Mathematical Foundations for ML

Lecture 1. Probability Basics & Binary Indicator
- Basic Probability Calculus
- Expectation & Variance
- Sum of Random Variables

Lecture 2. Discrete Distributions & Classification
- Common Discrete Distributions
- Optimal Binary Classification
- Classification Error Estimation
- Nearest Neighbor Classification
- Histogram Classifier
- "Plug-in" Classifier
- Markov's Inequality
- Jensen's Inequality

Lecture 3. Multivariate Gaussian Models
- Multivariate Gaussian (or Normal, MVN)
- MVN Multi-class Classification

Lecture 4. Learning MVN Classifiers
- "Plug-in" MVN Classifier
- Analysis of Probability of Error
- Empirical Mean & Covariance

Lecture 5. Likelihood & Kullback-Leibler Divergence
- Binary MVN Classification

Lecture 6. Maximum Likelihood Estimation
- Maximum Likelihood Estimate (MLE)
- MLE and KL-Divergence

Lecture 7. Sufficient Statistics
- Definition of Sufficient Statistics
- Fisher-Neyman Factorization
- Rao-Blackwell Theorem

Lecture 8. Asymptotic Analysis of MLE
- Convergence of Log-Likelihood to KL
- Asymptotic Distribution of MLE
- Review of Central Limit Theorem

Lecture 9. Generalized Linear Models
- Linear Modeling Approach
- The Exponential Family Models
- Generalized Linear Model Examples

Lecture 10. Linear Models Optimization
- Common Loss Functions
- Optimization Approaches

Lecture 11. Gradient Descent
- Gradient Descent & Strong Convexity
- Stochastic Gradient Descent
- Subgradients for Non-differentiable f

Lecture 12. Analysis of Stochastic Gradient Descent
- General SGD Iteration Analysis

Lecture 13. Bayesian Inference
- Bayesian Inference Components
- Maximum a Posteriori Estimator (MAP)
- Bias-Variance Decomposition of MSE
- MVN in Bayesian Inference
- Bayesian Linear Modeling

Lecture 14. Proximal Gradient Algorithms
- Proximal Operator & Soft-Thresholding
- Special Case of Squared Error Loss
- General Proximal Gradient Algorithm

Lecture 15. Analysis of Soft-Thresholding
- Lasso Regression Soft-Thresholding Estimator

Lecture 16. Concentration Inequalities
- Central Limit Theorem
Lecture 1. Probability Basics & Binary Indicator

Basic Probability Calculus

Let \(X, Y \) be Random Variables (RVs).

- **joint probability**: \(p(x, y) \)
- **Marginal probability**: \(p(x) = \sum_y p(x, y) \) if discrete or \(\int_y p(x, y) \) if continuous
- **Conditional probability**: \(p(y|x) \)
 - \(p(x, y) = p(y|x)p(x) \)
 - If \(X, Y \) are independent, then \(p(x, y) = p(x)p(y) \)

Expectation & Variance

Assume discrete random variables.

- **Expectation of \(X \)**: \(\mathbb{E}[X] = \sum_x xp(x) \)
 - \(\mathbb{E}[f(X)] = \sum_x f(x)p(x) \)
 - \(\mathbb{E}[X + Y] = \mathbb{E}[X] + \mathbb{E}[Y] \)
 - \(\mathbb{E}[XY] = \sum_x \sum_y xp(x, y) \) is not a function of \(\mathbb{E}[X] \) and \(\mathbb{E}[Y] \) in general
 - If \(X, Y \) are independent, then \(\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y] \)
- **Conditional expectation**: \(\mathbb{E}[Y|X = x] = \sum_y y p(y|x) \)
 - If \(X, Y \) are independent, then \(\mathbb{E}[Y|X = x] = \mathbb{E}[Y] \)
- **Variance of \(X \)**: \(\text{Var}(X) = \mathbb{E}[(X - \mathbb{E}[X])^2] \)
Sum of Random Variables

Let X_i be random variables.

- $\mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i]$
- $\text{Var}(\sum_{i=1}^{n} X_i) = \mathbb{E}[(\sum_{i=1}^{n} (X_i - \mathbb{E}[X_i])^2] = \sum_{i=1}^{n} \text{Var}(X_i) + 2 \sum_{i<j} \text{Cov}(X_i, X_j)$
 - $\text{Cov}(X_i, X_j)$ is the covariance between X_i, X_j

If the X_i’s are independent, $\text{Var}(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} \text{Var}(X_i)$

Let \mathbb{I}_x be the binary indicator variable of event x.

- The empirical probability of event x happening is $\hat{p}_x = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_x$
- $\mathbb{E}[\hat{p}_x] = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\mathbb{I}_x] = \frac{1}{n} \sum_{i=1}^{n} p_x = p_x$
 - Meaning the empirical probability is an unbiased estimator of the true probability
- $\text{Var}(\hat{p}_x) = \mathbb{E}[(\hat{p}_x - p_x)^2] = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E}[\mathbb{I}_x - p_x]^2 = \frac{p_x(1-p_x)}{n}$
 - Meaning if sample size n is small, however, it may have a large variance

Lecture 2. Discrete Distributions & Classification

Common Discrete Distributions

Common discrete probability distributions:

- **Bernoulli**: binary variable X taking value 1 with probability p
 - $p(x) = p^x(1-p)^{1-x}$
 - $\mathbb{E}[X] = p$
 - $\text{Var}(X) = p(1-p)$

- **Binomial**: consider n independent and identically distributed (i.i.d.) Bernoulli variables X_i
 - $p(x_1, \ldots, x_n) = \prod_{i=1}^{n} p(X_i = x_i) = \prod_{i=1}^{n} p^x_i(1-p)^{1-x_i}$
 - The sum of i.i.d. Bernoullis $S_n = \sum_{i=1}^{n} X_i$ follows a Binomial distribution:
 - $p(S_n = k) = \binom{n}{k} p^k(1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^k(1-p)^{n-k}$
 - $\mathbb{E}[S_n] = np$
 - $\text{Var}(S_n) = np(1-p)$

- **Multinomial**: consider n i.i.d. random variables X_i that take values in $\{a_1, \ldots, a_m\}$
 - $p(x_1, \ldots, x_n) = \prod_{i=1}^{n} \prod_{j=1}^{m} \mathbb{I}_{x_i = a_j}$
 - Let K_j be the number of times value a_j appears, K_j follows a Multinomial distribution:
 - $p(k_1, \ldots, k_m) = \binom{n}{k_1, \ldots, k_m} \prod_{j=1}^{m} p_j^{k_j} = \frac{n!}{k_1! \cdots k_m!} \prod_{j=1}^{m} p_j^{k_j}$
 - $\mathbb{E}[K_j] = np_j$
 - $\text{Var}(K_j) = np_j(1-p_j)$

- **Poisson**: non-negative integer-valued variable X with distribution:
 - $p(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \lambda > 0$
 - $\mathbb{E}[X] = \lambda$
 - $\text{Var}(X) = \lambda$

Optimal Binary Classification

The goal of classification is to learn a mapping f from the feature space \mathcal{X} to the label space \mathcal{Y}.

- The mapping f is called a classifier
 - Assume $\mathcal{X} = \mathbb{R}^d$ and $\mathcal{Y} = \{0, 1\}$ in the following examples
- We measure the error of a classifier using a loss function L
 - e.g., the 0-1 loss $L(f(x), y) = \mathbb{I}_{f(x) \neq y}$
- The risk is defined to be the expectation of the loss: $R(f) = \mathbb{E}[L(f(X), Y)]$
 - In the 0-1 loss case, $R(f) = p(f(X) \neq Y)$
 - In the 0-1 loss case, the total number of mistakes m is a binomially distributed RV
Performance of a classifier can be evaluated in terms of how close its risk is to the Bayes risk.

- The Bayes risk $R^* = \inf_f R(f)$
- The Bayes classifier achieves the Bayes risk

$$f^*(x) = \begin{cases} 1, & \eta(x) \geq \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

where $\eta(x) = p(Y = 1 | X = x)$. We have $R(f^*) = R^*$.

- Probability of error of the optimal classifier

$$p(f^*(X) \neq Y) = \mathbb{E}[\mathbb{I}_{\{f^*(x) \neq Y\}}] = \mathbb{E}[\mathbb{E}[\mathbb{I}_{\{f^*(X) \neq Y\}} | X]] = \mathbb{E}[\min(\eta(X), 1 - \eta(X))]$$

Classification Error Estimation

A common approach to estimate the error rate of classifier f is to evaluate on a test set $\{X_i, Y_i\}_{i=1}^n$ drawn i.i.d. from \mathbb{P}_{XY}.

- The empirical error rate is $\hat{p}_f = \frac{1}{n} \sum_{i=1}^n \mathbb{I}_{\{f(X_i) \neq Y_i\}}$
 - \hat{p}_f has a Binomial distribution

- $\mathbb{E}[\hat{p}_f] = p_f$
- $\mathbb{E}[-\hat{p}_f] = \frac{n(1-p_f)}{n}$

Nearest Neighbor Classification

The nearest neighbor classifier labels a new point X by finding the closest point in the training set and assigning the corresponding label of it.

