
 Parallel Computing

Author: Jose 胡冠洲 @ ShanghaiTech

 Parallel Computing
Introduction

What & Why
Challenges of Parallelization
Current Status

Parallel Architecture
Instruction Level Parallelism
Memory Performance
Thread Level Parallelism

Multicore Architecture
Manycore Architecture

Flynn's Taxonomy
Shared / Distributed Memory

Communications
Communication Topologies

Shared-Memory: Bus Architecture
Distributed-Memory: Multihop Networks

Cache Coherence Problem
Protocols
Implementations
False Sharing

Routing & Its Costs
Transferring Strategies
Dimension Routing

Process to Processor Mapping
Line on Hypercube
Hypercube on Line
2-D Mesh on Hypercube
Hypercube on 2-D Mesh
Line on Mesh
Mesh on Line

Performance Analysis
Speedup Notations
DAG Model
Laws & Metrics

Distributed-Memory Programming Essentials
MPI Programming
Collective Communication Details

Broadcast on Ring
Broadcast on Mesh
Broadcast on Hypercube
All-to-all on Ring
All-to-all on Mesh
All-to-all on Hypercube
Prefix Sum on Hypercube
Scatter on Hypercube
Personalized on Ring
Personalized on Mesh
Personalized on Hypercube
Circular Shift on Mesh
Circular Shift on Hypercube

Shared-Memory Programming Essentials
Threads Interfaces
OpenMP Programming
PGAS Languages
Synchronization

Eliminating Concurrenct Bugs
Critical Section Criteria

Implementation of Locks
Software Solutions

Peterson's Mutex Algorithm

Lamports's Bakery Algorithm
Hardware Supports

Test-and-Set Locks
TTAS (Test-Test-and-Set) Locks
Backoff Locks
Anderson's Queue Lock
CLH Queue Lock
MCS Queue Lock

GPU Programming Essentials
GPU Programming Model
CUDA Programming

Common Syntax
Thread Mapping
Choosing Block Size

GPU Memory & Warps
Memory Organization
Thread Warps

CUDA Intrinsics
Scenary: Prefix Sum

Naive Algorithm
Efficient Algorithm
Exclusive Scans
Arbitrary Input Size
Segmented Scan

Scenery: BFS
Parallel Algorithm Design

Foster's Methodology
Scenery: Floyd-Warshall APSP

Loop Parallelism
Data Dependence Analysis
Loop Dependence Analysis
Distance & Direction Vectors
Algorithmic Analysis

Load Balancing & Scheduling
Load Balancing Tradeoffs
Static Load Balancing

List Scheduling
Longest Processing Time Scheduling

Geometric Load Balancing
Recursive Bisection
Space Filling Curve
Inertial Partitioning

Graph-based Partitioning
Dynamic Load Balancing

Parallel Matrix Algorithms
Sparse Matrices

Sparse Matrix Storage Formats
SpMV CUDA Kernels

Dense Matrices
Parallel Matrix-Matrix Multiplication

Iterative Matrix Algorithms
Jacobi Method
Gauss-Seidel Method
2-D Poisson's Equation

Parallel Sorting Algorithms
Parallel Radix Sort
Parallel Merge Sort
Bitonic Sort
Sample Sort

Parallel Fast Fourier Transform
Fast Fourier Transform (FFT)
FFT Circuits
2-D Transpose FFT

Parallel Searching Algorithms
Discrete Optimization Problems (DOP)
Parallel Graph Traversal

PRAM Model
Concepts
Algorithms

MapReduce Model
Concepts
Algorithms

Introduction

What & Why

Parallel Computing: Use multiple computation power together to solve a problem.

:) With processors, ideally can solve times faster
:) Memory size solve larger problem, with more accuracy
:) Fault tolerance
:(More prone to faults

Parallel Hardware consists of multiple independent processors communicating over an interconnect network. They:

Have many different designs:

1. Different processor types (CPU, GPU, FPGA, ASIC, Heterogeneous)
2. Different interconnect networks
3. Shared memory v.s. Message passing

Exist at many different layers: instruction core chip node rack ...

Parallel Software breaks a large problem into subproblems (Tasks) that can be solved somewhat independently. They:

Must match the underlying Hardware
Must respect dependencies between Tasks

Challenges of Parallelization

Parallel computing meets the following challenges:

1. Communication: Compute faster than can communicate & Gets worse when # of processors
2. Synchronization: Interference & Dependencies between Tasks
3. Scheduling: Finding good allocation of Tasks Processors
4. Structured (Specific) v.s. Unstructured (General but less efficient)
5. Some problems are NOT / don't seem to be parallelizable inherently
6. Human factor: Harder for human to design, track, and debug concurrent events

Current Status

Parallel Computing has become essential to taking advantage of Moore's Law.

Based on four kinds of processors:

Multicores (多核, # 40, General purpose), e.g. Intel Xeon CPU
Manycores (众核, Large number of simple cores), e.g. Nvidia GPU
FPGA (Field programmable Gate Arrays): Configurable Hardware
ASIC (Application Specific Integrated Circuits): Specialized & Expensive

When Supercomputing (High-Performance Computing, HPC) becomes popular, Energy efficiency is increasingly important.

Parallel Architecture

Instruction Level Parallelism

The lowest level of parallelism is Instruction Level Parallelism (ILP), which exists inside a single computing core.

Pipelining:

Execute different pieces of an Instruction in different Pipeline Stages

Speedup # of stages

Single-core Multiprocessor Multicore processor Hyperthreading (超线程)

Simple Separate processors Cores share L2 / L3 Cache

Threads share an execution
unit, because their

instruction streams can
interleave with each other

Need time to fill and drain
Requires flushing on branch mis-prediction

3 Hazards (Structural / Data / Control)

Superscalar:

Have the ability to issue multiple instructions at one clock signal (because of redundant functional units)
Data dependencies detected and organized on Run-time

Very Long Instruction Word (VLIW):

Similar to Superscalar

Finds and packs parallelizable instructions on Compile-time

:) Can do more sophisticated search
:(Compiler doesn't have runtime states like branch history

Memory Performance

Two separate measurements for performance:

Latency (延迟) = Amount of time needed for a single data access request.

 when frequently transferring small requests
Bandwidth (带宽, Throughput, 吞吐量) = Amount of data transferred per unit time.

 when transferring a large chunk at a time
Depends on Latency, but is a different measurement

CPU-Memory performance gap is huge nowadays.

Therefore we need Memory Hierarchy:

Caching relies on Temporal and Spatial Locality

Hit Rate = # of access hits in Cache / Total # of accesses

Dramatically improves Latency, e.g.

Memory (100ns), but 90% hit Cache (5ns): 5 0.9 + 100 0.1 = 14.5 ns

Thread Level Parallelism

Computing cores & Caches can be combined in various ways to form processors. By integrating multiple execution units
on a single chip, we are able to solve a task on multiple threads simultaneously, thus Thread Level Parallelism (TLP).

