surprise” (where the “surprise” of observing X = xk is � log2(pk) = log2(

1
pk
)).

(b) Find H(X3) for X ⇠ Geom(p), in terms of H(X).

Let pk = pq
k. Since X

3 takes values 03, 13, 23, . . . with probabilities p0, p1, . . . re-
spectively, we have H(X3) = H(X).

Miracle check : The definition of entropy depends on the probabilities pk of the values
xk, not on the values xk themselves, so taking a one-to-one function of X should not
change the entropy.

(c) Let X and Y be i.i.d. discrete r.v.s. Show that P (X = Y ) � 2�H(X).

Hint: Consider E(log2(W )), where W is a r.v. taking value pk with probability pk.

Let W be as in the hint. By Jensen, E(log2(W ))  log2(EW ). But

E(log2(W )) =
X

k

pk log2(pk) = �H(X),

EW =
X

k

p
2
k
= P (X = Y ),

so �H(X)  log2 P (X = Y ). Thus, P (X = Y ) � 2�H(X)
.
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5. Let Z1, . . . , Zn ⇠ N (0, 1) be i.i.d.

(a) As a function of Z1, create an Expo(1) r.v. X (your answer can also involve the
standard Normal CDF �).

Use Z1 to get a Uniform and then the Uniform to get X: we have �(Z1) ⇠ Unif(0, 1),
and we can then takeX = � ln(1��(Z1)). By symmetry, we can also use� ln(�(Z1)).

Miracle check : 0 < �(Z1) < 1, so � ln(�(Z1)) is well-defined and positive.

(b) Let Y = e
�R

, where R =
p

Z
2
1 + · · ·+ Z2

n
. Write down (but do not evaluate) an

integral for E(Y ).

Let W = Z
2
1 + · · · + Z

2
n
⇠ �

2
n
, so Y = e

�
p
W . We will use LOTUS to write E(Y )

using the PDF of W (there are other possible ways to use LOTUS here, but this is
simplest since we get a single integral and we know the �

2
n
PDF). This gives

E(Y ) =

Z 1

0

e
�
p
w

1

2n/2�(n/2)
w

n/2�1
e
�w/2

dw.

(c) Let X1 = 3Z1 � 2Z2 and X2 = 4Z1 + 6Z2. Determine whether X1 and X2 are
independent (being sure to mention which results you’re using).

There are uncorrelated:

Cov(X1, X2) = 12Var(Z1) + 10Cov(Z1, Z2)� 12Var(Z2) = 0.

Also, (X1, X2) is Multivariate Normal since any linear combination of X1, X2 can be
written as a linear combination of Z1, Z2 (and thus is Normal since the sum of two
independent Normals is Normal). So X1 and X2 are independent.
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6. Let X1, X2, . . . be i.i.d. positive r.v.s. with mean µ, and let Wn = X1
X1+···+Xn

.

(a) Find E(Wn).

Hint: consider X1
X1+···+Xn

+ X2
X1+···+Xn

+ · · ·+ Xn
X1+···+Xn

.

The expression in the hint equals 1, and by linearity and symmetry its expected
value is nE(Wn). So E(Wn) = 1/n.

Miracle check : in the case that the Xj are actually constants, X1
X1+···+Xn

reduces to
1
n
. Also in the case Xj ⇠ Expo(�), part (c) shows that the answer should reduce to

the mean of a Beta(1, n� 1) (which is 1
n
).

(b) What random variable does nWn converge to as n ! 1?

By the Law of Large Numbers, with probability 1 we have

nWn =
X1

(X1 + · · ·+Xn)/n
! X1

µ
as n ! 1.

Miracle check : the answer should be a random variable since it’s asked what r.v. nWn

converges to. It should not depend on n since we let n ! 1.

(c) For the case that Xj ⇠ Expo(�), find the distribution of Wn, preferably without
using calculus. (If it is one of the “important distributions” state its name and
specify the parameters; otherwise, give the PDF.)