- The distance function can be any valid distance measure:
 - e.g., the Euclidean distance $\text{dist}(X, X_i) = ||X - X_i||_2$
 - $\lim_{n \to \infty} p(f^{NN}(X) \neq Y) = \mathbb{E}[2\eta(X)(1 - \eta(X))]$, denoted as R_{∞}^{NN}, is the asymptotic error
 - $R_{\infty}^{NN} \leq 2R^*$

Histogram Classifier

The histogram classifier is based on a partitioning of a hypercube space into M smaller cubes of "bins" of equal size. Let the bins be denoted $\{B_j\}_{j=1}^M$, the classifier is an assignment of 0 or 1 to each bin:

- A reasonable rule is to assign the majority vote of training examples that fall into each bin
 - i.e., if $\hat{p}_j = \frac{\sum_{i=1}^n \mathbb{I}_{\{B_j \cap X_i\}}}{\sum_{i=1}^n \mathbb{I}_{(X_i \in B_j)}} \geq \frac{1}{2}$, label 1, otherwise label 0
 - Equivalently, we can have an estimator $\tilde{\eta}_n(x) = \sum_{j=1}^M \hat{p}_j \mathbb{I}_{\{x \in B_j\}}$
 - and classify according to if $\tilde{\eta}_n(x) \geq \frac{1}{2}$ or not; label 1 if $\geq \frac{1}{2}$
 - The bias of histogram classifier tends to 0 as $M \to \infty$; the variance tends to 0 as $n \to 0$
 - We say histogram classifiers are universally consistent, i.e., their error rate converges to the Bayes error rate

"Plug-in" Classifier

Let $\hat{\eta}$ be any approximation to η, the "plug-in" classifier is:

$$f(x) = \begin{cases} 1, & \hat{\eta}(x) \geq \frac{1}{2} \\ 0, & \text{otherwise} \end{cases}$$

- $p(f(X) \neq Y) - p(f^*(X) \neq Y) \leq 2\mathbb{E}[||\eta(X) - \hat{\eta}(X)||]$

Markov’s Inequality

Let X be a nonnegative random variable, the Markov’s inequality states that $p(X \geq t) \leq \frac{\mathbb{E}[X]}{t}$.

Jensen’s Inequality

For any convex function φ, that is, $\varphi(\lambda x_1 + (1 - \lambda)x_2) \leq \lambda \varphi(x_1) + (1 - \lambda)\varphi(x_2)$ for any $\lambda \in [0, 1]$, we have Jensen’s inequality: $\mathbb{E}[\varphi(X)] \geq \varphi(\mathbb{E}[X])$.

- Obvious results: $\mathbb{E}[X^2] \geq (\mathbb{E}[X])^2$ and $\mathbb{E}[|X|^3] \geq (\mathbb{E}[|X|])^3$
Multivariate Gaussian (or Normal, MVN)

Let the feature space be \mathbb{R}^d, the MVN density function is given by:

$$p(x) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}$$

where μ is the mean and $\Sigma = \mathbb{E}[(x - \mu)(x - \mu)^T]$ is the covariance matrix. We write $x \sim \mathcal{N}(\mu, \Sigma)$.

- Σ is always positive-semi-definite in order to be a valid covariance matrix
- Linear transformations of Gaussian random variables are also Gaussian
 - $Ax + b \sim \mathcal{N}(A\mu + b, A\Sigma A^T)$

MVN Multi-class Classification

Consider features x of examples belonging to class j, i.e., the class conditional distributions of x, are all Gaussian:

$$x|y = j \sim \mathcal{N}(\mu_j, \Sigma_j)$$

- The optimal classification rule is $\hat{y}(x) = \arg \max \ p(y = j|x)$
- By Bayes rule, $p(y = j|x) = \frac{p(x|y = j)p(y = j)}{p(x)}$
 - $p(y = j)$ is the marginal probability that a random example belongs to class j, often called the prior probability of class j
 - $p(x)$ is the marginal density of x for classification of a given x, this value is a constant
 - Therefore, the rule can be expressed as $\hat{y}(x) = \arg \max \ p(y = j)p(x|y = j)$
 - $p(x|y = j)$ is called class conditional likelihood of x
- Consider the special case of binary classification:

$$\hat{y}(x) = \begin{cases} 1, & \frac{p(y=1|x)}{p(y=0|x)} > \frac{p(y=0|x)}{p(y=1|x)} \\ 0, & \text{otherwise} \end{cases}$$

This is called the log-likelihood ratio test (LRT).

- For Gaussian class-conditional densities, the ratio is a quadratic function in x, so the decision boundary is a quadratic curve/surface in the feature space
- For Gaussian class-conditional densities with equal covariances AND equal prior probabilities, the ratio simplifies to:

$$\hat{y}(x) = \begin{cases} 1, & 2(\mu_1 - \mu_0)^T \Sigma^{-1} x \geq \mu_1^T \Sigma^{-1} \mu_1 - \mu_0^T \Sigma^{-1} \mu_0 \\ 0, & \text{otherwise} \end{cases}$$

which is a linear classifier (Fisher’s linear discriminant).

- $\frac{p(y=0)}{p(y=1)} = \gamma > 0$ is the threshold of the test; LRT, with an appropriate threshold, is optimal

Lecture 4. Learning MVN Classifiers

"Plug-in" MVN Classifier

Consider a set of training data. Denote training data with label j as $\{x_i\}_{i:y_i = j}$

- $\mu_j = \frac{1}{n_j} \sum_{i:y_i = j} x_i$
- $\Sigma_j = \frac{1}{n_j} \sum_{i:y_i = j} (x_i - \mu_j)(x_i - \mu_j)^T$

If we “plug-in” these estimates to obtain an MVN model for class j, i.e., let $x|y = j \sim \mathcal{N}(\mu_j, \Sigma_j)$ for all classes, we obtain a "plug-in" MVN classifier.

Analysis of Probability of Error

Consider the simple setting $x|y = +1 \sim \mathcal{N}(\theta, I)$ and $x|y = -1 \sim \mathcal{N}(-\theta, I)$.

- The optimal classification rule after applying LRT is:
This achieves the minimum probability of error
\[p(f^*(x) \neq y) = p(x^T \theta > 0 | y = 1) + p(x^T \theta < 0 | y = 0) \]
(due to symmetry of the problem)

Note that \(x^T \theta y = -1 \sim \mathcal{N}(0, ||\theta||^2) \), so the probability of error is equal to the probability that an RV \(x \sim \mathcal{N}(0, ||\theta||^2) \) exceeds \(||\theta||^2 \)

Apply Markov's inequality,
\[p(\theta > ||\theta||^2) \leq p(\theta^2 > ||\theta||^4) \leq \frac{E[\theta^2]}{||\theta||^4} = \frac{1}{||\theta||^2} \]

Insight: the probability of error decreases as the distance between the means increases

Now consider a learning setup: we don't know the value of \(\theta \) but we have an estimator from training samples \(\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} y_i x_i \).

- Plug-in the estimate, the probability of error is \(p(\hat{f}(x) \neq y) = p(x^T \hat{\theta} > 0 | y = 1) \)

 Since both \(x \) and \(\hat{\theta} \) are RVs, \(x^T \hat{\theta} \) does not have a simple distribution

Decomposing into an offset + a zero-mean component: let \(x = \theta + e_1 \) and \(\hat{\theta} = \theta + e_2 \), where \(e_1 \sim \mathcal{N}(0, I) \) and \(e_2 \sim \mathcal{N}(0, \frac{1}{\lambda} I) \)

Expand \(x^T \hat{\theta} \) and apply Markov's inequality, eventually all cross-terms vanish; taking the expectation first w.r.t. \(e_1 \) (consider \(e_2 \) as given) and then w.r.t. \(e_2 \), we have
\[p(\hat{f}(x) \neq y) \leq \frac{(1+\frac{1}{\lambda}) \theta^2 \lambda^2}{\theta^4} \]

Notice that if \(n \gg d \), the bound is essentially equal to the one of the Bayes classifier \(\frac{1}{||\theta||^2} \)

Comparing it with histogram classifiers:

- MVN plug-in classifiers require class-conditional densities to be strong MVNs and work well if the number of samples \(n > d \)
- Histogram classifiers require nothing from data distributions but work well only if \(n > 2^d \) ⇒ the "curse of dimensionality"

Empirical Mean & Covariance

Are they biased/unbiased estimators?

- The empirical mean \(\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \) is an unbiased estimator of \(\mu \)
- The empirical covariance \(\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \) is a biased estimator of \(\Sigma \)

 \[\mathbb{E}[n\hat{\Sigma}] = n\text{Var}(x_i) = n\Sigma - \Sigma = (n-1)\Sigma \]
 so \(\mathbb{E}[\hat{\Sigma}] = \frac{n-1}{n} \Sigma \)

 As \(n \to \infty \), \(\hat{\Sigma} \) is an asymptotically unbiased estimator of \(\Sigma \)

Lecture 5. Likelihood & Kullback-Leibler Divergence

Binary MVN Classification

Recall that binary MVN classification with equal covariances and equal prior probabilities yields an optimal linear classifier
\[\hat{y}(x) = 1 \text{ if } w^T x + b \geq 0 \]

- \(\mathbb{E}[w^T x + b | y = 1] = (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0) \) is the squared Mahalanobis distance between the means

 We can write the test statistic \(w^T x + b \) as \((\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0) + z \), where \(z \) is a zero-mean RV

 The optimal classifier is \(f^*(x) = 1 \text{ if } \eta(x) \geq 1, \text{ i.e. } f^*(x) = 1 \text{ if } \eta(x) \geq \frac{1}{\eta(x)} \geq 1 \)

Kullback-Leibler (KL) Divergence

Denote the log-likelihood ratio as \(\Lambda(x) = \log \frac{p_1(x)}{p_0(x)} \). We would like to derive a metric for intrinsically describing the difficulty of the classification problem.