Multicore Architecture

Hyperthreading is officially called Simultaneous Multithreading (SMT), but Intel implements it as two threads per
core and called it Hyperthreading, thus this name is now more popular.

Nowadays we combine them:

Manycore Architecture

General Purpose Graphics Processing Unit (GPGPU) uses massive active threads to perform massive parallelism.

Example:

Flynn's Taxonomy

1. SISD (Single Instruction, Single Data): Naive

2. SIMD (Single Instruction, Multiple Data): Popular

Digs Data Level Parallelism (DLP)
Effective & cheap to implement
Doesn't work when heavily branching / not balanced

3. MISD (Multiple Instruction, Single Data)

4. MIMD (Multiple Instruction, Multiple Data): General

Different cores in a chip form MIMD
Each core itself implements SIMD AVX

Layered combination example 1: MIMD chip over SIMD core.

Shared / Distributed Memory

Shared Memory Architecture means using a single Memory Address Space for all processors.

1 Logical Memory Space, but can have multiple physical banks

Do not limit the location of and access time to different parts of Memory

Uniform Memory Access (UMA):

Non-uniform Memory Access (NUMA):

Limits Scalability due to Bandwidth requirement

Distributed Memory Architecture means each processor can only directly address its own Memory.

Needs Message Passing to retrieve remote data

Nodes are connected through links
Use switches to achieve dynamic topology

Large-scaled systems must be Distributed, since overhead of providing 1 Logical Memory Space is high

Layered combination example 2: Distributed-memory cluster over Shared-memory node.

Communications

Communication Topologies

Interconnection network is built upon certain topology.

Shared-Memory: Bus Architecture

All Processors can communicate directly to each other, and towards Memory through common Bus (总线).

Simple bus:

Crossbar with switches:

The Bus will become a bottleneck, resulting in limited Bandwidth and Scalability.

Distributed-Memory: Multihop Networks

Parameters of Multihop Networks:

Diameter: Distance between farthest pair of processors

 Worst Latency
Bisection Width: Minimum number of links to bipartite the network into two almost equal halves

 Potential communication bottleneck
Bisection Bandwidth Bandwidth of links cut

Cost: Number of links in the network

Different types of multihop network topologies are summarized below (denotes # of processors):

Name Topology Diameter Bisection Cost

Linear Array

1-D Ring 2

2-D Mesh

2-D Torus

3-D Crystal

Tree

Fat Tree

Hypercubes

Obtaining -Dimension Hypercubes:

1. Make two copies of -Dimension Hypercubes
2. Link every corresponding node pairs, and extend it ID with and correspondingly
3. Every bit of a node's ID represents a Dimension

Cache Coherence Problem

To maintain a uniform Memory Space, only 1 logical copy of each variable. However, variables can be in multiple local
caches, and the caches must be made Coherent through some protocol, to make all processors aware of changes.

Protocols

Two major types of protocols:

Invalidate: When process modifies v , the value in all other cached copies AND memory declared invalid.

Another process's access requires to write back the new value to memory first
Makes Latency when others do read

Update: When process modifies v , writes the new value to memory and other caches.

Makes Bandwidth waste if others don't read

MSI Protocal: Widely used invalidation-based protocol. Represented by a Finite State Machine.

Each variable v 's copy can be in (Modified / Dirty), (Shared), or (Invalid) state

: v may exist in multiple caches; All copies up-to-date
: v is dirty here; All other current copies MUST be invalidated (state)

: Someone modified his copy of v (state), so value here is out-of-date
A Read / Write action causes an edge transition, along with signals sent to Memory and other Caches

FSM Diagram of MSI protocal:

State change example:

Implementations

Protocols can be implemented on different types of cache system Hardwares.

Snoopy Cache System: All processes listen on the bus for coherency traffic and respond accordingly; Naive

Directory Cache System: Keep a Directory in Memory, indicating which processors hold Dirty / Shared copy of each
memory block

Need Presence Bits in each entry when processors
When modifies v , only need to sent Invalidation Signal to processors presence in the entry
When (in) reads v , knows it should invoke by looking up the entry

Directory needs extra memory, where # of memory blocks, and # of processors. Can improve by
store the directory distributively among processors.

False Sharing

False Sharing occurs when two Processors are modifying two different variables, who happen to be in the same Cache
Line. Solve by trying to lay out data in a way that different Processors care about different Cache Lines.

Routing & Its Costs

Time to transfer a message consists of:

1. Startup Time : Time for preparations (Header adding, ...)
2. Per-hop Time : Time wasted on a router to determine the next hop
3. Per-word Time : Time to actually transfer a word of data through a link

Transferring Strategies

Different transferring strategies have different communication costs. Assume transferring a message of size over
links:

1. Store & Forward: Each node waits to receive entire message before forwarding it

Example:

Total Cost
2. Packet Routing: Break into packets, each node can forward a packet it received

Example:

Total Cost assuming 1 Word / Packet

3. Cut-through Switching: Similar to Packet Routing, but

Only Packet 1 needs
All following packets follow the same path

Considering that << and << , Overall Cost .

If Congestion (= Possible # of Communications / Bisection Width) on link is , Over Cost .

Dimension Routing

If we adopted Mesh / Hypercube Topologies, we can easily order all the links along the dimension axes, thus fix the
routing strategy in advance.

E-cube Routing: On Hypercube networks, from

1. Compute
2. From LSB MSB, make a cross on that dimension if the bit is

Dimension Routing's fixed-direction property can prevent Routing Deadlocks.

Process to Processor Mapping

The physical communication implementation is determined by Processors Topology (Hardware), BUT actual
communication requests issued are determined by Processes (Software). We need to properly Map (Embed) Processes
onto Processors, to maximize the communication efficiency.

Congestion = # of logical edges mapped onto that physical edge
Dilation = Max length of physical route between logical neighbors
Expansion = # of Processes / # of Processors; Assume is

Goal is to Map a Process Topology onto a Processor Topology , making:

1. Short paths on are also relatively short on
2. Maximal Congestion is as small as possible

Line on Hypercube

"Mapping a length- Line onto -dimensional Hypercube"

Gray Codes: An ordering of -digit binary numbers where neighbors only differ in 1 bit.

Obtaining Gray codes :

1. Make a reflected copy of -bit Gray Codes
2. Prepend upper ones (original ones) with
3. Prepend lower ones (reflected ones) with

 Procedure:

1. Mark Hypercube nodes with convention
2. Put Line node onto Hypercube node

 Max Congestion ; Dilation .

Hypercube on Line

"Mapping -dimensional Hypercube onto a length- Line"

 Procedure: Just the reverse of above.

 Max Congestion ; Dilation .

2-D Mesh on Hypercube

"Mapping a Mesh onto a -dimensional Hypercube"

 Procedure:

1. Mark Hypercube nodes with convention (-bits in length)

2. Put Mesh node onto Hypercube node

 means Concatenation

 Max Congestion ; Dilation .

Each different Row / Column of the Mesh maps onto a distinct Sub-Hypercube.