Recall that X1 ⇠ Gamma(1) and X2+ · · ·+Xn ⇠ Gamma(n�1). By the connection
between Beta and Gamma (i.e., the bank-post o�ce story), Wn ⇠ Beta(1, n� 1).

Miracle check : the distribution clearly always takes values between 0 and 1, and the
mean should agree with the answer from (a).
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7. A task is randomly assigned to one of two people (with probability 1/2 for each
person). If assigned to the first person, the task takes an Expo(�1) length of time
to complete (measured in hours), while if assigned to the second person it takes an
Expo(�2) length of time to complete (independent of how long the first person would
have taken). Let T be the time taken to complete the task.

(a) Find the mean and variance of T .

Write T = IX1 + (1 � I)X2, with I ⇠ Bern(1/2), X1 ⇠ Expo(�1), X2 ⇠ Expo(�2)
independent. Then

ET =
1

2
(��1

1 + �
�1
2 ),

Var(T ) = E(Var(T |I)) + Var(E(T |I))

= E(I2
1

�
2
1

+ (1� I)2
1

�
2
2

) + Var

✓
I

�1
+

1� I

�2

◆

= E(I
1

�
2
1

+ (1� I)
1

�
2
2

) + Var

✓
I(

1

�1
� 1

�2
)

◆

=
1

2
(
1

�
2
1

+
1

�
2
2

) +
1

4
(
1

�1
� 1

�2
)2.

Miracle check : for �1 = �2, the two people have the same distribution so randomly
assigning the task to one of the two should be equivalent to just assigning it to the
first person (so the mean and variance should agree with those of an Expo(�1) r.v.).
It makes sense that the mean is the average of the two means, as we can condition on
whether I = 1 (though the variance is greater than the average of the two variances,
by Eve’s Law). Also, the results should be (and are) the same if we swap �1 and �2.

(b) Suppose instead that the task is assigned to both people, and let X be the time
taken to complete it (by whoever completes it first, with the two people working in-
dependently). It is observed that after 24 hours, the task has not yet been completed.
Conditional on this information, what is the expected value of X?

Here X = min(X1, X2) with X1 ⇠ Expo(�1), X2 ⇠ Expo(�2) independent. Then
X ⇠ Expo(�1 + �2) (since P (X > x) = P (X1 > x)P (X2 > x) = e

�(�1+�2)x, or by
results on order statistics). By the memoryless property,

E(X|X > 24) = 24 +
1

�1 + �2
.

Miracle check : the answer should be greater than 24 and should be very close to 24
if �1 or �2 is very large. Considering a Poisson process also helps make this intuitive.
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1 21
1/2

31/2
1/4

5/12

41/3
1/6

7/12

51/4
1/8

7/8

8. Find the stationary distribution of the Markov chain shown above, without using
matrices. The number above each arrow is the corresponding transition probability.

We will show that this chain is reversible by solving for s (which will work out nicely
since this is a birth-death chain). Let qij be the transition probability from i to j,
and solve for s in terms of s1. Noting that qij = 2qji for j = i+ 1 (when 1  i  4),
we have that

s1q12 = s2q21 gives s2 = 2s1.

s2q23 = s3q32 gives s3 = 2s2 = 4s1.

s3q34 = s4q43 gives s4 = 2s3 = 8s1.

s4q45 = s5q54 gives s5 = 2s4 = 16s1.

The other reversibility equations are automatically satisfied since here qij = 0 unless
|i� j|  1. Normalizing, the stationary distribution is

✓
1

31
,
2

31
,
4

31
,
8

31
,
16

31

◆
.

Miracle check : this chain “likes” going from left to right more than from right to
left, so the stationary probabilities should be increasing from left to right. We also
know that sj =

P
i
siqij (since if the chain is in the stationary distribution at time

n, then it is also in the stationary distribution at time n + 1), so we can check, for
example, that s1 =

P
i
siqi1 =

1
2s2.
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