- Let \(q \) be the true distribution of \(x \) (which is either \(p_0 \) or \(p_1 \) in this case)
\[\mathbb{E}[\Lambda(x)] = \int q(x) \frac{p_1(x)}{p_0(x)} \, dx \]
\[= \int q(x) \log \frac{p(x)}{p_0(x)} \, dx - \int \frac{q(x)}{p_1(x)} \, dx \]
\[= \mathbb{E}[\log \frac{p(x)}{p_0(x)}] - \mathbb{E}[\frac{q(x)}{p_1(x)}] \]
\[= D(q||p_0) - D(q||p_1) \]

where \(D(q||p_0) \) is the KL-divergence of distribution \(p_0 \) from \(q \) similarly for \(p_1 \).

- KL-divergence is non-negative, provable by convexity and Jensen’s inequality
 - If \(q = p_0 \), \(D(q||p_0) = 0 \) and here \(\mathbb{E}[\Lambda(x)] = D(p_1||p_0) \geq 0 \)
 - If \(q = p_1 \), \(D(q||p_1) = 0 \) and here \(\mathbb{E}[\Lambda(x)] = -D(p_0||p_1) \leq 0 \)
- In general, KL-divergences are not symmetric: \(D(q||p) \neq D(p||q) \)

- For binary MVN classification with equal covariances, we have \(D(p_0||p_1) = \frac{1}{2} (\mu_1 - \mu_0)^T \Sigma^{-1} (\mu_1 - \mu_0) \), which is proportional to the squared Mahalanobis distance between the means
- Two classes are separable iff. the class-conditional densities do not overlap, i.e., the supports are disjoint subsets of the feature space; in this case, the integrand in KL-divergence \(D\)'s at those points is infinite, and \(D\)’s are therefore not well-defined
- \(D(p(x,y)||p(x)p(y)) \) is named the mutual information between \(x \) and \(y \)
 - If \(x \) and \(y \) are independent, this KL-divergence is 0

Lecture 6. Maximum Likelihood Estimation

Maximum Likelihood Estimate (MLE)

Maximum likelihood estimation is a common methodology for estimating the parameters of a probabilistic model family. Its core principle is *density estimation*.

- Consider a family of probability distributions indexed by parameter(s) \(\theta \). Given a bunch of observations data \(\mathbf{x} \), we would like to make an estimate \(\hat{\theta} \) to pick the best model in the family that fits our data
 - The MLE chooses \(\hat{\theta} = \arg \max_{\theta} p(\mathbf{x}||\theta) \)
 - Viewing \(p(x||\theta) \) as a function of \(x \), it is essentially just the class-conditional density function given the model parameterized by a specific \(\theta \)
 - Viewing \(p(x||\theta) \) as a function of \(\theta \), however, we say that it is the likelihood function for different \(\theta \) values to generate the observed data \(\mathbf{x} \)
 - Suppose \(\theta \in \{0, 1\} \), i.e., binary classification, MLE in this case is equivalent to LRT
- Assume \(x_i \sim q \) for \(n \) samples and they are i.i.d., the MLE is:
 - \(\arg \max_{\theta} \prod_{i=1}^{n} p_{\theta}(x_i) \), or equivalently, \(\arg \max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(x_i) \)
 - Can also express as minimization: \(\arg \min_{\theta} -\sum_{i=1}^{n} \log p_{\theta}(x_i) \)
- It is possible that the true distribution \(q \) is not a member of the parametric family under consideration

Examples of MLE:
- Let \(x_i \sim \text{i.i.d. Uniform}(0, \theta) \)
 - MLE \(\hat{\theta}_n = \max \{x_i\}_{i=1}^{n} \)
 - \(\text{CDF}(\hat{\theta}_n) = (\frac{1}{\theta})^{n} \)
- TODO: Structured Mean, Poisson Mean, Linear Regression

MLE and KL-Divergence

MLE can be related with KL-divergence through the lens of loss functions:

- We can view the negative log-likelihood function as a sum of “loss functions” \(-\sum_{i=1}^{n} \log p_{\theta}(x_i) = \sum_{i=1}^{n} l_i(q, p_\theta) \)
 - \(l_i(q, p_\theta) \), or simply \(l_i(\theta) \), measures the loss incurred when using \(p_\theta \) to model \(x_i \)
 - The risk \(R(q, p_\theta) = \mathbb{E}[l_i(q, p_\theta)] = -\int q(x) \log p_\theta(x) \, dx \)
 - The excess risk \(R(q, p_\theta) - R(q, q) = \mathbb{E}[\log q(x) - \log p_\theta(x)] = D(q||p_\theta) \geq 0 \)
This shows that \(q \) minimizes the risk. Consider \(\theta^* = \arg \min_{\theta} D(q\| p_\theta) \) to be the optimal value of \(\theta \).

- If \(x \) contains multiple i.i.d. observations \(x_i \sim q \), then the MLE is \(\hat{\theta}_n = \arg \min_{\theta} -\sum_{i=1}^n \log p(x_i) \)
- By the strong law of large numbers, for any \(\theta \in \Theta, \frac{1}{n} \sum_{i=1}^n \log \frac{q(x_i)}{p(x_i)} \to D(q\| p_\theta) \) asymptotically

General technique of finding the MLE of \(\theta \):
1. Write out the likelihood function \(L \), or the log-likelihood form, or the negative form
2. Confirm that \(L \) is convex (concave). Do derivative \(L'(\theta) \) w.r.t. \(\theta \) and solve for \(L'(\theta) = 0 \)

Lecture 7. Sufficient Statistics

Definition of Sufficient Statistics
The idea is to find a lower-dimensional representation of the set of observations \(x \), denoted as \(t(x) \), that alone carries all the relevant information about model parameter \(\theta \).

- Formally, given a model family parameterized by \(\theta \) and a set of observations \(x = \{ x_i \}_{i=1}^n \)
 - Find a function \(t(x) \) that preserves all information that we can use to estimate the best \(\theta^* \)
 - \(t(x) \) is called a **sufficient statistic** of \(x \) for \(\theta \)
 - The distribution of \(x \) given \(t(x) \) is independent of \(\theta \), i.e., \(p(x|t, \theta) = p(x|t) \)
- Under MLE, the result \(\hat{\theta} \) is exclusively based on the shape of the likelihood function. Any processing/compression operations that preserve the shape will not affect the outcome of the estimation process -- this is the key idea of sufficient statistics

- Example of Bernoulli RVs where \(p(x = 1) = \theta \) and \(k = \sum_{i=1}^n x_i \) is the number of 1’s:
 - \(p(x_1, \ldots, x_n|k, \theta) = \theta^k (1-\theta)^{n-k} = \frac{1}{n!} \)
 - \(\Rightarrow k = \sum_{i=1}^n x_i \) is a sufficient statistic that carries all relevant information about \(\theta \)
 - \(k \) compresses \(\{0,1\}^n \) (n bits) to \(\{0,\ldots,n\} \) (log \(n \) bits)

A sufficient statistic is **minimal** if the dimension of \(t(x) \) cannot be further reduced while still being sufficient.

Fisher-Neyman Factorization
Let \(x \) be an RV with density \(p(x|\theta) \), the statistic \(t(x) \) is sufficient iff. the density can be factorized as \(p(x|\theta) = a(x) \cdot b(t(x), \theta) \) where:

- \(a(x) \) is an arbitrary function of \(x \)
- \(b(t(x), \theta) \) is a function of \(\theta \) and only depends on \(x \) through \(t(x) \)

Proof:
\[
p(x|t, \theta) = \frac{p(x|t, \theta)}{p(t|\theta)} = \frac{p(x|\theta)}{p(t|\theta)} = \frac{a(x)b(t, \theta)}{\int a(x')b(t, \theta)dx'} = \frac{a(x)}{\int a(x')dx'} = \text{independent of } \theta
\]

Example:

- Bernoulli: \(p(x_1, \ldots, x_n|\theta) = \theta^k (1-\theta)^{n-k} \Rightarrow k \) is sufficient for \(\theta \)
- Poisson: \(p(x_1, \ldots, x_n|\lambda) = \prod_{i=1}^n e^{-\lambda} \frac{\lambda^{x_i}}{x_i!} = (\prod_{i=1}^n \frac{1}{x_i!}) \cdot e^{-\lambda} \lambda^{x_i} \Rightarrow \sum_{i=1}^n x_i \) is sufficient for \(\lambda \)
- Gaussian: \(x_i \sim N(\mu, \Sigma) \), the pair of sample empiricals \((\mu, \Sigma) \) is sufficient for \((\mu, \Sigma) \)
- Uniforms: \(x_i \sim \text{Uniform}(a, b) \), \(p(x|a, b) = \frac{1}{(b-a)} \cdot 1_{a \leq x_i \leq b} \Rightarrow \min_i x_i \) and \(\max_i x_i \) are sufficient for \(a \\) and \(b \), respectively

A sufficient statistic could also be derived from the density of a joint distribution of multiple distributions that share the same parameters \(\theta \).