Hypercube on 2-D Mesh

"Mapping a -dimensional Hypercube onto a Mesh"

 Procedure:

1. Mark Hypercube nodes with convention (-bits in length)

2. Put Hypercube nodes with the same last digits onto Row of the Mesh

Using Hypercube to Line mapping (Graycode)

 Max Congestion ; Dilation .

Line on Mesh

"Mapping a length- Line onto a mesh with nodes"

 Procedure: Zig-Zag Embedding

 Max Congestion ; Dilation .

Mesh on Line

"Mapping a Mesh onto a length- Line"

 Procedure: Just the reverse of above.

 Max Congestion ; Dilation .

Performance Analysis

Speedup Notations

For a given problem and a parallel algorithm , let:

 Minimum time to solve on Processor, i.e. Time for best Sequential algorithm
 Time that algorithm takes using Processor,
 Time that algorithm takes using Processors

The following notations are introduced for performance speedup analysis:

Absolute Speedup

Relative Speedup , comparing with itself on different machine sizes

Work (Cost) , total Time Cycles burned by all Processors,

Effciency , typically

Hard to achieve Linear Scalability (i.e. hold as a constant), because various kind of Overheads (including
Communication, Synchronization, Load Imbalance, ...) will be introduced when using more Processors in parallel.

Sometimes the best sequential algorithm is not parallelizable, but a (sequentially) worse algorithm can be
parallelized. This becomes a Trade-off between and .

DAG Model

We can represent a Problem as a Directed Acyclic Graph (DAG, 有向无环图) of Tasks. It should include:

Weighted Node , representing a Task , along with its needed Time
Weighted Directed Edge , representing a dependency that cannot start until is done, and along with the cost
of Communication between and

NO Cycles in the DAG (since the computation must terminate).

Given the following parameters of Graph :

 Node & Edge Weights
 Length of the Critical Path of
 Time taken by Processors to solve
 Minimum Time possible to solve , allowing arbitrary # of Processors

We have two laws that bound the performance:

1. Work Law:

2. Span Law:

Laws & Metrics

There are multiple Laws & Metrics that models the performance gain of parallelization.

Amdahl's Law:

Solving the same-sized problem in parallel
There's fraction () of a problem that is inherently sequential, CANNOT be parallelized
Called Strong Scaling

Gustafson's Law: ;

With Processors, we solve a problem whose parallelizable part is -times larger

Can view it as Amdahl's Law with

More practical, since when we use parallelization we try to solve larger problems
Called Weak Scaling / Scaled Speedup

Karp-Flatt Metric: Determine true fraction by statistically observing

 is acquired through experiment results, and here is dynamic with different
If increases with , it means Overhead is introduced by parallelization

Efficiency:

 represents the total useful Work needed for size- Problem

 means the Overhead from parallelism when we solve size- Problem with Processors

 (increases)
 (increases faster than typically)

If , this is called Isoefficiency

Distributed-Memory Programming Essentials

MPI Programming

MPI is a Distributed Memory Programming Interface Standard.

A Standard, the library itself can have multiple different implementations (OpenMPI, MPICH, IntelMPI, ...)

For C / C++ / Fortran languages

Processes each have local memory, and they communicate through Sending & Receiving messages

Processes automatically map onto processors

Uses Single Program Multiple Data (SPMD) model

All processes run the same piece of program
Program itself contains branchings / selections to differentiate processes

For details about MPI Programming, refer to MPI 在线教程.

Collective Communication Details

Communications are internally Point-to-point, but efficient Collectives (e.g. gather) can be implemented by parallelizing
these Point-to-point communications. On different hardware topologies and for different Collective operations, we have
different optimal solutions.

We suppose:

Per-hop time is very small compared to , so sending over multiple hops does not affect latency, still

However, Congestion on a link affects latency,

Sending two different messages over one link in the same direction causes Congestion
Assume each link is bi-directional, so messages back and forth on one link does not cause Congestion

Lines are then equivalent to Rings.

Broadcast on Ring

"Broadcast on a length- Ring"

 Procedure:

 Total time .

Reduction on the same topology is just the reverse procedure.

Broadcast on Mesh

"Broadcast on a Mesh"

 Procedure:

http://mpitutorial.com/tutorials/

1. The Root first broadcast on the row, steps

2. Then the row broadcast on their columns, steps

 Total time .

Broadcast on Hypercube

"Broadcast on a Hypercube with Processors"

 Procedure:

One Dimension per step, in total steps

 Total time .

All-to-all on Ring

"All-to-all on a length- Ring"

 Procedure:

Keep passing size- data down the Ring
Process store any new data they receive, so repeat steps then done

 Total time .

All-to-all on Mesh

"All-to-all on a Mesh"

 Procedure:

1. First do All-to-all on each row, using the above Ring scheme

2. Second do All-to-all on each column

Notice size of each message is now

 Total time .

All-to-all on Hypercube

"All-to-all on a Hypercube with Processors"

 Procedure:

Exchange on one dimension per step, but size of message to transfer doubles

 Total time .

Prefix Sum on Hypercube

"Prefix sum on a Hypercube with Processors"

 Procedure:

Exchange on one dimension per step, size of message always (the sum)
A Process adds the thing it receives only when receiving from smaller node

 Total time .

Scatter on Hypercube

"Scatter on a Hypercube with Processors"

 Procedure:

One Dimension per step, but size of message to transfer halves

 Total time .

Gather on the same topology is just the reverse procedure.

Personalized on Ring

"All-to-all personalized on a length- Ring"

 Procedure:

One Dimension per step, but size of message decrease by every step

 Total time .

Personalized on Mesh

"All-to-all personalized on a Mesh"

 Procedure:

1. First, each node splits its outgoing data to groups, each for a column; Then do personalized on the rows, with
message size but only to nodes

2. Second, do similar personalized on the columns

 Total time .

Personalized on Hypercube

"All-to-all personalized on a Hypercube with Processors"

 Procedure:

Exchange size- data on one Dimension each step, directing messages for the opposite half

 Total time . NOT Optimal.

 Procedure:

In step , Process sends message to Process

Using E-cube Routing for such sending
No Congestion will happen

Repeat steps

 Total time . Optimal.

The lower bound of such comunication

Circular Shift on Mesh

"Circular shift of on a Mesh", each node sends a message to node

 Procedure:

1. First settle the shifts along the rows

1. Do a circular shift on the rows
2. Do a Compensate shift on the First column
3. Repeat times

2. Second settle the shifts along the columns, need to repeat times

 Total time , since movement on either Dimension is at most .

Circular Shift on Hypercube

"Circular shift of on a Hypercube with Processors"

For any two nodes differing by , they are -links away in the Hypercube.

Can be proved by Gray-code Construction.

 Procedure:

Write in binary, then do shifts on Dimensions with digit-

For Dimension , shift twice can make difference
For Dimension , only shift once

 Total time , since shifting along at most Dimensions.

