
 Introduction to Optimization

Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS524

Teacher: Prof. Michael Ferris

Figures included in this note are from Prof. Ferris's slides unless otherwise stated.

 Introduction to Optimization

Definition of Optimization

Optimization Models

The Optimization Hierarchy

Solution Analysis

Linear Programming (LP)

Definition of LP

Solving LP Visually

The Simplex Method

What Could Go Wrong

Ordering & Conditions

Convexity & Backlogging

Minimax For Uncertainty

Blending Constraints

Min-Cost Network Flow (MCNF)

LP Duality

Shortest Path Problem (SPP)

Max-Flow & Min-Cut

Critical Path Analysis

Mixed Integer Programming (MIP)

Relaxation to LP

Branch & Bound

Fixed Costs & Indicators

Generalized Assignment Problem (GAP)

Logic Models

Quadratic Assignment Problem (QAP)

Set Covering

Column Generation

Special Ordered Set (SOS)

Ordering & Scheduling

Non-Linear Optimization

Piecewise Linear Function (PLF)

Quadratic Programming (QP)

Least Squares Problem

Minimum-Norm Least Squares

Tradeoffs

Regression Machine Learning

Occam's Razor & Lasso

Support Vector Machine (SVM)

Portfolio Optimization

Second-Order Cone Programming (SOCP)

Robust Programming

Stochastic Programming

Definition of Optimization

Optimization Models

An optimization model is an abstract mathematical model that has the following three components:

1. Decision variables: variables representing the unknown quantities

Can define definitive variables as expressions of decision variables

2. Constraints: requirements that any feasible solution must satisfy

http://pages.cs.wisc.edu/~ferris/

3. Objective: a quantity to be maximized/minimized, expressed as a function of decision variables

If to be minimized, can also call it cost function

Any concrete decision problem (story) can be abstracted into an optimization model, which we then be able solve with the

help of software. The main purpose of this course is to learn to build correct, concise, & efficient optimization models

given optimization problems.

Be aware that not all decision problems are best answered by optimization models.

The Optimization Hierarchy

The software stack of mathematical modeling forms the following hierarchy:

Models can be categorized on the types of variables, types of constraints, or type of objective

Linear programming (LP) vs. Non-linear

Mixed-integer programming (MIP, discrete) vs. Continuous

Convex vs. Non-convex

Deterministic vs. Stochastic

Algorithms are numerical (usually iterative) procedures that can solve certain instances of optimization models

More specialized algorithms are usually faster

Solvers are collections of implementations of algorithms

Modeling languages provide an interface to many different solvers using common language

Take the GAMS software stack as an example, the procedure looks like:

Solution Analysis

Optimization is extreme, so if there is a mistake in your model, applying the software will usually find it.

Verification: is the model itself correct?

Validation: does the model give an accurate picture of reality?

Sensitivity analysis: how much are extra resources worth to me? (marginal information)

What-if analysis: change the instance and re-run

Linear Programming (LP)

https://gams.com/

Definition of LP

A linear function is a weight sum:

Linear inequalities are inequalities in the form of or . They define half-spaces of .

A linear program is an optimization problem where the objective function is a linear function and all of the constraints

are linear inequalities.

Proportionality: given different levels (values of decision variables), inputs/outputs/costs must keep the same

proportions as levels change

Fixed-charges (make = $0, make = $C) cannot be modeled by pure linear programs

Additivity: outputs are additive (linear) function of input variables

Divisibility: decision variables can take any real value between upper and lower bounds

For discrete problems, one possible way could be rounding-off result to nearest integer, but it may produce a

solution that is far from optimal

See the topbrass model example.

Solving LP Visually

For 2-dimensional LP with only 2 decision variables, high school knowledge teaches us how to visualize an LP problem and

solve it intuitively:

However, for higher-dimensional problems, this method is neither easy nor efficient.

The Simplex Method

One famous method for solving LP is the simplex method. The observation is that for an LP instance that has an optimal

solution, there exists an optimal solution at an extreme point of the feasible region.