Rao-Blackwell Theorem
Assume \(x \sim p(x|\theta), \theta \in \mathbb{R} \) and \(t(x) \) is a sufficient statistic for \(\theta \). Let \(f(x) \) be an estimator of \(\theta \). The **Rao-Blackwell Theorem** considers the mean square error \(\mathbb{E}[(f(x) - \theta)^2] \):

- Define \(g(t(x)) = \mathbb{E}[f(x)|t(x)] \)
- then \(\mathbb{E}[(g(t(x)) - \theta)^2] \leq \mathbb{E}[(f(x) - \theta)^2] \), with equality iff. \(f(x) = g(t(x)) \) with probability 1, i.e., \(f \) is \(g \circ t \).

Proof through Jensen’s inequality:
Lecture 8. Asymptotic Analysis of MLE

Convergence of Log-Likelihood to KL

Consider the MLE setting:

- $\hat{\theta}_n = \arg \min_{\theta} \sum_{i=1}^{n} \log \frac{q(z_i)}{p(z_i|\theta)}$
- By the strong law of large numbers, $\frac{1}{n} \sum_{i=1}^{n} \log \frac{q(z_i)}{p(z_i|\theta)} \rightarrow D(q||p_0)$ asymptotically
- Let $\theta^* = \arg \min_{\theta} D(q||p_0)$
 - We can show that $D(q||\hat{p}_n) \rightarrow D(q||p_0)$ asymptotically

Asymptotic Distribution of MLE

Assume that the data are generated by $q = p_0$. The notation $\hat{\theta}_n \sim_{asypmp} p$ means that as $n \rightarrow \infty$, the distribution of MLE $\hat{\theta}_n$ tends to the distribution p.

- It is shown that $\hat{\theta}_n \sim_{asypmp} N(\theta^*, \frac{1}{n} I^{-1}(\theta^*))$.
- where $I(\theta^*)$ is the Fisher-Information Matrix (FIM), whose elements are given by $\frac{\partial^2 \log p_0}{\partial \theta \partial \theta^T}$
- This tells that the distribution tends to a Gaussian distribution. Also, $\hat{\theta}_n$ is asymptotically unbiased. The asymptotic covariance also decays, but the structure is determined by the FIM.

The FIM measures the curvature of the log-likelihood surface.
- In the case where θ is scalar, the FIM is simply the second derivative of log-likelihood
- The more negative the FIM (curvature), the more sharply defined is the location of the maximum
 - \Rightarrow the fewer samples we need to obtain a good estimate of θ^*

Review of Central Limit Theorem

If z_1, \ldots, z_n are i.i.d. RVs with mean $E[z_i] = 0$ and variance $E[z_i^2] = \sigma^2$, then $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} z_i \sim_{asypmp} N(0, \sigma^2)$, meaning the summation of them has a distribution that tends to a Gaussian.

Lecture 9. Generalized Linear Models

Linear Modeling Approach

Consider a labeled dataset $\{x_i, y_i\}_{i=1}^{n}$. Suppose $y_i|x_i \sim N(f_w(x_i), 1)$, meaning that $E[y_i|x_i] = f_w(x_i)$, where f_w is a function parameterized by w.

- Log-likelihood of w is $C(w) = -\frac{1}{2} \sum_{i=1}^{n} (y_i - f_w(x_i))^2 + C$
 - Thus, the MLE of w is given by the least squares optimization: $\hat{w} = \arg \min_{w} \sum_{i=1}^{n} (y_i - f_w(x_i))^2$
- If we assume a linear model, i.e., $f_w(x_i) = w^T x_i$, then we have the classical least squares problem
 - And the MLE is a solution to the linear system $X^T X w = X^T y$

Generalized linear models (GLM) extend this linear modeling approach by allowing the conditional probability density to take the exponential family form $p(y|x) \propto e^{l(y,w^T x)}$, where $l(y, w^T x)$ is a convex function of w.

The Exponential Family Models

The exponential family is a class of distributions with the form:

$$p(y|\theta) = b(y) \cdot e^{\theta l(y) - A(\theta)}$$

- The parameter θ is called the natural parameter of the distribution
$
\begin{itemize}
 \item $t(y)$ is a sufficient static
 \item $e^{-\theta(y)}$ is a normalization constant to ensure that the probability sums/integrates to 1
 \begin{align*}
 \Rightarrow \int p(y|\theta)dy & = e^{-\mu(y)} \int b(y)e^{\theta t(y)}dy = 1 \\
 \Rightarrow a(\theta) & = \log(\int b(y)e^{\theta t(y)}dy) \\
 a(\theta) & \text{is called the log partition function}
 \end{align*}
 \item $b(y)$ is the non-negative base measure; in many cases it is equal to 1
 \item We take θ here as a parametric function of x, e.g., $\theta = w^T x$ as a linear model
 \item The negative log-likelihood of θ is $-\log p(y|\theta) = -\theta^T t(y) + a(\theta) - \log b(y)$
 \begin{align*}
 \text{This is a convex function of } \theta \\
 \text{The first term is linear and hence convex in } \theta \\
 \text{It can be shown that } a(\theta) \text{ is convex in } \theta
 \end{align*}
\end{itemize}

Generalized Linear Model Examples

Many classic distribution models can be expressed in this GLM framework:

\begin{itemize}
 \item Gaussian: $p(y|\theta) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(y-\mu)^2} = \frac{1}{2\pi} e^{-\frac{1}{2}y^2} \cdot e^{\mu y - \frac{\mu^2}{2}}$
 \begin{itemize}
 \item $b(y)$ is the first part, $\theta = \mu$, $t(y) = y$, $a(\theta) = \frac{\theta^2}{2}$
 \item This maps to classical least squares problem if we let $\theta = w^T x$
 \end{itemize}
 \item Binomial: $p(y|\mu) = \mu^y(1-\mu)^{1-y} = e^{y \log \mu + (1-y) \log(1-\mu)} = e^{y \log(\frac{\mu}{1-\mu}) + \log(1-\mu)}$
 \begin{itemize}
 \item $b(y) = 1, \theta = \log(\frac{\mu}{1-\mu})$, $t(y) = y$, $a(\theta) = \log(1 + e^\theta)$
 \item This maps to logistic regression because the function $f(\theta) = \log(\frac{1}{1+e^{-\theta}})$ is known as the logistic function
 \end{itemize}
 \item Multinomial: $p(y_1, \ldots, y_m) = \sum_{k=1}^m q_k e^{\theta^T(y_k - \xi)}$, where:
 \begin{itemize}
 \item y_k is an RV that takes value k with probability $p(y = k) = q_k$ for $k = 1, \ldots, m$
 \item $b(y) = 1$, $t(y) = 1$, $a(\theta) = \log(\sum_{k=1}^m e^{\theta_k})$
 \item This maps to multinomial logistic regression problem
 \end{itemize}
 \item Exponential: $p(y|\mu) = \frac{1}{\mu} e^{-\frac{y}{\mu}} = e^{\frac{1}{\mu}(-y) + \ln \frac{1}{\mu}}$
 \begin{itemize}
 \item $b(y) = 1, \theta = \frac{1}{\mu}$, $t(y) = -y$, $a(\theta) = -\ln \theta$
 \item $E[y] = \int_{-\infty}^\infty \frac{1}{\mu} e^{-\frac{t}{\mu}} dt = \mu$
 \end{itemize}
\end{itemize}

Lecture 10. Linear Models Optimization

Common Loss Functions

In GLM, assume $\theta = w^T x$, recall that we have $p(y|w^T x) \propto e^{-l(y, w^T x)}$.

\begin{itemize}
 \item The l function here acts as a loss function that measures the error/distortion between y_i and the value predicted by $w^T x$
 \begin{itemize}
 \item $l: \mathbb{R} \rightarrow [0, \infty)$
 \end{itemize}
 \item The general form of the optimization is finding the MLE $\hat{\theta} = \arg \min_w \sum_{i=1}^n l(y_i, w^T x_i)$
\end{itemize}

Common valid loss functions include:

\begin{itemize}
 \item **Quadratic/Gaussian**: $(y_i - w^T x_i)^2$
 \begin{itemize}
 \item In the context of binary classification, $l = (1 - y_i w^T x_i)^2$
 \end{itemize}
 \item **Absolute/Laplacian**: $|y_i - w^T x_i|$
 \begin{itemize}
 \item In the context of binary classification, $l = |1 - y_i w^T x_i|$
 \end{itemize}
 \item **Logistic**: $\log(1 + e^{-y_i w^T x_i})$
 \item **Hinge**: $\max(0, 1 - y_i w^T x_i)$
 \item **0/1-loss**: $\mathbb{1}_{\{y_i w^T x_i < 0\}}$
\end{itemize}
Comparison in binary classification context:

- This is a non-convex loss function, but is ideal in binary classification context since its expected value is exactly the probability of error.
- Other loss functions can be viewed as convex approximations to the 0/1-loss.

Optimization Approaches

In general the above optimization problem does not have a closed-form solution.

- We need to solve it by gradient descent (GD) or other iterative algorithms; say start from an initial \(w_0 \)
 - In each iteration: \(w_t = w_{t-1} - \gamma \sum_{i=1}^{n} \nabla l(y_i, w_{t-1}^T x_i) \)
 - \(\gamma > 0 \) is a step size (or learning rate)
 - If \(L \) is convex in \(w \), then GD will converge to a global minimum if \(\gamma \) is sufficiently small
 - If \(L \) is continuous but non-convex, then GD may converge to a (suboptimal) local minimum
 - If \(L \) is discrete, e.g. the 0/1-loss, then GD cannot be used to solve this optimization
- In the special case of quadratic Gaussian loss, we do have a closed-form solution \(\hat{w} = (X^T X)^{-1} X^T y \)
- In practice, the dimension \(d \) is probably large and this solution is hard to compute, therefore iterative approaches such as GD are still preferable.