Shared-Memory Programming Essentials

Threads Interfaces

Shared-memory programming relies on Threads. Different platforms follow different Thread interface standard:

POSIX Thread (pthread)
JAVA Multithreading
...

They directly provide programmers the ability to manually manipulate Threads, but programmers must handle everything
about the threads.

Multithreading usually follows the Fork-Join Model:

OpenMP Programming

OpenMP is a higher-level Shared Memory programming technique.

Programmers use it by adding Compiler Directives

It wraps the lower-level multithreading operations

 Easier to use
 Loses some flexibility

For details about OpenMP Programming, refer to OpenMP 参考手册.

PGAS Languages

https://www.openmp.org/wp-content/uploads/OpenMPRef-5.0-111802-web.pdf

Partitioned Global Address Space (PGAS) is another model for Shared-memory programming. It includes a number of
languages: Unified Parallel C (UPC), Coarray Fortran (CAF), ...

Global address space is divided into partitions, and each thread has an affinity to one partition. Not widely used, so
omitted here.

Synchronization

In the Shared-memory scenario, different Threads interact with the same memory. Therefore, routines that access the
same piece of data will introduce the Synchronization problems.

A routine is Thread-safe if it can be called by multiple threads simultaneously, and ALWAYS produces correct results
If not Thread-safe, this routine must be put in a Critical Section, allowing at most one thread executing it at the same
time (i.e. ensuring Mutual Exclusion)

Eliminating Concurrenct Bugs

There are a bunch of ways to help programmers achieve mutual exclusion:

1. Semaphores, Locks (0-1 Semaphore), Conditional Variables

Blocking locking
Non-blocking locking, test first and does something else if lock is currently not available

2. Transactional Memory

Hardware (HTM)
Software (STM)

3. Own concurrent algorithm w/o SW & HW support

Critical Section Criteria

A solution to Critical Section (CS) problem should satisfy the following criteria:

1. Mutual Exclusion
2. Progress (Deadlock Freedom): If no process is in CS and several want to get in, at least one should succeed
3. Bounded Waiting (Wait Freedom): If a process is waiting to get in CS, it should succeed in finite time

Implementation of Locks

We suppose Memory is Sequentially Consistent here.

Software Solutions

There are theoretical Software solutions, which do not need Hardware support, but are extremely inefficient.

Peterson's Mutex Algorithm

For two threads with ID 0 and 1.

Lamports's Bakery Algorithm

For multiple threads.

void lock() {

 int i = threadID;

 int j = 1 - i;

 flag[i] = true;

 victim = i;

 while (flag[j] && victim == i);

}

void unlock() {

 int i = threadID;

 flag[i] = false;

}

Hardware Supports

With Hardware atomic instruction supports:

1. Boolean TAS(x) : Set x to true; Return its original value
2. Boolean CAS(x, v, v') : If v == v' , set x to v ; Return x 's current value
3. x.getAndSet(v) : Set x to v (allow non-boolean); Return its original value
4. x.getAndIncrement() : Increment x ; Return its original value
5. x.compareAndSet(x', v) : If x == x' , set x to v ; Return x == x'

We can build locks with practical performance.

Test-and-Set Locks

TTAS (Test-Test-and-Set) Locks

Test first so that repeatedly reading from cached copy of lock value, thus improves peformance.

Backoff Locks

Set thread to sleep a while when others are in CS.

Initially: flags are all false, labels are all 0;

void lock() {

 int i = threadID;

 flag[i] = true;

 label[i] = max(label[0], ..., label[n-1]) + 1;

 while (Exists k < i: flag[k] && label[k] < label[i]);

}

void unlock() {

 int i = threadID;

 flag[i] = false;

}

Initially: state = false;

void lock() {

 while (TAS(state));

}

void unlock() {

 state.set(false);

}

Initially: state = false;

void lock() {

 while (true) {

 while (state.get());

 if (!TAS(state)) return;

 }

}

void unlock() {

 state.set(false);

}

Anderson's Queue Lock

For limited number of threads (< size), since the queue is a circular array.

CLH Queue Lock

Efficient except for cacheless NUMA architectures, since spinning on predecessor's pred.locked .

MCS Queue Lock

Avoids spinning on predecessor, but incurs more reads and writes, and requires CAS.

Initially: state = false;

void lock() {

 while (true) {

 while (state.get());

 if (!TAS(state)) return;

 else sleep(DELAY);

 }

}

void unlock() {

 state.set(false);

}

Initially: tail = 0, flags are all false;

void lock() {

 int slot = tail.getAndIncrement() % size;

 mySlot.set(slot);

 while(!flag[slot]);

}

void unlock() {

 int slot = mySlot.get();

 flag[slot] = false;

 flag[(slot+1) % size] = true;

}

Initially: tail points to a dummy false QNode;

void lock() {

 myNode.locked = true;

 QNode pred = tail.getAndSet(myNode);

 myPred.set(pred);

 while (pred.locked);

}

void unlock() {

 myNode.locked = false;

 myNode.set(myPred);

}

Initially: tail points to NULL;

void lock() {

 tail.getAndSet(myNode);

 if (pred != NULL) {

 myNode.locked = true;

 pred.next = myNode;

 while (myNode.locked);

 }

}

void unlock() {

 if (myNode.next == NULL) {

 if (tail.compareAndSet(myNode, null)) return;

Software Mapping Hardware

Kernel Grid Start a Kernel on GPU Card(s) GPU Card

Block 1 / more Block(s) onto 1 SM Stream Multiprocessor (SM)

Warp 1 SM executes 1 Warp (32 Threads) per SIMD cycle

Thread 1 Core is executing 1 Thread at certain time Core

GPU Programming Essentials

GPU Programming Model

General Purpose GPUs (GPGPU) follow Manycore architecture. Longer Latency per task (each core simpler), but much
higher Throughput per unit time (thousands of cores) Best for problems with intense data parallelism.

Popular GPU programming platform is Nvidia CUDA (Compute Unified Device Architecture) / OpenCL / OpenACC.

Host + Device Model:

CUDA Programming

CUDA architecture defines the following mapping from Software to Hardware:

An SM has its local shared memory and registers Thread switching is fast

Gigathread Engine assigns Blocks to SMs
Per SM Scheduler responsible for managing threads in this SM

Synchronizations:

Different Blocks in a Kernel may execute in any order
Different Threads in a Block can do __syncthreads() barrier
Different Threads in a Warp executes simultaneously

Common Syntax

For details about CUDA Programming, refer to CUDA 参考手册.

Thread Mapping

Threads / Blocks mapping can both be 1-D, 2-D, or 3-D.