On an -dimensional LP:

1. Start from an extreme point

An inequality constraint is binding at if

An extreme point is the intersection of at least inequalities

The indices of the inequalities that are binding at an extreme point is called a basis

2. Find a direction along an edge, where the objective function is improving

If none exists, STOP: this point is an optimal solution

3. Move along that direction until hitting a new extreme point, repeat

The downsides of the simplex method are:

The number of extreme points can grow wildly. For an -d problem with constraints,

An LP problem could be unbounded: moving along an edge does not let you hit a new extreme point

Usually this means you forgot some constraints

But, an unbounded feasible region doesn't mean the LP is unbounded: the optimal extreme point may still exist

but other directions are unbounded

(subtle) There could be multiple optimal solutions along an edge

What Could Go Wrong

When solving real LP problem, the model does not always end in good status. Cases when things could go wrong:

Unbounded model: cannot find a finite optimal solution

Infeasibility: sometimes the constraints of a model could be too strict that there are no feasible solutions. In this

case, one thing we could do is to allow one of the constraints to slack a bit

We introduce a slack/surplus variable and try to minimize it

After getting the minimal amount of "slack", use that to relax the chosen constraint and re-solve the previous

model. See the mcgreasy model example

Degenerate LP: when more than inequalities intersect at a point. Solvers typically perturb the inequalities when

finding intersections

Ordering & Conditions

Sometimes we want to model a time-series problem: e.g., decision variable at the end of a month depends on what was

left at the end of last month. This is called multi-period planning.

GAMS provides three features around sets that are useful for such modelling:

Dynamic set (doc): set declared over some static set (universe known at compile time), whose membership could

change during execution time

Useful for controlling indices and conditions

Equations must be declared over static sets

But, can define equations over dynamic sets, so that the model focuses on a sub-scope

Set ordering (doc): a 1-dimensional set is ordered if the initialization of elements corresponds to the order of their

initial appearance in the GAMS file; an ordered set can be thought of as an array

ord(I) gives the order of current element in set I ; card(I) gives the size (cardinality) of I

On a set in equation definition, can use lag/lead operators + / - to refer to the predecessor/successor of the

current element. If non-exist, 0 will be used

$ conditioning (doc): write a $ followed by a logical condition after an expression to control when it appears; these

are expanded at compilation time. Examples:

A(I) = 1$(ord(I) <= 2) + X(I-2)$(ord(I) > 2);

inventory_eq.. I0$(ord(T) = 1) + I(T-1) + x(T) =e= d(T) + I(T)

A(D)$weekday(D) = B(D)

See the shoeco model example.

Convexity & Backlogging

The convexity property of objective function is essential. Convex (or concave) function means that a local optimum is

guaranteed to be the global optimum as well, which would greatly simplify the solving. A function is called

Convex if for any two points , the graph of lies below or on the straight line connect and

Concave if ... above or on ...

Nonconvex if neither

https://www.gams.com/35/docs/UG_DynamicSets.html
https://www.gams.com/35/docs/UG_OrderedSets.html
https://www.gams.com/35/docs/UG_CondExpr.html

Mathematical sets could also have convexity. A polyhedral set is the intersection of a finite number of halfspaces (not

anything curvy or discrete). Such set is convex if the straight line segment connecting any two points in the lies

entirely inside or on the boundary of .

Function is convex if the epigraph (overpart) of is a convex set

Any discrete set of multiple data points is nonconvex

LP could be easily solved if the feasible region is a convex set; we would like to preserve convexity as much as possible

One example of preserving convexity is when we allow backlogging (negative inventory/capitol) in the model. See the

shoeco2 model example.

Cost function becomes a piece-wise linear function with 2 pieces - still convex

A trick is to model it with two positive variables and take the difference: (leftover shortage)

Objective gets terms , pay storage cost per unit of leftover, pay cost per unit of shortage to

makeup in the future

Works only if we are minimizing the cost objective - at most one of and will be positive at any timepoint

(the other one being zero)

Add constraint on last period to say that all demand must be eventually met in our planning horizon

This trick applies to any definition variable whose value is a convex piecewise-linear function. Define separate positive

variables for each pieces, and add a constraint saying that the is a sum/subtraction of them.

Minimax For Uncertainty

In reality, we don't always know the exact values of parameters. Such uncertainty means that we have to consider

multiple scenarios where parameters could take different sets of values.

The minimax problem generates a model where we try to "minimize the maximum cost" we pay under any scenario.

