
 Topics in Persistent Memory

Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS839

Teacher: Prof. Michael Swift

 Topics in Persistent Memory

NVM Hardware

Measurement: Optane DIMMs

Measurement: Optane SSDs

Wear Leveling: Start-Gap

PCM as Main Memory Extension

PCM as SSD Storage Array

PM File Systems

Kernel: BPFS

Kernel: PMFS

Kernel: NOVA

Kernel: NOVA-Fortis

Kernel: Ext4-DAX

Userspace: Aerie

Userspace: ZoFS

Hybrid: Strata

Hybrid: SplitFS

Virtual Memory Optimizations

VM For PM: pVM

Better mmap : DaxVM

Better mmap : HashFS

PM Supporting Frameworks

Software: Mnemosyne

Software: Atlas

Software: PMDK

Hardware: Mojim

Hardware: ThyNVM

Data Structures On PM

DS Designs: CDDS

Conversion: RECIPE

PM Programming Safety

Statically-Enforced: Corundum

Bug Finding: PMTest

Bug Fixing: Hippocrates

Memory Persistency Theory

Memory Persistency

Delegated Persist Ordering

NVM Usage In Databases

Three-Tier Buffer Manager

SAP HANA Adoption

This note includes the summary paragraphs I wrote in reviews for each paper. For detailed information about their

contributions, strengths, and weaknesses, please refer to the slides and our HotCRP site (private).

The following terminologies are used interchangeably, though they might mean slightly different things in specific papers:

Non-volatile memory (NVM)

Persistent memory (PM, PMEM)

Storage-class memory (SCM)

NVM Hardware

Measurement: Optane DIMMs

Link: https://www.usenix.org/conference/fast20/presentation/yang

https://pages.cs.wisc.edu/~swift/
https://uw-cs839-fa21.hotcrp.com/
https://www.usenix.org/conference/fast20/presentation/yang

This paper presents an empirical performance study of Intel Optane DIMM devices. In particular, it focuses on the use of

Optane DIMMs as persistent memory in AppDirect mode and compares it with the well-known performance characteristics

of traditional volatile DRAMs. Results suggest that Optane DIMMs have different performance behaviors than DRAMs in

terms of latency, tail latency, and R/W bandwidth on different access sizes and concurrency. Based on the results, the

paper summarizes 4 empirical rules for using Optane DIMMs and provides case studies on current PM systems to

demonstrate the rules.

Measurement: Optane SSDs

Link: https://research.cs.wisc.edu/adsl/Publications/hotstorage-contract19.pdf

(Auxiliary reading) The paper presents an empirical performance study of Intel Optane SSD devices.

Wear Leveling: Start-Gap

Link: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.7213&rep=rep1&type=pdf

The paper proposes a new phase-change memory (PCM) wear-leveling technique called Start-Gap, which achieves 97% of

normalized endurance meanwhile having low computation and storage overhead. Start-Gap deploys a simple algebraic

calculation of PA = (LA + start) % N (+ 1 if above gap) , which requires only two extra hardware registers and one

extra gap line. Gap is shifted every tunable writes to enable uniform weal-leveling. The paper further extends Start-Gap

with address randomization to tolerate hot-spot locality, and with region partitioning to defend against thrashing attacks.

PCM as Main Memory Extension

Link: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.6330&rep=rep1&type=pdf

The paper proposes a hybrid main memory system organization, where a small DRAM buffer is placed in front of denser

but slower phase-change memory (PCM). By applying lazy-write DRAM caching, line-granularity writebacks, fine-grained

wear-leveling, and page-level bypass techniques, the paper shows that such hybrid memory architecture is able to achieve

comparable performance with pure DRAM of the same size, meanwhile being 4x denser in capacity, reducing page faults

by up to 5x, and consuming nearly 50% less power.

PCM as SSD Storage Array

Link: https://ieeexplore.ieee.org/document/5695552

The paper presents Moneta, a storage array design for PCM devices. Moneta comprises of a central scheduler

implementing PCIe interface and DMA buffers, a ring of 4 FPGA memory controllers, and several PCM banks attached to

each memory controller. Beyond the baseline design, the paper introduces a sequence of software/hardware

optimizations that greatly improve Moneta's latency and throughput performance, including bypassing the Linux IO

scheduler, enabling one 64-bit atomic PIO per request, doing spin polling for completion, using separate DMA read/write

queues, and doing block-based round-robin scheduling. Evaluation results show that Moneta is able to almost saturate a

2GB/s full-duplex PCIe link, and outperforms existing storage array solutions based on HDDs or SSDs.