1-D mapping of an array:

 while (myNode.next == NULL);

 }

 myNode.next.locked = false;

 myNode.next = NULL;

}

__global__ void kernelFunc(args);

cudaMalloc((void **) &d_x, size);

cudaMemcpy(d_x, x, size, cudaMemcpyHostToDevice);

cudaMemcpy(x, d_x, size, cudaMemcpyDeviceToHost);

kernelFunc<<<ceil(n/t), t>>>(args);

cudaFree(d_x);

/* Start kernel. */

kernelFunc<<<ceil(n/t), t>>>(args);

/* Fetch index. */

idx = blockIdx.x * blockDim.x + threadIdx.x;

file:///D:/Dropbox/ShanghaiTech/%E4%BF%A1%E6%81%AF-CSMajor/%E5%B9%B6%E8%A1%8C%E8%AE%A1%E7%AE%97-CS121/%E7%AC%94%E8%AE%B0/parallel-computing.html

2-D mapping of a matrix:

Matrix can be stored in two different orders:

1. Row-major: = A[row * n + col]
2. Column-major: = A[row + col * n]

Choosing Block Size

Three considerations when choosing the right block size:

Hardware restrictions:

Max # of Threads assigned to an SM
Max # of Blocks assigned to an SM
Max # of Threads per block

Available registers per SM Occupancy = # of Threads per SM / Max # of Threads per SM

Thread work imbalance Avoid huge Blocks

Normally we choose 16 16-sized Blocks.

GPU Memory & Warps

Memory Organization

Nvidia GPU memory architecture:

To address Latency issues, use Massive Multi-Threading (MMT) strategy that when one thread is doing global memory
access or I/O, switch to another thread.

 Long Latency per thread, but high overall Throughput
This is the reason why we usually assign ~1,000 threads per SM

To address Bandwidth issues, Compute to Global Memory Access Ratio (CGMA) = # of floating point operations : # of
memory operations needed.

CGMA = 3 200 GB/s Bandwidth brings 200 / 4 3 = 150 GFLOPS << Theoretical peak

Therefore need to exploit Data Reuse, e.g.

Tiled () matrix multiplication, brings times performance improvement
Using registers / shared memory to cache temporal results, and write to global on at the end

Thread Warps

The unit of "SIMDness" is a Thread Warp of 32 Threads:

Ideally, 32 Threads in a Warp do the same thing in a cycle
If there are branches, Threads who branch execute in the cycle, while others idle

Warps are efficient if the following conditions are met:

In code logic, fewer Control Flow Divergence

/* Start kernel. */

dim3 dimGrid(WIDTH / TILE_WIDTH, WIDTH / TILE_WIDTH, 1);

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH, 1);

kernelFunc<<<dimGrid, dimBlock>>>(args);

/* Fetch index. */

row = blockIdx.y * blockDim.y + threadIdx.y;

col = blockIdx.x * blockDim.x + threadIdx.x;

e.g.

In global memory access, exploit Memory Coalescing: Threads in a Warp access nearby locations

e.g.

In CPU, such pattern will cause False Sharing because of the existence of cache, but
In GPU, it reduces memory transfer size so that improves performance

In shared memory access, avoid Bank Conflicts: Threads in a Warp access different banks

e.g.

Because simultaneous accesses to one bank will be delayed to multiple cycles

CUDA Intrinsics

CUDA provides several intrinsic instructions for programmers:

Atomics: atomicInc , atomicAdd , atomicMax , atomicExch ...

To improve performance with atomics:

1. Split the problem into local ones
2. Gather local results into a global result

Warp-aggregations: __ballot(v) , __ffs(mask) , __popc(mask) , __shfl(res, leader) , __shfl_up(res, delta) ,
__shfl_xor(res, mask) , ...

Since Warps are SIMD, intrinsics do not need __syncthreads()

Scenary: Prefix Sum

Prefix Sum (Scan) is the procedure from . It is very useful in many
applications, because can be replaced by any associative operation.

In practical conditions using degree of multiprocessing, an algorithm of phases which does total work will at
least take steps to finish. So by "Efficient" we mean Work-efficient.

Sequential Prefix Sum algorithm obviously takes time.

Naive Algorithm

 Procedure: (only needs 2 buffers)

 Phases ; Work .

Efficient Algorithm

 Procedure:

 Phases ; Work .

Exclusive Scans

"Do a Prefix Sum without adding the value of oneself"

 Procedure:

1. Up-sweep is the same as Inclusive Scans

2. At Down-sweep:

1. First set the final sum to 0
2. Then perform a half-butterfly downwards

Arbitrary Input Size

"Do a Prefix Sum with arbitrary input size"

 Procedure:

Segmented Scan

"Do a Segmented Prefix Sum"

Define the new operation: when in one segment, or when in two separate segments.

Scenery: BFS

Breadth-First Search (BFS) is also widely used in various problems.

A graph residing in Graphic Memory may contain ~100,000,000 Edges
Average degree is low Sparse graphs
Diameter = farthest distance between node pairs

Cutting-edge parallel BFS combines the following three techniques:

1. Load-balanced Gathering:

For small # of neighbors, use Prefix Sum gathering
For moderate # of neighbors, use a Warp
For large # of neighbors, use an entire Block

2. Avoid adding previously visited nodes

3. Duplicate culling using hash table

Won't remove all duplicates, but effective

Parallel Algorithm Design

Foster's Methodology

Key idea: Delaying machine-dependent considerations until later steps.

1. Partitioning: Partition the application into a number of tasks that can execute in parallel

Types:

Data partitioning (Domain decomposition): Data divided into parts
Algorithmic partitioning (Functional decomposition): Algorithm divided into pipelined tasks

Attentions:

Number of tasks at least 10x of processors
Tasks roughly the same size
Number of tasks increasing with problem size

2. Communication: Determine what data is passed between what tasks

Attentions:

Should be balanced among tasks, no bottlenecks
Each task tries to overlap computations and communication

3. Agglomeration: Grouping tasks into larger supertasks, eliminate communication between primitive tasks that
agglomerated into one supertask

Attentions:

Increase locality
Supertasks should have similar computational and communication costs

4. Mapping: Assigning supertasks to actual processors

Goals:

Balance the load, maximize processor utilization
Minimize interprocessor communication

Types:

Static allocation: Pre-define the task allocation
Dynamic allocation: e.g. Work Stealing; Allocator should not become a bottleneck

Scenery: Floyd-Warshall APSP

Floyd-Warshall all-pairs shortest path algorithm can be coded as:

In each outer iteration , does not change; Same for Partition into
independent tasks, each holding 1 value of the matrix.

For a given , depends on and , therefore each broadcasts its value to its row , and each
broadcasts its value to its column .

Agglomerate into row-strip / column-strip supertasks. For example in row-strip, no need to broadcast to its row, but
still needs to broadcast every to its column Owner of row should use MPI_Broadcast to broadcast row to
other supertasks.

for (k = 0; k < n; k++)

 for (i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 a[i, j] = min(a[i, j], a[i, k] + a[k, j]);

Mapping will just be one supertask per computing node.

Speedup is .

Loop Parallelism

Data Dependence Analysis

Let and be two statements in a sequential execution, they can have three types of dependencies:

, True Dependence (RAW), writes to a location that will be read by

, Anti Dependence (WAR), reads to a location that will be written by

, Output Dependence (WAW), writes to the same location written by

All dependent statements must run in the same order as sequential, and must be on the same processor.