Lecture 11. Gradient Descent

Gradient Descent & Strong Convexity

The Landweber iteration is given by:

\[
\hat{w}_t = w_{t-1} + \gamma X^T(y - X w_{t-1}), \gamma > 0
\]

which is equivalent to a GD method using Gaussian loss that involves all data points in each iteration.

- The step size plays an important role.
 - Too big \(\Rightarrow \) may diverge; Too small \(\Rightarrow \) may take a long time.
 - It can be shown that \(||w_t - \hat{w}|| \leq \alpha^t ||w_t - \hat{w}_0|| = O(\alpha^t) \)
 - where \(\alpha < 1 \) is the largest eigenvalue of \((I - \gamma X^T X) \)
 - meaning the sufficient condition for convergence is \(\gamma < \frac{2}{\lambda_{\text{max}}(X^T X)} \)
 - So the error converges exponentially in \(t \).

For a measure of the "sharpness" of convexity, we have the \(\alpha \)-strongly convex notation:

- \(f(w) \) is convex if \(f(w_2) \geq f(w_1) + \nabla_w f(w_1)^T (w_2 - w_1), \forall w_1, w_2 \)
 - A convex (but not strictly convex) function is allowed to have a "flat" region.
- \(f(w) \) is \(\alpha \)-strongly convex if \(f(w_2) \geq f(w_1) + \nabla_w f(w_1)^T (w_2 - w_1) + \frac{\alpha}{2} ||w_1 - w_2||_2^2, \forall w_1, w_2 \)

Stochastic Gradient Descent

Incremental versions of GD process just one or a small batch of samples at each step, making them scalable to extremely large datasets and problem sizes. Stochastic gradient descent (SGD) is such an incremental version; assume taking one training example per step: \(w_t = w_{t-1} + \gamma (y_i - w_{t-1}^T x_i) x_i \)

- Choices for the training example used at each step:
Round-robin: \(i_t = \lfloor t \mod m \rfloor + 1 \)
Uniformly at random: \(i_t \sim \text{Uniform}(1, \ldots, n) \), hence the name "stochastic"

- The expected value of the gradient is equal to the full gradient in this case
- \(\mathbb{E}[\frac{\partial y_i}{\partial w_0}(w_t^i)] = \frac{1}{m} \sum_{i=1}^{n}(y_i - x_i^Tw)^2 \)
- We should anticipate the algorithm will require \(t >> d \) iterations to approach convergence, where \(d \) is the number of feature dimensions

Subgradients for Non-differentiable \(f \)

The idea of gradient can be extended to support convex yet non-differentiable functions.

- Recall that if \(f \) is differentiable at \(w \), for all \(u \) we have \(f(u) \geq f(w) + (u - w)^T \nabla f(w) \)
- If \(f \) is non-differentiable at \(w \), we can similarly write \(f(u) \geq f(w) + (u - w)^T v \)
 - where \(v \) is a subgradient: any vector that satisfies this inequality is a subgradient of \(f \) at \(w \)
 - The set of subgradients at \(w \) is called the differential set, denoted \(\partial f(w) \)
 - If \(f \) is differentiable at \(w \), there is only one subgradient, which is the gradient itself

Lecture 12. Analysis of Stochastic Gradient Descent

General SGD Iteration Analysis

Consider the more general problem of \(w^* = \arg \min_{w \in \mathbb{R}^d} \frac{1}{T} \sum_{t=1}^{T} f_t(w) \), where \(f_t \) is a convex function.

- In the aforementioned least-squares case, \(f_t(w) = \frac{1}{2}(y_i - x_i^Tw)^2 \)
- The general SGD iteration is given by: \(w_{t+1} = w_t - \gamma \nabla f_t(w_t) \)
 - If the training set is finite and the process makes passes over the entire training set (e.g., Round-Robin or randomized), some bounds on convergence can be analyzed

Useful bounds:

- With \(\gamma_t = \gamma \) (constant stepsize):
 \[
 \frac{1}{T} \sum_{t=1}^{T} (f_t(w_t) - f_t(w^*)) \leq \frac{||w_1 - w^*||_2^2}{2\gamma T} + \frac{\gamma}{2} G^2 \quad \text{for all } T
 \]
 - \(f_t \) is convex and \(||\nabla f_t(w)||_2 \leq G \) for all \(t, w \)
 - \(w_1 \in \mathbb{R}^d \) is an arbitrary initial weight
 - With \(\gamma = \frac{1}{\sqrt{T}} \), we have \(\text{LHS} \leq \frac{||w_1 - w^*||_2^2 + G^2}{2\sqrt{T}} \) \quad \text{for all } T
 - Using a very small but constant stepsize may lead to slow initial convergence. One way around is to use a diminishing stepsize, say \(\gamma_t = \frac{1}{\sqrt{T}} \):
 - We first modify our iteration step to include a projection step that ensures \(w \) always satisfy \(||w_t|| \leq B \), some magnitude bound: \(w_{t+1} = \frac{w_t - \gamma \nabla f_t(w_t)}{||w_t - \gamma \nabla f_t(w_t)||} \) if \(||w_{t+1}|| > B \)
 - Then we have the following bound:
 \[
 \frac{1}{T} \sum_{t=1}^{T} (f_t(w_t) - f_t(w^*)) \leq \frac{2B^2 + G^2}{\sqrt{T}} \quad \text{for all } T
 \]

Lecture 13. Bayesian Inference

Bayesian Inference Components

Prior distribution \(\rightarrow \) Posterior distribution of model parameter \(\theta \):

- \(p(x|\theta) \) is the likelihood of \(\theta \) when viewed as a function of \(\theta \)
- \(p(\theta) \) is the prior probability distribution of \(\theta \), reflecting our initial knowledge about \(\theta \) without observing any data points
- \(p(x) \) is the marginal probability of \(x \), which can be viewed as a constant and is usually cancelled out when doing estimation
• $p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)}$ is the **posterior probability** distribution of θ, reflecting the probability of different values of θ in light of the observed data point x

 ○ Compared to MLE, using the posterior for estimation allows us to incorporate our prior knowledge about θ

 ○ *Bayesian inference* methods consider the full posterior distribution

Maximum a Posteriori Estimator (MAP)

Maximizing the posterior produces the **Maximum a Posteriori Estimator** (MAP): $\hat{\theta}_{MAP} = \arg \max_{\theta} p(\theta|x)$.

- $\log p(\theta|x) = \log p(x|\theta) + \log p(\theta) + \text{constant} = -\log p(\theta)$ can be viewed as a **regularization** term
- MAP biases the estimator towards θ values that are higher-weighted in the prior distribution

 ○ Often meaning that MAP has lower variance and thus smaller overall mean-squared error -- a bias-variance tradeoff

General technique of finding the MAP of θ:

1. Given the likelihood and the prior, write out the posterior distribution $p(\theta|x) \propto p(x|\theta)p(\theta)$, or the log form, or the negative form
2. Confirm that $p(\theta|x)$ is convex (concave). Do derivative w.r.t. θ and solve for $p'(\theta|x) = 0$

Taking the mean of the posterior produces the **Posterior Mean Estimator** (PM): $\hat{\theta}_{PM} = \int \theta p(\theta|x)d\theta$.

Bias-Variance Decomposition of MSE

The mean-squared error (MSE) of any estimator $\hat{\theta}$ can be decomposed into:

$$\text{MSE}(\hat{\theta}) = \mathbb{E}[(\theta - \hat{\theta})^2] = \mathbb{E}[(\theta - \mathbb{E}[\hat{\theta}]) + \mathbb{E}[\hat{\theta}] - \hat{\theta})^2] = (\theta - \mathbb{E}[\hat{\theta}])^2 + \mathbb{E}[(\mathbb{E}[\hat{\theta}] - \hat{\theta})^2]$$

- The cross-term equals 0
- $(\theta - \mathbb{E}[\hat{\theta}])^2$ is the **bias** term
- $\mathbb{E}[(\mathbb{E}[\hat{\theta}] - \hat{\theta})^2]$ is the **variance** term

Example: Twitter Poisson distribution with exponential prior $p(\theta) = \alpha e^{-\alpha \theta}, \alpha > 0$

- $\hat{\theta}_{MAP} = \frac{1}{n+\alpha} \sum_{i=1}^{n} x_i = \frac{n}{n+\alpha} \hat{\theta}_{MLE}$
- The MAP is a "shrunken" version of the MLE in this case (scales down towards 0)

 ○ $\mathbb{E}[\hat{\theta}_{MAP}] = \frac{n}{n+\alpha} \theta = \frac{n}{n+\alpha} \mathbb{E}[\hat{\theta}_{MLE}]$

 ○ $\text{Var}(\hat{\theta}_{MAP}) = \frac{(n+\alpha)^2}{n+\alpha} \frac{\theta}{n} = \frac{(n+\alpha)^2}{n+\alpha} \text{Var}(\hat{\theta}_{MLE})$

MVN in Bayesian Inference

If both the prior and the likelihood are Multivariate Gaussian (MVN), then the posterior distribution is also an MVN and can be computed by simple linear-algebraic operations.