PM File Systems

Kernel: BPFS

Link: https://www.sigops.org/s/conferences/sosp/2009/papers/condit-sosp09.pdf

The paper presents BPFS, a file system over persistent memory DIMMs. BPFS achieves good latency performance and

guarantees crash consistency through short-circuit shadow paging, a PM-optimized shadow paging technique. It suggests

that hardware should provide two features: 64-bit atomic writes and epoch barrier instructions. With these features,

shadow paging can be localized to a subtree where the change at the top is within 64 bits. Copy-on-write can be avoided

in special cases of in-place updates and in-place appends.

Kernel: PMFS

Link: https://courses.engr.illinois.edu/ece598ms/fa2019/papers/paper45.pdf

This paper presents the design and implementation of PMFS, a practical file system for PM DIMMs aside volatile DRAM.

For crash consistency, PMFS proposes a pm_wbarrier instruction for ensuring durability through memory controller, and

deploys a hybrid consistency approach combining in-place updates, journaling, and copy-on-write. PMFS maps the entire

PM into kernel memory address space and introduces write protection windows to prevent kernel bugs from corrupting PM

https://research.cs.wisc.edu/adsl/Publications/hotstorage-contract19.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.7213&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.6330&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/5695552
https://www.sigops.org/s/conferences/sosp/2009/papers/condit-sosp09.pdf
https://courses.engr.illinois.edu/ece598ms/fa2019/papers/paper45.pdf

data. To optimize for mmap, PMFS actively uses large pages to reduce paging overhead. The paper also describes a PMFS

validation tool named Yat. Evaluation results show that these design choices collectively bring significant performance

gain to PMFS as compared to Ext2/4 on PM block drivers.

Kernel: NOVA

Link: https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu

This paper presents NOVA, an in-kernel log-structured FS optimized for PM DIMMs. NOVA maintains a linked-list inode log

for inode metadata, where updated entries are appended to the log and committed atomically. A garbage collector

periodically cleans and compacts the log. NOVA does copy-on-write for data, where stale data pages are reclaimed

immediately to further reduce log size and simplify garbage collection. Evaluation results show that NOVA performs other

file systems on PM under most workloads.

Kernel: NOVA-Fortis

Link: https://cseweb.ucsd.edu/~swanson/papers/SOSP2017-NOVAFortis.pdf

(Auxiliary reading) Fault-tolerance enhancement to NOVA.

Kernel: Ext4-DAX

Link: https://www.kernel.org/doc/Documentation/filesystems/dax.txt

(Auxiliary reading) Direct-access (DAX) technique in traditional Linux filesystems.

Userspace: Aerie

Link: https://dl.acm.org/doi/abs/10.1145/2592798.2592810

(Auxiliary reading) Managing both file data and most of file metadata in userspace, through a trusted FS service daemon

process.

Userspace: ZoFS

Link: https://ipads.se.sjtu.edu.cn/_media/publications/dongsosp19-rev.pdf

(Auxiliary reading) Granting userspace library filesystem direct control of file metadata through the new abstraction of

Coffers.

Hybrid: Strata

Link: https://www.cs.utexas.edu/users/witchel/pubs/kwon17sosp-strata.pdf

(Auxiliary reading) Using a per-process private log space to buffer updates, trading off visibility for performance. Migrating

hot-cold data across different layers of storage devices.

Hybrid: SplitFS

Link: https://dl.acm.org/doi/pdf/10.1145/3341301.3359631

The paper presents SplitFS, a PM file system that uses in-kernel Ext4-DAX for all metadata operations and bypasses the

kernel through a memory-mapping user library for all data operations. To handle the case of appending a file, SplitFS

steers new data to a process-private staging file and introduces a relink syscall, triggered on fsync() , that links the new

blocks to file metadata without copying. Evaluation results show that this split architecture brings ~2x better performance

than both in-kernel PM-optimized FS such as original Ext4-DAX and NOVA, and user-level kernel-bypassing FS such as

Strata.