Loop Dependence Analysis

Denote as statement in iteration . Two types of loop dependence:

1. Loop-carried Dependence: Dependence exists across different iterations, e.g.

2. Loop-independent Dependence: Dependence exists within the same iteration, e.g.

Also two kinds of iteration graphs to help us extract loop parallelism:

Iteration-space Traversal Graph (ITG):

Loop-carried Dependence Graph (LDG):

There are several criterion that may guide us to parallelize nested loops. First, we can parallelize totally-independent
components in LDG, by letting them execute on different processors simultaneously. Second, for loop with strongly
dependent LDG, we can split the statements into 2 parts: dependent parts + independent parts (i.e. split the loop into two
loops). Then the independent parts can benefit from parallelism. This is called "Loop Fission".

Example:

Distance & Direction Vectors

For every loop dependence edge from iteration , we can use the following vectors to describe it:

// Before Loop Fission

for (i = 0; i < n; ++i)

 a[i] = a[i-1] + b[i] * c[i] + d[i];

// After Loop Fission & Parallelization

#pragma omp parallel for schedule(static)

for (i = 0; i < n; ++i)

 temp[i] = b[i] * c[i] + d[i];

for (i = 0; i < n; ++i)

 a[i] = a[i-1] + temp[i];

// Better solution using OpenMP to avoid temporary storage

#pragma omp parallel for ordered private(t) schedule(static)

for (i = 0l i < n; ++i) {

 t = b[i] * c[i] + d[i];

 #pragma omp ordered

 a[i] = a[i-1] + t;

}

Distance Vector = , e.g.

Direction Vector = , e.g.

Only are valid direction vectors
 are invalid, because otherwise we depend on a value yet to be computed

Based on direction vectors, we can transform or create new loop indices to make parallelization possible in nested loops.
This is called "Loop Skewing".

Example: Original nested loop LDG

We use a Unimodular linear transformation to right-multiply the loop iterations. This gives new indices

. Two theorems that ensures correctness:

If for every original distance vector , is still valid, then the transformation is correct
If for every result direction vector , the -th coordinate is all , then all inner loops deeper than level are
independent (can run in parallel)

The nested loop LDG new becomes:

New loop bounds can be calculated: and .

Algorithmic Analysis

If there is no way to restructure a loop to increase its parallelism, we should consider restructure the algorithm to
eliminate dependences.

Need to understand the purpose of algorithm well
For non-deterministic / approximate algorithms, ignoring some dependences may still give valid results

Load Balancing & Scheduling

Load Balancing Tradeoffs

Goal of Load Balancing is to schedule processors to do similar amounts of work Finish a set of tasks as quickly as
possible. We must consider the following important tradeoffs:

To finish tasks faster, load balancing itself cannot introduce too much overhead

Static v.s. Semi-static v.s. Dynamic

To statically balance the load we need Load Estimation by:

1. Infer from the code / data (best case)
2. Profile the task, and assume its future behavior matches the past
3. Build a mathematical model

To dynamically balance the load: when load changes, we need Rebalance

Load balancing in different granularities

Centralized v.s. Distributed v.s. Hierarchical

Static Load Balancing

Denote time for the last task to finish as makespan. Consider the simplest case: tasks sizes are known, no precedence
constraints between tasks, and ignore communication costs. Even under this situation, static load balancing is NP-
Complete (can reduce to SUBSET-SUM problem).

List Scheduling

List Schedulig (Graham, LS) is the simlest greedy scheduling algorithm. List tasks in any order, then whenever a processor
is idle, give it the next task in list to execute.

Worst-case: , so we call it a "2-approximation".

Longest Processing Time Scheduling

Longest Processing Time Scheduling (LPT) is similar to LS scheduling, except that it first sorts the task list in non-
increasing order.

Worst-case: , so we call it a "4/3-approximation".

Proof of bound omitted here. Refer to Slide 17, Page 13-14.

Geometric Load Balancing

In parallel applications working on data over geometric coordinates, nearby tasks communicate with each other, so we
wanna load balance & put nearby tasks together on the same processor.

Recursive Bisection

 Procedure:

1. First partite tasks evenly along -axis
2. Then partite each group evenly along -axis
3. Repeat until desired number of groups

Space Filling Curve

 Procedure:

1. Draw a Space Filling Curve (SFC) across the data space, which maps all tasks onto a 1D line
2. Partite nodes along the line evenly

Inertial Partitioning

 Procedure:

1. Find a rotation axis , so that when all nodes rotate around , the overall moment of intertia is minimal
2. Project all tasks onto

3. Find the median of all projection points on , draw a perpendicular line, partite tasks according to that line
4. Repeat for every partition until desired number of groups

Graph-based Partitioning

Given a explicit graph describing the task relationships (might be unweighted / weighted), we wanna partite the graph into
two halves, such that each part has approximiately same number of tasks, and also minimizing the cut edge weights.
Optimal cut is NP-Complete, so we use proper heuristics.

This is mostly a graph algorithmic problem, so we just do a quick summary here:

Local search algorithms, e.g. Kernighan-Lin partitioning
Spectral partitioning: get Laplacian Matrix of the graph , then partition according to the second smallest
eigenvector
Multilevel partitioning: make a coarse-grained graph, and do load balancing on the coarse graph to improve
partitioning speed

Dynamic Load Balancing

Dynamic load balancing mostly takes the form of Work Stealing. Each processor maintains a Double-ended Queue (Deque)
of tasks. An idle processor fetches the task on top to execute. Any new task is inserted into the bottom of the deque.
When its deque is empty, it steals one from the bottom of another processor's deque.

Incurs a lot of overhead when one processor is frequently producing new tasks, and other processors have nothing to do
except for stealing.

Parallel Matrix Algorithms

Sparse Matrices

Sparse Matrix is where most of the elements are zero. They have many kinds of optimized storage formats.

Sparse Matrix Storage Formats

Sparse matrices can be stored in compact with various formats:

1. DIA format:

Effective when non-zeros lie on a few diagonals

2. ELL format:

Also called ELL Row Packing
Effective when roughly the same number of elements per row

3. COO format:

Most general purpose, no restriction on matrix shape
Memory inefficient, because stores the same row index repeatedly

4. CSR format:

Compacts the same repeated row index
Flexible and efficient, widely used

5. Hybrid format:

Combines ELL & COO

SpMV CUDA Kernels

Sparse Matrix-Vector Multipliation (SpMV) is the multiplication of a sparse matrix and a colomn vector. We will need
efficient representations for sparse matrices, then design corresponding algorithms.

1. ELL kernel

With above example:

2. CSR scalar kernel:

With above example:

3. CSR vector kernel:

With above example:

4. COO kernel:

With above example:

Dense Matrices

Dense Matrix are used in many scientific computing applications, and they have great potential to be parallelized.

####DeMV Algorithms

Dense Matrix-Vector Multiplication (DeMV) has its own regular patterns.