- Assume the following setting:

 ○ Likelihood $x|\theta \sim N(\theta, \Sigma)$

 ○ Prior $\theta \sim N(0, \Sigma_{\theta\theta})$

 - We can derive the Wiener filter:

 ○ $x = \theta + N(0, \Sigma)$ so the marginal distribution is $x \sim N(0, \Sigma + \Sigma_{\theta\theta})$

 ○ The cross-variance between x and θ, $\Sigma_{x\theta} = \Sigma_{\theta\theta}$

 ○ $\theta|x \sim N(\Sigma_{\theta\theta}(\Sigma + \Sigma_{\theta\theta})^{-1} x, \Sigma_{\theta\theta} - \Sigma_{\theta\theta}(\Sigma + \Sigma_{\theta\theta})^{-1} \Sigma_{\theta\theta})$

 ○ The MAP and PM are the same: $\hat{\theta} = \Sigma_{\theta\theta}(\Sigma + \Sigma_{\theta\theta})^{-1} x$

Bayesian Linear Modeling

Applying the Bayesian approach to GLMs $p(y|\theta) = p(y|x^T \theta)$, we get:

- Posterior $p(\theta|x,y) \propto p(y|x^T \theta)e^{-\lambda_0 \theta^T \theta}$
- The MAP of θ is $\hat{\theta}_{MAP} = \arg \min_{\theta} \sum_{i=1}^{n} l(y_i, x_i^T \theta) - \log p(\theta)$
Different forms of priors $p(w)$ lead to different regularization, e.g.:
- $p(w) \propto e^{-\frac{1}{2}|w|^2}$ leads to ridge regularization $\frac{1}{2}|w|^2$
- $p(w) \propto e^{-\lambda|w|_1}$ leads to lasso regularization $\lambda||w||_1$

Lecture 14. Proximal Gradient Algorithms

Proximal Operator & Soft-Thresholding

Consider the general optimization problem $\min_w f(w) + g(w)$.
- Both f and g are convex, and f is also differentiable
- Special cases of g include the regularization term in GLMs
- If g has a computationally efficient proximal operator with state-of-the-art performance, it is easy to implement proximal gradient algorithms

The **proximal operator** for this problem is defined as $\text{prox}_{g,t}(v) = \arg \min_u \left(\frac{1}{2}||u - v||^2 + t \cdot g(u) \right)$.
- The solution is a point close to input v with a relatively small g value
- t controls the tradeoff between staying close to v vs. minimizing g
- Example: $g(u) = ||u||_1$, then $\text{prox}_{g,t}(v) = \arg \min_u \sum_{i=1}^d \left(\frac{1}{2} (u_i - v_i)^2 + t |u_i| \right)$
 - The optimization objective is separable in the coordinates
 - There's a closed-form solution known as the **soft-threshold** operation: $\text{sign}(v_i) \max(0, |v_i| - t)$

Special Case of Squared Error Loss

Consider the special case where f is the **squared error loss**:

$$L(w) = ||y - Xw||^2_2 + g(w) = ||y - Xw^{(k)}||^2_2 + 2(y - Xw^{(k)})^T X(w^{(k)} - w) + ||X(w^{(k)} - w)||^2_2 + g(w) \leq C + 2(y - Xw^{(k)})^T X(w^{(k)} - w) + \frac{1}{t} ||X(w^{(k)} - w)||^2_2 + g(w)$$

- **Notations:**
 - k is the gradient descent iteration
 - $0 < t < \frac{1}{||X||^2}$
- Define $v = tX^T(y - X2^{(k)}) = -tX^T(X2^{(k)} - y)$
 - We can obtain $w^{(k+1)} = \arg \min_w \left(||v + w^{(k)} - w||^2_2 + tg(w) \right)$
- Define $z_k = v + w^{(k)} - tX^T(Xw^{(k)} - y)$ which is the gradient descent iterate
 - $w^{(k+1)} = \arg \min_w \left(||z_k - w||^2_2 + tg(w) \right)$ is in the proximal operator form
 - This sort of iterative optimization is often referred to as a **proximal point algorithm**
 - If $g = 0$, then $w^{(k+1)} = z_k$ the ordinary GD iterate

General Proximal Gradient Algorithm

Now let f be any convex loss function, then $w^{(k+1)} = \text{prox}_{g,t}(w^{(k)} - t \cdot \nabla f(w^{(k)}))$
- $w^{(k+1)}$ minimizes the sum of $g(u)$ and a separable quadratic approximation of $f(u)$ around $w^{(k)}$
- The separability of this approximation is the key to efficient algorithms
 - If the regularization term g is also separable, e.g. $||u||_1$, then we can write the optimization as a sum of individual coordinates and solve for each scalar element separately
 - In the case $g(u) = \lambda||u||_1$, we have the **iterative soft-thresholding algorithm** (ISTA)
 - Solutions to ISTA tend to be sparse vectors

Analysis shows that $L(w^{(k)}) - L(w^*) \leq \frac{1}{2t} ||w^{(0)} - w^*||^2_2 \leq \epsilon$ after $O(\frac{1}{\epsilon})$ iterations.
Lecture 15. Analysis of Soft-Thresholding

Lasso Regression Soft-Thresholding Estimator

In the “Lasso” regression problem, suppose that \(y \sim \mathcal{N}(Xw, \sigma^2 I) \) and that \(w \) is sparse, then under certain assumptions on \(X \), it can be proven that the solution \(\hat{w} \) is also sparse in the same locations.

- **Simplest setting:** \(X = I, y = w + \epsilon \) where \(\epsilon \sim \mathcal{N}(0, \sigma^2 I) \), the “direct” observation model
- **Its solution is the soft-thresholding estimator** \(\hat{w}_i = \text{sign}(y_i) \max(|y_i| - \lambda, 0) \), \(\lambda > 0 \) which is much more computationally efficient if \(w \) is sparse

Lecture 16. Concentration Inequalities

Central Limit Theorem

The **Central Limit Theorem** (CLT) is a classic result showing that the probability of the average of \(n \) i.i.d. RVs \(\bar{X}_n = \frac{1}{n} \sum_{i=1}^{n} X_i \) tends to (i.e., \(\lim_{n \to \infty} \)) a Gaussian with mean \(\mu \) and variance \(\frac{\sigma^2}{n} \).

Chebyshev’s Inequality

In many applications, we would like to say more about the distributional characteristics for finite values of \(n \).

- **One approach is to calculate the distribution of the average explicitly (a convolution), which is sometimes difficult or impossible**
- **Sometimes probability bounds are more useful:**
 - **Markov’s Inequality:** Let \(Z \) be non-negative RV and \(t > 0 \), \(P(Z \geq t) \leq \frac{E[Z]}{t} \)
 - A generalization of Markov: Let \(\phi \) be any non-decreasing, non-negative function,
 \(P(Z \geq t) = P(\phi(Z) \geq \phi(t)) \leq \frac{E[\phi(Z)]}{\phi(t)} \)
 - This leads to **Chebyshev’s Inequality:** Let \(t > 0 \).
 \[
 P(|Z - E[Z]| \geq t) \leq \frac{E[(Z - E[Z])^2]}{t^2} = \frac{\text{Var}(Z)}{t^2}
 \]
 - Applying Chebyshev’s to the average, we have \(P(|\bar{X}_n - \mu| \geq t) \leq \frac{\sigma^2}{nt^2} \)
 - This shows that not only is the variance reduced by average, but the “tails” of the distribution (i.e., probability of observing values more than \(t \) away from the mean) are getting smaller

Chebyshev’s tail bound is loose. Under slightly stronger assumptions, much tighter bounds are possible:

- **Example:** \(X_i \sim \mathcal{N}(\mu, 1), \mu \sim \mathcal{N}(\mu, \frac{1}{n}) \), it can be proven that \(P(|\bar{X}_n - \mu| \geq t) \leq e^{-\frac{1}{2}nt^2} \)
- **See below for examples of a few more exponential bounds**

The Chernoff Method

More generally, if RVs \(X_i \) are bounded or sub-Gaussian (meaning the tails of probability distribution decay at least as fast as Gaussian tails), then the tails of their average converge exponentially fast in \(n \) -- the **Chernoff bounding method**.