Virtual Memory Optimizations

VM For PM: pVM

Link: https://dl.acm.org/doi/10.1145/2901318.2901325

https://www.usenix.org/conference/fast16/technical-sessions/presentation/xu
https://cseweb.ucsd.edu/~swanson/papers/SOSP2017-NOVAFortis.pdf
https://www.kernel.org/doc/Documentation/filesystems/dax.txt
https://dl.acm.org/doi/abs/10.1145/2592798.2592810
https://ipads.se.sjtu.edu.cn/_media/publications/dongsosp19-rev.pdf
https://www.cs.utexas.edu/users/witchel/pubs/kwon17sosp-strata.pdf
https://dl.acm.org/doi/pdf/10.1145/3341301.3359631
https://dl.acm.org/doi/10.1145/2901318.2901325

This paper presents pVM, an extension to the OS virtual memory system to support PM. pVM abstracts PM as a NUMA

memory node instead of a block device behind VFS. This design allows pVM to support flexible and efficient memory

scaling when DRAM capacity is under pressure. It also outperforms VFS-based systems in the use case of a persistent

object store due to better cacheline- and TLB-efficiency. Evaluation results show that pVM brings up to 2.5x speedup to

memory-intensive applications and results in significantly fewer cache and TLB misses of OS data structures.

Better mmap : DaxVM

Link: not available yet

This paper presents DaxVM, a set of optimizations to the OS memory mapping interface that reduces the software

overhead of mapping/unmapping for PM DAX use cases. DaxVM maintains pre-populated file page tables that enable O(1)

mmap() , supports ephemeral mappings, aggregates munmap() 's asynchronously, and drops kernel msync() support.

Evaluation results show that these optimizations/reductions make memory mapping a solid choice for applications that

frequently access multiple small files for short durations, where read() 's were favored.

Better mmap : HashFS

Link: https://web.eecs.umich.edu/~takh/papers/neal-fast-2021.pdf

(Auxiliary reading) Hash-based mmap to provide memory mapping lower latency.

PM Supporting Frameworks

Software: Mnemosyne

Link: https://pages.cs.wisc.edu/~swift/papers/asplos11_mnemosyne.pdf

This paper presents Mnemosyne, a complete programming framework for user-space access to PM. Mnemosyne enables

user-mode direct access to PM by discarding the FS abstraction. It ensures the correctness and consistency of modifying

persistent data through virtualization and a rich stack of programming interfaces, including HW primitives, persistent

regions, persistent heap, logging, and transactions. Evaluation results show that Mnemosyne outperforms Berkeley DB on

ramdisk.

Software: Atlas

Link: https://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf

This paper presents Atlas, a programming framework for converting multi-thread lock-based programs to durable

programs on PM. Atlas exploits the fact that critical sections in lock-based programs already encode the boundary of

transactions to ensure PM consistency, and introduces the notion of failure-atomicity sections (FASEs) that can be inferred

from lock-protected critical sections. At compile time, Atlas injects calls to library functions to do undo logging of all PM

stores per thread. At runtime, a helper thread does garbage collection of log entries. When recovering after a crash, Atlas

parses the log entries to identify the latest consistent state and undoes later updates. Atlas is able to automatically

convert correct lock-based concurrent programs to durable PM programs, but in the cost of potentially large overhead.

Software: PMDK

Link: https://pmem.io/pmdk/

(Auxiliary reading) The most popular PM programming library developed and maintained officially by Intel.

Hardware: Mojim

Link: https://cseweb.ucsd.edu//~yiyingzhang/mojim-asplos15.pdf

The paper proposes Mojim, an NVM driver-layer service that uses primary-backup replication to improve the reliability of

NVM storage in data centers. Mojim deploys a two-tier architecture, where the top tier consists of a primary node and a

mirror node and the optional secondary tier contains backup nodes. Mojim provides upper-layer file systems with a

different msync semantic for NVM: instead of flushing CPU cachelines, it replicates the synced area to the mirror node

through fast RDMA. The mirror node lazily propagates updates to backup nodes in the background. Evaluation results

show that Mojim provides lower latency than original msync by avoiding cache flushes on the critical path, and has

comparable performance to unreplicated deployment.