1. 1D processor partition:

 Procedure:

 Total work = ; Isoefficiency achieved when

2. 2D processor partition:

 Procedure:

 Total work = ; Isoefficiency

achieved when , more scalable than 1D

Parallel Matrix-Matrix Multiplication

There are also a lot of ways to optimize multiplication of dense matrices:

1. Block-by-Block partition:

 Procedure:

Every processor stores the corresponding block from and initially
Every processor broadcasts its block to Row- , and broadcasts its block to Col- (In total all-
to-all broadcasts)
Then all processors have what they need, they compute result block

 Total work = ; Isoefficiency

achieved when

 Total memory usage is high:

2. Cannon's MM algorithm:

 Procedure:

Every processor stores the corresponding block from and initially

Step 0:

Rotate blocks in the -th row of left by ; Rotate blocks in the -th column of up by , as shown in
"step 0" above
Then each processor multiplies the block it gets with the block it gets. This will produce one
component of the corresponding block

For all the rest steps:

Shift matrix left by 1; Shift matrix up by 1, as shown in "step 1" above
Do the multiplication to produce another component of block

Add the components together to get the true result

 Total work = ; Isoefficiency achieved when

 Total memory usage at any time =

Drawback: Can only deal with square matrices, and must be dividable by .

3. SUMMA algorithm:

 Procedure:

Uses the outer product way of MM multiplication (-order iteration)

In the -th iteration:

Every processor holding the -th column of broadcasts its segment of that column to its row; Every
processor holding the -th row of broadcasts its segment of that row to its column
Then each processor calculates the outer prodect of the two segments it received, and accumulates it
into

 Total work larger than Cannon's, because of broadcasting

4. 3D processor array multiplication:

Can take use of processors for multiplication, and can theoretically achieve time

####Parallel Gaussian Elimination

Gaussian Elimination is used for solving linear systems or get the decomposition of a matrix. Serially takes
time.

1. Naive parallelization (processors):

 Procedure: In the -th iteration, processor divides the -th row by , then broadcasts this row to
processors below it to do the elimination in parallel

 Total work = , NOT cost optimal
2. Pipelined parallelization (processors):

 Procedure:

When a row has done elimination, it sends the values down to the next row
Once a row receives values from a previous row, it first passes them down to the next row, before doing
eliminations on itself using these values

 Total work = , is cost optimal

3. Load balancing for processors:

Simply assigning consecutive rows to a processor will cause unbalanced workload, becaues upper processors
finish earlier than later processors in the pipeline
Can assign rows in a Round-Robin (cyclic) way

Iterative Matrix Algorithms

For general large matrices, direct methods like Gaussian Elimination are too slow. To get an approximate solution, we
apply iterative algorithms that eventually converge to the true solution.

To solve the system , write , where is easy to compute. Then the solution follows
, where and . Starting from an arbitrary initial guess , we repeatedly compute

 until it is close enough to . Convergence criteria: , i.e. .

Jacobi Method

Write , where:

, the main diagonal of ; Invert is simply inverting each element

, where:

 is the negative of the lower triangular part of without
 is the negative of the upper triangular part of without

Thus we have:

 for , and

We can see that . Every element of only depends on , thus can be calculated

in parallel. Suppose matrix and vector are distributed across processors in row-wise order, after each iteration , all
processors use MPI_Allgather to get all values of the old .

Gauss-Seidel Method

Write , where:

; Invert can be done by forward substitution

Similarly we have . Here depends not only on but also on all

 for .

Gauss-Seidel converges faster than Jacobi, but has less parallelism.

To obtain even faster convergence, Successive Over-Relaxation (SOR) method introduces parameter:

. Convergence speed depends on how we choose .

To parallel Gauss-Seidel, for every element , split its computation onto processors, and then call an
MPI_Allreduce to sum up.

2-D Poisson's Equation

Poisson's Equation describes a partial different equation which describes a potential field. We wish to find a function

 such that . By discretizing the 2D space into points, we have:

. This leads to linear equations, each for one interior point

.

Write vector as , and vector as , for . The equation can be transformed into:

. Construct matrix as follows:

 (), where:

The main diagonal is all
Other four diagonals are all

The problem is now to solve . We can then use iterative Gauss-Seidel method to get a numerical solution. Here

 only depends on and , so if we put all elements of onto a grid, each point only depends on
the left point and top point. Thus we can extract more parallelism from Gauss-Seidel, by iterating through all anti-
diagonals of the grid from up-left to bottom-right, and within each diagonal, compute all elements in parallel.

To extract even more parallelism, we can reorder the mapping from using Red-Black Ordering. Then we can
calculate all red points in parallel, then calculate all black points in parallel.

Parallel Sorting Algorithms

Parallel Radix Sort

In Radix Sort (only effective for numerical values), we apply Stable sorting from least-significant digits to most-significant
digits. Suppose we write all numbers in binary form, then in each phase we are just sorting s and s.

 Procedure: In each phase, do：

 Total time = , where is number of bits per value.

Radix sort is one of the most efficient and widely-used sorting algorithm in practical use.

Parallel Merge Sort

Merge Sort takes stages. We can do each merge stage in parallel. For simplicity, suppose all values are unique.
Denote: number of values in that , it is obvious that when merging with ,

. For exmaple for , RHS can be easily computed by:

 is just the index of in
 can be computed by a Binary Search in time

Thus, using processors, every merge state can be done in time.

 Total time = ; Total work = , NOT work-efficient.

Bitonic Sort

A Bitonic Sequence is a sequence which:

Definition:

First increases , then decreases ;
Or any Rotation of such sequence

Property:

Split a Bitonic Sequence into 2 halves, overlap these 2 halves
 gets all the smaller values; gets all the bigger values

Then both and are Bitonic Sequences, and everything in everything in

Taking advantage of such property, a Bitonic Merge operation sorts a Bitonic Sequence of length by recursively
applying phases. Denote Increasing Bitonic Merge as , and Decreasing Bitonic Merge as . A Bitonic Merge can be
implemented as a network of comparators:

For example , where

All comparators in a phase can work simultaneously, so takes time.

Any sequence of length 1 is naturally Bitonic. Thus, for arbitrary input sequence, a Bitonic Sort (双调排序) conducts
Bitonic Merges starting from scale 2 (with interleaved directions):

 Procedure:

 Total time = phases of merges time per merge phase ; Total work = , NOT
work-efficient.

Sample Sort

Sample Sort is a randomized sorting algorithm. The main idea is to distribute values onto processors, such that
everything on processor is smaller than processor . Then every processor just do a local sorting and a global order
is inherently achieved.