The objective value is now not an exact expression. Instead, it satisfies a constraint that , where is

the collection of all possible scenarios, and we try to . See the shoeco3 model example.

Blending Constraints

Consider the case where a constraint says some variable must be of a specified ratio to some other variable. The ratio

constraint is typically not a linear constraint.

A trick to convert such problem into a linear problem is called blending. Suppose that the denominator is strictly positive,

we multiple both sides by the denominator. This transforms a ratio constraint to a linear constraint.

Min-Cost Network Flow (MCNF)

A network is a directed, possibly weighted graph. Vertices are called nodes and edges are called arcs.

A network can be represented as a node-arc incidence matrix , where if arc leaves node , and if

arc enters node ; If the network is capacitated, arcs have weights representing its capacity

Matrix is totally unimodular (TU) if every sub-determinant of has value or

Network incidence matrices are TU

Graph incidence matrices of bipartite graphs are TU

If we solve a linear program whose constraint matrix is TU and is integer valued, then the solution

will be integer valued, which means we do not need to impose integrality on variables: LP methods work

Take the assignment problem (assignpref) as an example, we could model that with binary variables and solve with

mip , but since the constraint is TU, doing lp is feasible as well. GAMS provides rmip (relaxed MIP) which automatically

detects these situations and falls back to LP when doable.

A min-cost network flow (MCNF) problem on a network says that:

Every node has a supply/demand : means supply, means demand

Every arc may have cost and capacities

All demand must be met exactly: ; Often add a dummy node to account for this

The goal is to find a minimum cost flow from supply to demand to fill the demands, without exceeding any arc

capacity

See the mincost* model example. The assignment problem is one example of MCNF, where we model every student and

project as a node, and link arcs from every student node to every project node. Students supply 1 and project demand 1.

Since there must be an integer solution, we need not restrict to be binary.

Many "cost minimization" problems could be transformed into an MCF problem if we draw out network graph. See the

sailco* model example.

LP Duality

For an LP problem in the form:

The dual form of this LP problem is:

Intuitively, in the dual problem, we are trying to find a linear combination of the constraints of the primal problem that

gives us the best guess of its lower bound.

See slide #12 for an example

Duality is converse: the dual problem of the dual problem is the primal problem

Sometimes people use the perpendicular () symbol to denote duality

To construct the dual problem of any LP problem:

One way is to convert the problem into standard form as described above

A faster way is to first just transpose the data, then look up this table and write out the constraint types:

Why we care about LP duality?

Marginal values of the dual constraints are optimal values of the primal variables; vice versa, marginal values of the

primal constraints are optimal values of the dual variables

Marginal values of primal constraints (i.e., dual variables) are sometimes called shadow prices: they tell us how much

would the objective value change if we change the right-hand side of some constraint by 1

Marginal values of primal variables are sometimes called reduced costs: they tell us how much would the objective

value change if we change the variable bounds by 1

Shortest Path Problem (SPP)

If optimization programming is the only tool we have, we can model a shortest path problem into a MCNF problem.

Set a supply of 1 at source node and a demand of 1 at sink node (destination node)

Set a supply of zero at all other nodes

If we look at the dual problem of an SPP MCNF problem, it has an interesting interpretation: each is the minimum path

length from node to sink. We are actually solving more than just the shortest path from source to sink, but the shortest

path from any node to sink, along the way.

Max-Flow & Min-Cut

In contrast to MCNF, we have max-flow problem, where every arc in the network has a capacity and we are trying to

determine what is the maximum amount we can push from source node to sink node.

See the picnic model for an example. Writing out the dual problem of a max flow problem is a good exercise (see slide

#14 for the conversion formally).

An equivalent way of describing a max flow problem is in terms of paths. We enumerate all unique paths from source to

sink and maximize the sum of flows through all paths, with the constraint that for any arc, the sum of flow of paths going

through that arc is limited by its capacity.

The dual problem of the path description turns out to be straight-forward.

This dual form is called the min-cut problem, which identifies the minimum critical arcs one need to take out to cut out

source from sink. In other words, max-flow problem min-cut problem.

Critical Path Analysis

 Imagine a project consisting of multiple activities with dependencies on each other (forming a DAG). Each activity takes

certain amount of duration. The goal is to find a plan that completes the final stage as soon as possible. This is often

called project evaluation & review technique (PERT) or critical path method (CPM).