Hardware: ThyNVM

https://web.eecs.umich.edu/~takh/papers/neal-fast-2021.pdf
https://pages.cs.wisc.edu/~swift/papers/asplos11_mnemosyne.pdf
https://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf
https://pmem.io/pmdk/
https://cseweb.ucsd.edu//~yiyingzhang/mojim-asplos15.pdf

Link: https://cseweb.ucsd.edu/~jzhao/files/thynvm-micro2015.pdf

This paper presents ThyNVM, a software-transparent solution to NVM consistency on hybrid DRAM+NVM architecture.

ThyNVM requires no software modification (journaling or shadowing) by doing checkpointing at memory hardware level.

To reduce the overhead of checkpointing, ThyNVM overlaps checkpointing of the last epoch with execution of the current

epoch. ThyNVM makes a tradeoff between checkpointing speed and storage overhead by combining DRAM page-

granularity writeback scheme and NVM cacheblock-granularity remapping scheme, and switching between the two

schemes dynamically based on access locality. Evaluation results show that ThyNVM achieves comparable performance

with software-integrated journaling or shadowing solutions.

Data Structures On PM

DS Designs: CDDS

Link: https://shivaram.org/publications/nvm-fast11.pdf

The paper proposes CDDS, an efficient versioning-based data structure design scheme for NVM. CDDS advocates for

building single-level data structures directly on byte-addressable NVM devices. CDDS uses versioning, where any update

to the data structure writes entries to new location with new version number and advances the global version number at

commit. A garbage collector cleans older versions with no references. The paper describes in detail a CDDS B-tree

implementation, which performs better than previous logging-based durable B-trees. Tembo, a Redis-based KV store with

CDDS B-tree, yields significantly higher throughput than Cassandra.

Conversion: RECIPE

Link: https://www.cs.utexas.edu/~jaya/pdf/sosp19-recipe.pdf

The paper presents RECIPE, a principled approach for converting concurrent DRAM data structures to crash-consistent PM

data structures. RECIPE exploits the strong similarity between concurrent data structures' isolation requirements and PM's

crash consistency requirements. When certain conditions are met, a DRAM data structure can be easily ported to PM by

modifications as simple as adding clflushes and fences after stores. The paper demonstrates five example data structures

converted with RECIPE, verifies crash consistency of outcomes with a new testing method, and shows their performance

excellence over state-of-the-art data structures.

PM Programming Safety

Statically-Enforced: Corundum

Link: https://cseweb.ucsd.edu/~mhoseinzadeh/hoseinzadeh-corundum-asplos21.pdf

This paper presents Corundum, a Rust library for PM programming that enforces many PM safety invariants statically at

compile-time. Corundum is strictly based on transactions. It puts rules on references to persistent objects across pools

and references to volatile/persistent objects across transaction boundaries. To enforces most of the rules statically,

Corundum exploits Rust's strong type system and extends Rust's smart pointer types. Evaluation results show that

Corundum can achieve comparable (and sometimes better) performance to existing PM programming frameworks such

as PMDK and Atlas.

Bug Finding: PMTest

Link: https://akolli.github.io/pubs/pmtest-asplos19.pdf

This paper presents PMTest, a fast and flexible framework for testing durability and ordering in PM crash-consistent

software. PMTest is flexible because it provides programmers with two generic checker interfaces: isPersist() and

isOrderedBefore() , to assert guarantees that the program must meet. PMTest is fast because it avoids exhaustive

enumeration and implements the two checkers by tracking all the store, flush, and fence operations, maintaining a global

epoch number marked by fences, and inferring persistent intervals of objects within which they could be made persistent.

The checking engine runs in pipeline with the foreground PM program to further improve performance. Evaluation results

show that PMTest runs ~7.1x faster than pmemcheck and is able to find new bugs in PMFS and PMDK B-tree.