- The key is to use the exponential function to generalize Markov’s: \(P(Z > t) = P(e^{\lambda Z} > e^{\lambda t}) \leq e^{-\lambda t}E[e^{\lambda Z}] \)
 - Choose \(\lambda > 0 \) to minimize this bound: \(P(Z > t) = e^{-\varphi^*(t)} \text{ where } \varphi^*(t) = \max_{s > 0} (st - \log E[e^{sZ}]) \)

Exponential bounds of this form can be derived explicitly for many classes of RVs:

- **Example:** sub-Gaussian RVs \(X_i \) where \(\exists \) constant \(c > 0 \) s.t. \(E[e^{s(X_i - E[X_i])}] \leq e^{\frac{1}{2}cs^2} \) for all \(s \in \mathbb{R} \)
 - \(P(|S_n - E[S_n]| \geq t) \leq 2e^{-t^2/(2nc)} \)
 - \(P(|\bar{X}_n - \mu| \geq t) \leq 2e^{-nt^2/(2c)} \)
- To verify the sub-Gaussian condition, use this theorem: if \(P(|X_i - E[X_i]| \geq t) \leq ae^{-\frac{1}{2}bt^2} \) holds for constants \(a \geq 1, b > 0 \), and all \(t > 0 \), then \(E[e^{s(X_i - E[X_i])}] \leq e^{las^2}b \)
- **Example:** **Hoeffding’s Inequality** for bounded RVs \(X_i \in [a_i, b_i] \)
 - \(P(|S_n - E[S_n]| \geq t) \leq 2e^{-2t^2/(\sum_{i=1}^{n}(b_i - a_i)^2)} \)
 - If all \(X_i \) are bounded by \(a \leq X_i \leq b \) then it implies that \(P(|\bar{X}_n - \mu| \geq t) \leq 2e^{-2nt^2/c} \) with \(c = (b - a)^2 \)
- For binary 0/1-valued RVs:
 - \(c = 1 \) in this case: if \(n \geq \frac{1}{2} \log(\frac{1}{\delta}) \), then we know \(P(|\bar{X}_n - \mu| > \epsilon) \leq \delta \)
This result is usually referred to as the Chernoff Bound

Azuma-Hoeffding Inequality

Hoeffding’s Inequality can be generalized in a few ways:

- Using Doob’s inequality, we can derive \(P(\max_{1 \leq k \leq n} |S_k - \mathbb{E}[S_k]| \geq t) \leq 2e^{-2t^2/(\sum_{i=1}^n (b_i-a_i)^2)} \)
- Consider a martingale sequence of RVs \(S_0, \ldots, S_n \) that satisfies \(\mathbb{E}[S_{k+1} | S_0, \ldots, S_k] = S_k \) for all \(k = 0, \ldots, n \)
 - Note that sums of 0-mean and independent RVs are a martingale sequence
 - **Azuma’s Inequality**: Let \(S_0, \ldots, S_n \) be a martingale sequence s.t. \(S_i - S_{i-1} \in [a_i, b_i] \) bounded for all \(i \), then for any \(t > 0 \), we have \(P(S_n - S_0 \geq t) \leq e^{-t^2/(2\sum_{i=1}^n (b_i-a_i)^2)} \)
 - Application example: making a bet each day with 50/50 chance of receiving 2b or losing that b; Let \(S_i \) denote the net gain on day \(i \) and let \(Y_i \in \{-1, +1\} \) be an indicator of outcome on day \(i \)
 - **Independent betting** strategy: always bet fixed \(b \) then \(S_n = b \sum_{i=1}^n Y_i \)
 - **Recursive betting** strategy: on day \(i \), bet \(pS_{i-1} \) for some \(p \in [0, 1] \), then \(S_i = S_{i-1} + pS_{i-1}Y_i \) is a martingale

KL-Based Tail Bounds

It is possible to derive tighter bounds by optimizing the exponent. If the RVs belong to the exponential family, then the resulting exponent turns out to be a KL-divergence.

- Example: i.i.d. Bernoulli RVs
 - We can derive \(\psi^*(p+\epsilon) = (p+\epsilon) \log(\frac{p+\epsilon}{1+\epsilon}) + (1-(p+\epsilon)) \log(\frac{1-(p+\epsilon)}{1-p}) = \text{KL}(p+\epsilon, p) \) by Markov’s
 - Yielding \(P(\frac{1}{n} \sum_{i=1}^n x_i - p \geq \epsilon) \leq e^{-n\text{KL}(p+\epsilon, p)} \)

Lecture 17. Probably Approximately Correct (PAC) Learning

Probably Approximately Correct (PAC) Learning

Let \(\mathcal{F} \) denote a collection of prediction rules, where each \(f \in \mathcal{F} \) is a predictor function that maps from features to labels.

The aim of **Probably Approximately Correct (PAC) Learning** is to use the training data to select \(\hat{f} \) from \(\mathcal{F} \) s.t. its predictions are probably almost as good as the best possible predictor in \(\mathcal{F} \).

- Best premise of PAC: training data are i.i.d. samples from an unknown distribution \(\mathcal{P}(x_i, y_i) \sim \text{i.i.d.} \ P \)
- Goal of PAC: select a predictor that minimizes the expected loss (i.e., risk), \(\min_{f \in \mathcal{F}} \mathbb{E}_{(x,y) \sim P} [l(y, f(x))] \)
- Most natural approach: choose \(\hat{f} \) that minimizes the errors made on training data, \(\min_{f \in \mathcal{F}} \sum_{i=1}^n l(y_i, f(x_i)) \)
 - This is called **empirical risk minimization** (ERM)
 - Note that ERM / \(n \) asymptotically approaches the risk

We assume the losses are bounded in the range \([0, c]\).

Analysis of Empirical Risk Minimization (ERM)

Denote \(R(f) = \mathbb{E}_{(x,y) \sim P} [l(y, f(x))] \) and \(\hat{R}(f) = \frac{1}{n} \sum_{i=1}^n l(y_i, f(x_i)) \).

- Markov/Chebyshev’s weak upper bound: \(P(|\hat{R}(f) - R(f)| > t) \leq \frac{\mathbb{E}[(\hat{R}(f) - R(f))^2]}{t^2} \leq \frac{c^2}{4nt^2} \)
- Improved using Chernoff’s bounding technique:
 - \(P(\hat{R}(f) - R(f) > t) = \inf_{\lambda > 0} P(e^{\lambda(\hat{R}(f) - R(f))} > e^t) \leq e^{-2nt^2/c^2} \)
 - \(P(|\hat{R}(f) - R(f)| > t) \leq 2e^{-2nt^2/c^2} \)

If \(\hat{R}(f) \approx R(f) \) for all \(f \in \mathcal{F} \), then the minimizer of \(\hat{R} \) should be “close to” the minimizer of \(R \).

- To guarantee this approximation, we need to consider \(P(\cup_{f \in \mathcal{F}} \{ |\hat{R}(f) - R(f)| > t \}) \)
 - This is called the union bound approach
- To bound this probability, we will assume here that \(\mathcal{F} \) is finite and denote \# functions by \(|\mathcal{F}| \)
 - \(P(\cup_{f \in \mathcal{F}} \{ |\hat{R}(f) - R(f)| > t \}) \leq \sum_{f \in \mathcal{F}} P(|\hat{R}(f) - R(f)| > t) \leq 2|\mathcal{F}|e^{-2nt^2/c^2} = \delta \)
 - i.e., \(\hat{R} \) is uniformly close to \(R \) over \(\mathcal{F} \) with probability at least \(1 - \delta \)
 - i.e., \(R(\hat{f}) \leq \hat{R}(\hat{f}) + t \leq \hat{R}(f^*) + t \leq R(f^*) + 2t \) with probability at least \(1 - \delta \)
Let $\varepsilon = 2t = \sqrt{2C \log(2|F|/\delta)}$

- We say \hat{f} is (ε, δ)-PAC: $R(\hat{f}) - R(f^*) \leq \varepsilon$ with probability at least $1 - \delta$
- The error decreases with n and increases with $|F|
- If the number of samples $n = O(\log |F|)$, then the class is PAC-learnable

Lecture 18. PAC Learning in Infinite Classes

Generalization of PAC to Infinite Classes

Consider the binary classification scenario with a 0/1-loss, $c = 1$.

- The PAC bound for a finite class F may be stated as:
 $$P(\max_{f \in F} |\hat{R}(f) - R(f)| \geq \varepsilon) \leq 2|F|e^{-2n\varepsilon^2}$$

- For any $\delta > 0$ and for every $f \in F$, with probability at least $1 - \delta$, $R(f) \leq \hat{R}(f) + \sqrt{\frac{\log(|F|/\delta)}{2n}}$

Now we generalize this sort of result to infinite model classes. The prime example of such classes are linear classifiers:

- For arbitrary weights ω and bias b, $|F| = \infty$
- However, observe that the classification result does not change while we move the hyperplane of the classifier boundary until it just touches on or more of the points
 - There are effectively at most $S(F, n) = 2\sum_{k=0}^{d} \binom{n-1}{k}$ unique linear classifiers for n points in \mathbb{R}^d
 - $S(F, n)$ is called the shatter coefficient of F
- We can apply PAC on this finite quantity
 - But be careful that the quantity is data-dependent on the specific locations of x_i's, i.e., the errors are no longer i.i.d. RVs

Rademacher Complexity

Let F be infinite. The goal is to derive a bound of the form $P(\sup_{f \in F} |\hat{R}(f) - R(f)| \geq \varepsilon) \leq B(n, \varepsilon)$.

- This type of bounds are called uniform deviation bounds
- For the linear classifiers case described above, we can show that:
 $$B(n, \varepsilon) = 8S(F, n)e^{-n\varepsilon^2/32}$$

The Rademacher complexity is a standard approach to construct uniform deviation bounds.