To model this problem, we:

Use to denote the duration of activity

Create decision variables that represent the time we start doing activity

The constraints are that any activity can only start all of its predecessors have finished:

Model it as a minimax problem:

The dual problem of PERT helps us identify the critical path of the project flow: if we delay an activity on the critical path,

the overall completion time increases. See the widgetco model for an example. All the variables that have positive level

values are on the critical path (critical paths may not be unique - this only gives us one critical path).

After solving PERT, if we fix the total duration and try to minimize/maximize the sum of 's, we can get the earliest/latest

time when we can start activity . For activities on the critical path, their earliest time latest time (this finds all activities

on all critical paths).

Mixed Integer Programming (MIP)

Whenever a model involves discrete variables, it becomes an integer program (IP). Integer programs are much harder

than linear programs: you solve them optimally by either 1) enumerate all possible values of discrete variables if their

feasible sets are all finite, or 2) using techniques to relax them to LP and solve a bunch of LP problems.

Relaxation to LP

Relaxation is a technique in optimization where you relax the feasible region of some variables to be larger. For example,

for the problem , the problem is a relaxation.

It is trivial to see that the optimal solution of the relaxed problem the optimal solution of the original problem . (If

it is a minimization problem, everything is just flipped.) This opens up an opportunity: if we get lucky and the optimal

solution for the relaxed problem , then we successfully find the optimal solution to the original problem as

well.

For a MIP problem with constraints (the set of variables), there is a relaxation to LP by removing all

the integer constraints.

Branch & Bound

The branch & bound method is an approach to solving MIP problems based on relaxation:

1. Initialize the following things:

A list of open problems , put in the original IP problem

A list of candidate solutions , empty

A global lower bound ; A global upper bound

2. Check if , terminate - we found the solution

3. Pop a problem from the list

4. Solve the LP relaxation of it:

If is infeasible, then must also be infeasible, go back to 2.

Otherwise, let be the optimal solution of , and be its objective value. Put the solution in :

If satisfies the integer restrictions of , then is the optimal value of

Else, does not satisfy the integer restrictions of , we might need to branch:

If (fathom), all branches down this path won't be better than what we have seen

Otherwise, divide the problem. Choose some that does not satisfy the integer restriction. Add two

new open problems to :

 with added constraint

 with added constraint

Either way, check if any problem in was previously branched and both two branches have been checked

- if so, remove it from . Update , update of all current 's in . Go

back to 2.

This method is built around two essential ideas:

Branching: if we get unlucky on an LP relaxation, branch the problem into two by splitting the feasible region of some

variable that does not satisfy the integer restriction; retry on the two branched problems

Bounding: the algorithms maintains a lower bound and an upper bound , which gives us an idea of how close

we are to the optimal solution; we can terminate the algorithm early when the best solution we found so far is within

% of optimality (i.e., %)

This is what happens behind the scenes of IP program solvers. Notice how much harder is an IP problem compared to LP -

we solve relaxed LP problems many times in order to get the solution for an IP.

Fixed Costs & Indicators

A typical situation where we must deal with IP models is the fixed costs scenario. For each type of product , if we produce

none of it, we do not need to rent the machine for it, so the cost is . If we produce even a tiny amount of it, we

must pay a fixed cost of plus a linear cost of .

The "absolute value" trick / "piece-wise linear" trick we used in LP do not work here. To model fixed costs, the key idea is

to introduce indicator variables. Use binary variables to indicate whether or not.

The constraint is now in the form where 's are some positive scalars, and

This is mathematically equivalent to the logical implication of

Small 's are good, while big 's are bad (bigger 's make the LP relaxation of the problem looser) - we should set

 to be as close to the real upper bound of as possible (but cannot be smaller than , otherwise it changes the

problem)

Generalized Assignment Problem (GAP)

With fixed costs considered, we introduce the generalized assignment problem (GAP), where we have:

A set of machines , a set of jobs

Each machine has a capacity of units of work

Each job requires units of work to be completed if scheduled on machine

A job must be assigned to exactly one machine

There's a fixed cost if any job is assigned to machine , otherwise the machine won't be started/bought so there's

no cost

How fixed cost logic is encoded can greatly affect the efficiency of solving GAP with different solvers. There are several

ways to encode this:

: use

The most general and loose form

: use

Stricter than the above form

: use

The most strict form, so theoretically the best encoding

But introduces too many constraint equations, probably slow on actual solver software

The above GAP problem is still modeled by . What if we need ? This is not

always doable, but in some cases, a trick is to find some s.t. , then use instead.