1. Naive implementation:

 Procedure:

1. Pick pivots randomly, arrange them as
2. Loop through all values, distribute value to processor iff
3. Then every processor just do a local sorting
 Total time = , where is the maximum bucket size, depends on the balance of pivots; On average

, so total time is not very optimal

2. Sampling implementation:

 Procedure:

1. Every processor starts with values

2. Each processor picks values randomly, send them to processor 0; In total values are picked, arrange
them in increasing order

3. Processor 0 picks every -th value from above as a pivot; This produces pivots
4. Processor 0 broadcasts the pivot set to all other processors
5. Each processor loops through its local values, send them to the corresponding processor
6. Then every processor just do a local sorting

Sampling by a proper scale can significantly improve workload balance; Proof omitted

Parallel Fast Fourier Transform

Fast Fourier Transform (FFT)

The -th Root of Unity is a complex number . It has the following properties:

Given a polynomial , a Discrete Fourier Transform (DFT) computes
. Normally, each value can be computed in time, thus we need time to do a

Discrete Fourier Transform. A Fast Fourier Transform (FFT) does this in time by divide-and-conquer.

Denote:

Then . According to the property of roots of unity, we can get all values of by: for

This means once we get the values of and the values of , for , we can obtain all

values of in linear time. Notice that the procedure of computing / are just FFTs of problem size! Here the

problem fits in the classic divide-and-conquer model. Recursion relation gives
.

Recursion tree looks like:

Two aspects of understanding the physical meaning of FFT:

1. DFT transforms a discrete finite signal in time domain [] into its corresponding frequency domain

components [], where each according to Fourier Transform.

FFT accelerates this computation to time.

2. When multiplying two -th order polynomials and to get the result polynomial :

If they are represented as coefficients [] and [], then each result coefficient
. The overall computation requires time.

An -th order polynomial can also be represented as point-value-pairs [
] and []. Under this

representation, the values can be computed in time. Thus, if we can efficiently convert
coefficient-representation to point-value-pairs-representation (and vice versa), then the polynomial
multiplication will be much faster. FFT & Invert-FFT does such conversion in time, where is
chosen as . This enables polynomial multiplicaiton in time.

FFT Circuits

FFT can be parallelized in a circuit manner, similar to bitonic sorting.

1. Naive implementation:

 Procedure:

, where

 In total stages, BUT requries processors

2. Binary Exchange FFT (Bufferfly-FFT):

 Procedure:

 In total stages; We can have arbitrary number of processors, and communication only happens in first
 stages (afterwards all value exchanges happen inside the processor locally)

2-D Transpose FFT

Binary exchange FFT has poor work efficiency when is large. A 2-D transpose FFT always maintains isoefficiency for

, regardless of machine parameters. Suppose is a power of 2, arrange all inputs on a grid, and
distribute a column of values to a processor in a Round-Robin order:

Initial value distribution: , we see that all values that a processor needs in the first phases are

already in its hand. After the first half of computation, transpose the distribution (can be done in time on

hypercube), and the rest phases still require no communication.

Parallel Searching Algorithms

Discrete Optimization Problems (DOP)

A Discrete Optimization Problem (DOP) consists of a set of solutions and a cost function . The Minimization problem
tries to find s.t. is the smallest.

Searching a DOP can be modeled by a search tree / graph. If it is not a tree, we need:

Duplicate detection, e.g. using a hash table to store explored nodes
Cost update, e.g. update the cost of a node when reaching it the second time and found that current cost is smaller
than original

Branch & Bound method (剪枝搜索) can be used in search graph traversal. for every node on the frontier, we maintain a
pair , where the minimum possible value of any descendant of , and the maximum
possible value of any descendant of .

For example in knapsack problems, let be value of current knapsack at , and be if all remaining items are put
into the knapsack
If at some timepoint, , then all descendants of do not need to be explored any more

Parallel Graph Traversal

Static assignments on graph traversals can cause significant load imbalance, because different branches may have
different depth / number of descendants. We can overcome this by Work Stealing. Several things need to be controlled:

Choose who to steal from:

Local (asynchronous) Round-Robin
Global Round-Robin
Randonmized work stealing

Control how much work to steal:

Set a cutoff depth, and don't steal from a processor who has pasted the cutoff depth

For DFBB, A*, IDA*, …, they all have the potential of parallelization, but contains a lot of detailed techniques and tradeoffs
to make them efficient. (Overall, searching algorithm is one of the hardest to parallelize effectively.)

Parallel graph traversals can introduce superlinear speedup. This phenomenon is called Speedup Anomaly. Reason
is that when there are multiple processors, we might explore the graph in a different order of sequential algorithm.
Then, if the solution is at a relatively shallow branch, when exploring multiple branches simultaneously we might
meet the solution much earlier than the sequential algorithm. Since the search stops whenever a solution is found,
this results in total work .

PRAM Model

Concepts

Parallel Random Access Machine (PRAM) model is an old theoretical model that generalizes a parallel machine. The
machine has:

Multiple computing processors (CPUs)

An infinitely large shared memory

All processors execute in synchronized steps, in each step, it

Reads a memory location
Compute on the data
Then writes a memory location

Considering memory conflicts, there are different kinds of PRAM machines:

Exclusive Read Exclusive Write (EREW)
Concurrent Read Exclusive Write (CREW)
Exclusive Read Concorrent Write (ERCW)
Concurrent Read Concurrent Write (CRCW), writes to the same location will be reduces by certain rule, e.g. max

Number of steps till a PRAM algorithm terminates is called Depth. PRAM algorithms often takes polylogarithmic depth (
) using processors. Minimizing work of PRAM algorithms (making it work-efficient) are more important

than minimizing depth.

Algorithms

The following classic PRAM algorithms are discussed in the slides:

1. Basic algorithms:

1. Parallel carry lookahead addition
2. Superfast max finding
3. Parallel list ranking
4. Prefix sum on linked list

2. Graph algorithms:

1. Coloring a cycle
2. Independent set on a line
3. Connected components finding

3. Tree algorithms:

1. Euler tour of a tree
2. Rooting a tree
3. Node depths
4. Post-order numbering
5. Number of descendants
6. Evaluating binary expression tree
7. Lowest common ancestors
8. Range minima

MapReduce Model

Concepts

MapReduce is a programming model for batch processing on distributed cluster of commodity servers. Designed to be
run dynamically allocated cloud servers. Widely-used in academia and industry due to low cost and ease of use. Problems
that perform simple operations sequentially on a large amount of data can fit in MapReduce model.

MapReduce runs on Key-Value Pairs. For every Map+Reduce stage:

Map: , mappers map a pair to 1 / more new pairs, then send them to reducers
Reduce: , collects all values whose key is , and reduce them into results

One MapReduce job can contain multiple stages. All input / intermediate result / output are all stored as files in a
distribuetd persistent storage.

Spark: An in-memory & fault-tolerant optimized solution for iterative algorithms, based on RDD. It overcomes the
drawback that for iterative algorithms, MapReduce stores & loads intermidiate results to / from persistent storage.

Algorithms

The following classic MapReduce algorithms are discussed in the slides:

1. Filtering
2. Select top
3. Distinct values
4. Inner joins
5. Word co-occurrence
6. Breadth first search
7. Single source shortest paths
8. PageRank