Bug Fixing: Hippocrates

Link: https://web.eecs.umich.edu/~barisk/public/hippocrates.pdf

https://cseweb.ucsd.edu/~jzhao/files/thynvm-micro2015.pdf
https://shivaram.org/publications/nvm-fast11.pdf
https://www.cs.utexas.edu/~jaya/pdf/sosp19-recipe.pdf
https://cseweb.ucsd.edu/~mhoseinzadeh/hoseinzadeh-corundum-asplos21.pdf
https://akolli.github.io/pubs/pmtest-asplos19.pdf
https://web.eecs.umich.edu/~barisk/public/hippocrates.pdf

This paper presents Hippocrates, an automated PM bug-fixing tool that is guaranteed to not introduce new correctness

issues and is best-effort in performance. Hippocrates takes in the trace output of a bug-finding tool and identifies the

location of missing flushes/fences. It first attempts to perform intraprocedural fixes, where all missing flushes/fences are

inserted inline. To improve performance, it then tries to convert the inserted flushes/fences into interprocedural fixes by

hoisting them up the function stack. The conversion is guided by a heuristic algorithm that minimizes the influence on

volatile codepaths and is implemented through subprogram transformation. Hippocrates is able to automatically fix 23

bugs in various PMDK applications and deliver comparable performance with manual fixes.

Memory Persistency Theory

Memory Persistency

Link: https://web.eecs.umich.edu/~twenisch/papers/isca14.pdf

This paper presents the theoretical notion of memory persistency, an extension to memory consistency for NVM. In addition

to load s and store s, memory persistency models involve persist operations, and specify constraints on how persists

must be ordered with respect to stores and other persists. The paper describes three specific memory persistency

models, strong persistency, epoch persistency, and strand persistency, in the order from the strongest to the most relaxed.

Simulation results show that relaxed persistency ordering could potentially improve performance by a large margin for a

queue data structure.

Delegated Persist Ordering

Link: https://aasheeshkolli.files.wordpress.com/2016/08/delegated-persist-ordering-micro16.pdf

This paper proposes delegated persist ordering, a PM ordering design that offloads ordering constraints to the PM

controller to improve performance. Previous synchronous ordering (SO) designs require explicit clwb , pcommit , and

sfence instructions that stall execution on the critical path. Delegated ordering removes the need of calling flush

instructions and hides the latency of flushing, by tracking write dependencies in per-core data caches and communicating

fence operations to the PM controller. Buffering thus happens at two levels: 1) writes from one thread could aggregate in

the per-core persist buffers, with the order of writes respected, until a dependent fence is forced, and 2) flushed writes

from all cores could further aggregate at the global write buffer in PM controller until a fence operation is received.

Evaluation results show that delegated ordering improves latency by up to 3.73x over SO.

NVM Usage In Databases

Three-Tier Buffer Manager

Link: https://db.in.tum.de/~leis/papers/nvm.pdf

This paper presents a three-tier database buffer manager design that exploits the performance benefits of byte-

addressable NVM and supports graceful degradation as data size grows larger. The three-tier architecture places DRAM

over NVM to form a two-tier cache over SSDs. Between DRAM and NVM, data is mapped in cacheline granularity to enjoy

the byte-addressability of NVM, and mini pages are used to reduce DRAM space usage. When data is evicted from DRAM,

an admission set algorithm decides on NVM admission to try to keep warm (but not hot) data in NVM. Additional

techniques, including pointer swizzling, combined page table, and mapping table reconstruction at restart, are deployed to

further improve performance. Evaluation results show that the three-tier design outperforms both NVM-direct databases

and page-granularity buffer managers, meanwhile allowing large datasets to be kept on SSDs.

SAP HANA Adoption

Link: http://www.vldb.org/pvldb/vol10/p1754-andrei.pdf

This paper summarizes the design decisions made to integrate NVRAM into the SAP HANA database. NVRAM is placed

beside disk storage and is used to store only the Main Column Fragments data, which are sequential and are rarely

updated, to avoid drastic changes to the codebase and to reduce the sync-up overhead between DRAM and NVRAM. The

column data format adjusts memory alignment and avoids complex deserialization to improve cache performance. NVM

blocks have an optimized lifecycle that discards logging and relies on the atomicity of pointer switching at commit (i.e.,

shadow copying). Experiment results show that HANA achieves better recovery performance with NVM than cold starts

from DRAM+disk.

https://web.eecs.umich.edu/~twenisch/papers/isca14.pdf
https://aasheeshkolli.files.wordpress.com/2016/08/delegated-persist-ordering-micro16.pdf
https://db.in.tum.de/~leis/papers/nvm.pdf
http://www.vldb.org/pvldb/vol10/p1754-andrei.pdf