See slide #18 and gapext model examples.

Logic Models

Indicator variable is a good tool for encoding logic implications into doable constraints.

We have seen that to enforce we use constraint

Conversely, to enforce we use constraint

Other logic constraints that could be modeled using indicator variables:

Variable lower bound: if you produce product , product at least units of it

Use and

Either-or constraints: either , or

Use and

 More generally, if we have a set of candidate constraints and we want to impose general logic relations on them, we

use a set of indicator variables , where constraint is turned on (must be satisfied). Note that when ,

the constraint may or may not be satisfied (we do not enforce that). Then, we can add MIP constraints on the indicator

variable values to represent the logic relations:

Also see slides #23 for formulations of , , , and , on continuous variables

's.

Quadratic Assignment Problem (QAP)

The quadratic assignment problem (QAP) says that we want to assign facilities to locations, s.t. the sum of flow costs

between pairs of facilities is minimized.

A modeling trick we could use is to linearize the product of the two binaries to reduce the "discreteness" of this problem:

Use , , and

Set Covering

The set covering problem states that given a set of objects and a collection of subsets each associated with a

cost of being selected, choose a set of subsets that cover all the member elements of the base set with minimum cost.

To formularize this, let decision variable if is chosen in the result cover.

See the simpsetcov model for the basic model, and kilroy and vr models for real applications. A similar category of

problems is the cutting sheet problem where 's are integers and each object need to be covered at least times. See the

cutsh and cutstock models.

Similarly, there are set packing problem (no overlapping) and set partitioning problem (exactly covered once).

Column Generation

The above formulation, though most complexity goes in data calculation, may get very inefficient/infeasible when our data

is big. A practical technique is called column generation, where we start from a first few columns and put in columns that

are deemed likely to help reduce the cost:

1. Start with columns

2. Solve relax MIP (rmip): minimize subject to

3. Obtain the dual variable to the constraint. If we add in a new column , cost will drop by

4. Suppose , solve strict MIP (mip): maximize subject to (e.g., the length of pipe, the area

of sheet, etc.)

5. If the above MIP is feasible, add new column to . Repeat from step 2.

An interesting application of column generation is to the traveling salesman problem. See slide #22 for details.

Special Ordered Set (SOS)

We may want to model the constraint that a variable can only take one (and must take one) value from a restricted set

. We introduce a special ordered set (SOS) of binary variables , indicating which value does

take:

GAMS has the sos1 variable type for doing this -- e.g., sos1 variable s(A, B, SS) declares an SOS set for each pair of

elements in (A, B) , within each SOS the variables indexed SS are mutually exclusive. See the warehouse model

example.

Merging MIP with constraint logic programming (CLP) is an active area of research. Techniques used in CLP are

essentially clever ways to do enumerations efficiently.

Ordering & Scheduling

Ordering, in the context of logical models, means the arrangement of events. Though ordering problems are hard to

solve with pure MIP, we consider a specific problem context of job scheduling here:

Completion time

Flow time

Lateness

Tardiness

Makespan is the maximum completion time overall:

The objective could be to find out an ordering of jobs that minimizes makespan, minimizes lateness, etc.

Suppose job cannot be done in parallel (single-core CPU), to formulate this scheduling problem in MIP, there are several

options:

1. Use binary variables of ranking: iff job has position

To let solvers run faster, declare as SOS so that the solvers inherently restrict that only one position can be 1.

2. Use binary variables of ordering: iff job finishes before job starts; this is an either-or constraint

3. Introduce "violation" variables as SOS: = SOS(I, J, 's1') and = SOS(I, J, 's2') , so that

either is true or is true

See the jobshop and flowshop model examples.

Non-Linear Optimization

The real world is not linear and not convex. It is important to look beyond linear optimization and integer enumeration

into non-linear programming. We will still focus on techniques to reduce them into MIP or LP.

Piecewise Linear Function (PLF)

To model an arbitrary continuous function, a common structured used is a piecewise linear function (PLF) to approximate

the original function.

Assume now we know the PLF to use, we model the PLF by introducing new binary variables to indicate which is the

current segment: if and if . At any point :

To incorporate constraints like the fixed cost, we want the ability to "turn off" the function when some . Instead of

adding a big-M constraint , we change the sum-of-b constraint into . This is a locally ideal formulation,

where every extreme point of LP relaxation satisfies the discrete requirements.

This formulation cannot model two scenarios:

Multi-valued PLF (which isn't a mathematical function)

Infinite domain (could go to infinity; gives the length of segment, negative means described as growing

negatively)

We model such "graph" by introducing: binary variables telling me which segment is chosen and variables telling

how far I go from the starting point of that segment. This gives one exact point on the graph.

To model segments of infinite length, add an SOS variable saying that for each segment, either or is positive.

Quadratic Programming (QP)

A quadratic function is a sum of terms of the form , i.e., each term is at most of degree 2. Any quadratic function

can be written in the form , where is a symmetirc matrix ().

A recap in linear algebra:

Symmetric can be written in the form , where each column of is an eigenvector of and is a

diagonal matrix where each value on the diagnosis is the eigenvalue for the corresponding eigenvector

Positive semidefinite matrix: if is a symmetric and all eigenvalues of are non-negative, then is positive

semidefinite, and the quadratic function defined by is always non-negative (proof given by writing in new

coordinates along eigenvectors)

Formally:

The second derivative of a function can be written as the Hessian matrix ; A quadratic function is convex iff its

second derivative matrix is positive semidefinite

A formal definition of quadratic programming (QP): , s.t. .

 can be taken as symmetric; Hessian of the function

If , it is a convex QP and solvable

If , it is very hard to solve in general

A major difference between LP and QP is that optimal solutions for LP appear on boundaries of the feasible region

(typically at corner points), but in QP, it may appear anywhere (depends on where is the "bottom of the quadratic bowl").

Least Squares Problem

A classic problem in statistics is regression: fitting a curve to a collection of data points. The objective is to minimize the

error given by square of Euclidean norm . This is called the least squares problem.

Also see slides #29 for a perspective from solving a linear equation system. Notice that the function does not have to be

restricted in any form (linear, quadratic, etc.). All we need to do is to identify the coefficients to decide, and do data

calculation to squash it (e.g., if we have a component , just compute all values at the data points and

decide on).

Different types of norm could be used here:

Minimize the largest residual (a.k.a. the -norm): , solve using minimax technique of lp

Minimize the sum of absolute values (a.k.a. the 1-norm): , solve using minimax technique of lp

Minimize the Euclidean norm (a.k.a. the 2-norm, described above): , solve using qcp

See the movingAV model for an application on the moving average prediction problem.

Minimum-Norm Least Squares

Linear equations could be underdetermined, meaning that is a wide matrix with fewer constraints than the number of

variables . There will be infinitely many solutions. A possible choice of "optimal" here is to pick the with smallest norm.

Such must be orthogonal to any , i.e., , where ; Replace for some , and

we get the equivalent problem: finding and s.t. and

If has linearly independent rows, , where is called the pseudoinverse of

More generally, we can have the optimization problem: , subject to

If , this is the ordinary least squares

If , this is the minimum-norm least squares described above

Tradeoffs

We often want to optimize several different objectives simultaneously, but these objectives could be conflicting. Suppose

we have and , and we would like both and small. A sensible approach is to solve

the problem: , where is the tradeoff parameter.

: we place more weight on

: we place more wieght on

By solving the tradeoff-ed problem with different values, we can get a pareto curve of the optimum boundary.

See slides #30 and the hovercraft model example for a tradeoff between trajectory precision and fuel use.

Regression Machine Learning

The basic form of machine learning (ML) is to learn a function based on training data pairs, then produce

predictions given new data . To evaluate an ML model, we need to evaluate over a separate set of testing data

(otherwise we are cheating). However, a good ML problem means that the testing data come from the same distribution

(the same data generation source) with the training data -- otherwise we cannot really generalize any mathematical

relations under the hood.

There are many different choices of loss functions, depending on the problem scenario. We try to minimize the loss

function.

Naïve loss functions could be very sensitive to outliers in data, which could be just data errors. We do not want to overfit to

those outliers. One possible technique is to use the Huber loss function, where it uses quadratic function when residue is

small, but uses linear function when residue is large.

This function cannot be modeled in GAMS. There is a way to re-formulate Huber estimation as a QP problem. Solving the

dual of that formulation and the marginal values are the optimal coefficients.

Occam's Razor & Lasso

A classic idea in ML is the Occam's razor: smaller models with fewer features tend to generalize better. Hence, instead of

doing regression on all of the features, we would like to do feature selection, i.e., set the number of features we want and

select the best set that gives the best prediction. However, doing so converts the problem to miqcp , which are much

harder to solve than qcp problems.

The compress sensing community typically approximates the 0-form (counting) of non-zero features by the 1-norm of

features:

There is a tradeoff -- by increasing , we require more "sparsity" in the result vector .

This 1-norm is equivalent to the least absolute shrinkage and selection operator (Lasso), which says . It can be

proven that choosing a value for in the 1-norm formulation is equivalent to choosing some value of in the Lasso

formulation.

The parameter here becomes a hyper-parameter of the model, and needs to be tuned through cross-validation.

Support Vector Machine (SVM)

SVMs have appeared so many times in my notes of other courses. I will omit the definitions here...

SVM trades off errors with the margin between support vectors. See slides #32 for the formulation and examples.

Portfolio Optimization

In portfolio optimization, we decide how to invest money, choosing between different assets. Each asset

can be modeled as a random variable with expected return and standard deviation . Our goal is to maximize the

total return .

The new thing here is that we cannot optimize random variables. We must calculate the expected value (mathematical

expectation) of the random variables and do optimization based on that. Expected return is linear:

The problem with the above formulation is that it results in going "all in" for the biggest mean, but ignores the standard

deviation, i.e., the risk. We also want to minimize the total risk:

is called the variance-covariance matrix.

If all assets are highly-correlated (i.e., is a matrix of almost all 1's), then total expected return is close to "all in" the

one with the highest mean

If all assets are not correlated (i.e., is an identity matrix), then total expected return might be smaller

We can tradeoff between total return and risk by solving the following QP optimization problem:

Or, an alternative formulation is to just minimize risk, but having the constraint that the total expected return is no less

than a threshold .

Second-Order Cone Programming (SOCP)

Recall that in LP, a linear constraint is a hyperplane and the feasible region is an intersection of halfspaces. In QP, a

quadratic constraint corresponds to an ellipsoid, where on each of the coordinates, the sphere is

stretched by , where is the eigenvalue for that coordinate.

If some , then and the ellipsoid is degenerate: on some coordinate, it stretches out to infinity;

Degenerate QP is harder for the solvers

Norm constraints are (possibly degenerate) ellipsoids:

A second-order cone is the set of points satisfying .

If , it is LP;

If and , it is an ellipsoid QP;

In general, its feasible region will be a slice of a convex cone. We cannot directly square both sides, otherwise we get a

nonconvex quadratic constraint like . The cone is convex if in addition, .

See slides #34 and the sylvester model.

Convex programming hierarchy:

Robust Programming

Suppose there is uncertainty in some of the vectors for an LP problem, say , where is the uncertainty.

We want the solution to be feasible given any possible (which is very conservative).

Box constraint form: feasibility must hold for all with

This implies the following LP problem:

Ball constraint form: feasibility must hold for all with

This implies the following SOCP problem:

Stochastic Programming

In general real-world cases, we do not know the exact demand. Ways to approach real-world problem:

Deterministic programming: do not include uncertainty, instead pay more attention on data collection and make

assumptions

Robust programming: include an uncertainty variable and constraint feasibility to hold under all possible uncertainty,

like demonstrated above

Stochastic programming: model variables and random variables and involve probability of different scenarios

The key idea is to separate first-stage variables (quantities that must be decided here and now, typically the decision

variables and values derived directly from decision variables) from second-stage variables (quantities with uncertainty, e.g.,

demands, that may be different across different scenarios). Then, write out the program just like a normal program for a

certain scenario, but in the final objective function, sum up the second-stage parts as expectation.

Details about stochastic programming omitted here, see slides >= #36.