- Let $l_i(f) \in [0, 1]$ be i.i.d. bounded RVs; here they are the prediction error using f on the i-th example
- McDiarmid's Bounded Difference Inequality: Let $g : \mathbb{R}^n \to \mathbb{R}$ be a function satisfying:
 $$\sup_{i,j} |g(l_1, \ldots, l_{i-1}, l_i, l_{i+1}, \ldots, l_n) - g(l_1, \ldots, l_{i-1}, l_i', l_{i+1}, \ldots, l_n)| \leq c_i$$
 for some constant $c_i \geq 0$ for all i. Then, if l_1, \ldots, l_n are i.i.d. RVs, we have:
 $$P(g(l_1, \ldots, l_n) - \mathbb{E}[g(l_1, \ldots, l_n)] \geq t) \leq e^{-2t^2/(\sum_i c_i^2)}$$
 - The function $g = \sup_{f \in F} (R(f) - \hat{R}(f))$ satisfies the assumption with $c_i = \frac{1}{n}$
 - $\Rightarrow \sup_{f \in F} (R(f) - \hat{R}(f)) \leq \mathbb{E}[\sup_{f \in F} (R(f) - \hat{R}(f))] + \sqrt{\frac{\log(1/\delta)}{2n}}$

- Then, to bound the expectation, introduce an independent “ghost sample” l'; By Jensen’s and by introducing a set of independent Rademacher RVs $\sigma = \{\sigma_1, \ldots, \sigma_n\}$ with $P(\sigma_i = \pm 1) = \frac{1}{2}$, we can derive:
 $$\mathbb{E}[\sup_{f \in F} (R(f) - \hat{R}(f))] \leq \mathbb{E}_{l', \sigma}[\sup_{f \in F} (R(f) - \hat{R}(f))]$$
 $$= \mathbb{E}_{l', \sigma}\left[\sup_{f \in F} \frac{1}{n} \sum_{i=1}^{n} \sigma_i (l'_i(f) - l_i(f))\right]$$
 $$\leq \mathbb{E}_{l', \sigma}\left[\sup_{f \in F} \frac{1}{n} \sum_{i=1}^{n} \sigma_i (l'_i(f) + \hat{R}(f)) \sup_{f \in F} \frac{1}{n} \sum_{i=1}^{n} \sigma_i l_i(f)\right]$$
 $$= 2\mathbb{E}_{l', \sigma}\left[\sup_{f \in F} \frac{1}{n} \sum_{i=1}^{n} \sigma_i l_i(f)\right]$$
The last expression is the **Rademacher complexity** \(\text{Rad}(l(\mathcal{F})) \) of the class \(\mathcal{F} \) with loss function \(l \).

If we take the expectation only over \(\{x_i\} \) while holding \(\{l_i\} \) fixed, we have the so-called **empirical Rademacher complexity** \(\hat{\text{Rad}}(l(\mathcal{F})) \).

Putting it all together, we derive that with probability at least \(1 - \delta \):

- \[\sup_{f \in \mathcal{F}} (R(f) - \hat{R}(f)) \leq \text{Rad}(l(\mathcal{F})) + \sqrt{\frac{\log(1/\delta)}{2n}} \]
- \[\sup_{f \in \mathcal{F}} (R(f) - \hat{R}(f)) \leq \hat{\text{Rad}}(l(\mathcal{F})) + 3\sqrt{\frac{\log(2/\delta)}{2n}} \]

Applying it to binary classification, we can show \(\hat{\text{Rad}}(l(\mathcal{F})) = \mathbb{E}_e[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i y_i f(x_i)] = \text{Rad}(\mathcal{F}) \).

Lecture 19. Vapnik-Chervonkis Theory

Shatter Coefficient & VC Dimension

Recall the set of linear classifiers \(f(x) = \text{sign}(w^T x + b) \in \mathcal{F}, |\mathcal{F}| = \infty \):

- However, for any finite training dataset of \(n \) examples, there are at most \(S(\mathcal{F}, n) = 2^{\sum_{k=0}^{d} \binom{n-1}{k}} \) possible ways that linear classifiers can label the dataset
- \(S(\mathcal{F}, n) \) is called the **shatter coefficient** of class \(\mathcal{F} \) of linear classifiers

More generally, for any binary classification problem:

- Each classifier produces a binary label sequence for \(n \) training examples
- \(\Rightarrow \) at most \(2^n \) distinct sequences; but often, not all sequences can be generated by functions \(\in \mathcal{F} \)
- The **shatter coefficient** of class \(\mathcal{F} \) is defined as:
 \[S(\mathcal{F}, n) = \max_{x_1, \ldots, x_n} |\{(f(x_1), \ldots, f(x_n)) \in \{-1, +1\}^n, f \in \mathcal{F}\}| \]
- \(S(\mathcal{F}, n) \leq 2^n \), but often it is much smaller; it measures the "effective size" of \(\mathcal{F} \) w.r.t. a finite training set of size \(n \)
- \(\log S(\mathcal{F}, n) \) measures the "effective dimension" of \(\mathcal{F} \)

The **Vapnik-Chervonenkis dimension** (VC dimension) of a class \(\mathcal{F}, V(\mathcal{F}) \), is defined as the largest integer \(k \) s.t. \(S(\mathcal{F}, k) = 2^k \).

- **Sauer's Lemma**: \(S(\mathcal{F}, n) \leq (n + 1)^{V(\mathcal{F})} \)
- \(V(\mathcal{F}) \) of linear classifiers class in \(\mathbb{R}^d = d + 1 \)

The VC Inequality

Let \(\mathcal{F} \) be a class of binary classifiers with shatter coefficient \(S(\mathcal{F}, n) \).

- For any \(\epsilon > 0 \), \(P(\sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)| \geq \epsilon) \leq 2S(\mathcal{F}, n)e^{-n\epsilon^2/8} \)
- Or equivalently for any \(\delta > 0 \), with probability at least \(1 - \delta \),
 \[\sup_{f \in \mathcal{F}} |\hat{R}_n(f) - R(f)| \leq \sqrt{8\log S(\mathcal{F}, n) + \log \frac{2}{\delta}}/n \]

Using Sauer’s bound, we can state a generalization bound, the **VC Inequality** states that:

- For any \(\delta > 0 \) and every \(f \in \mathcal{F} \), with probability at least \(1 - \delta \)
 \[R(f) \leq \hat{R}_n(f) + \sqrt{8V(\mathcal{F}) \log(n + 1) + \log \frac{1}{\delta}}/n \]

Proof of this inequality uses Massart’s Inequality: let \(A \subset \mathbb{R}^n \) with \(|A| < \infty \) and \(r = \max_{u \in A} |u|_2 \), then
\[\mathbb{E}_e[\frac{1}{n} \sup_{u \in A} \sum_{i=1}^{n} \sigma_i y_i u_i] \leq \frac{r \sqrt{2 \log |A|}}{n} \]

Lecture 20. Learning with Continuous Loss Functions

Generalization Bounds for Continuous Loss

Rademacher complexity bounds are interesting only if \(\text{Rad}_n(l(\mathcal{F})) \) decays as \(n \) grows.

- For continuous loss functions, e.g.
• Hinge: \(l(y, f(x)) = \max(0, 1 - yf(x)) \)
• Logistic: \(l(y, f(x)) = \log(1 + e^{-yf(x)}) \)
• Let \(z = yf(x) \)
 • We will bound \(\text{Rad}_n(l(F)) \) in terms of \(\text{Rad}_n(F) \), and then bound \(\text{Rad}_n(F) \)
 • Assume the loss \(l \) is \(L \)-Lipschitz: \(|l(z) - l(z')| \leq L|z - z'| \), then \(\text{Rad}_n(l(F)) \leq 2L\text{Rad}_n(F) \) for the continuous convex \(l \)'s we listed above
 • Hinge and logistic losses are \(1 \)-Lipschitz functions

Applying this to linear classifiers \(f(x) = w^T x \), with \(||w||_2 \leq 1 \) and \(||x||_2 \leq 1 \).

• Assumptions:
 • Let \(B^d \) be the set of such \(x \)'s, \(||x||_2 \leq 1 \)
 • Let \(F \) be a class of linear classifiers from \(B^d \to \mathbb{R} \), \(||w||_2 \leq 1 \)
 • Assume the loss \(l \) is \(L \)-Lipschitz
 • Then we have the bound \(\text{Rad}_n(l(F)) \leq 2L\text{Rad}_n(F) \leq \frac{2L}{\sqrt{n}} \)
 • Proof of \(\text{Rad}_n(F) \leq \frac{1}{\sqrt{n}} \) uses Cauchy-Schwarz inequality and Jensen's inequality

To conclude, we have shown:

• Assume \(y_i \in [-1, 1] \) and \(||x||_2 \leq 1 \), and let \(\hat{w} \) be a solution to the convex optimization problem
 \[
 \min_{w: ||w|| \leq 1} \sum_{i=1}^{n} (1 - y_i w^T x_i).
 \]
 • Then with probability at least \(1 - \delta \), \(P(y \neq \text{sign}(w^T x)) \leq \frac{1}{n} \sum_{i=1}^{n} (1 - y_i \hat{w}^T x_i) + \frac{2}{\sqrt{n}} + \sqrt{\frac{2 \log 1/\delta}{n}} \)
 • Similar arguments hold for the logistic loss -- just replace the term in the sum

Lecture 21. Introduction to Function Spaces

Function Spaces & Norm

A function space is a set of functions on \(\mathbb{R}^d \) with certain parameters/construction restrictions.

• The function space of all homogeneous linear functions is \(F = \{ f : f(x) = w^T x, ||w|| \in \mathbb{R}^d \} \)
 • We can limit this further by \(F_B = \{ f : f(x) = w^T x, ||w|| \leq B \} \)
 • \(\min_{w: ||w|| \leq B} \sum_{i=1}^{n} l(y_i, w^T x_i) = \min_{w: ||w|| \leq B} \sum_{i=1}^{n} l(y_i, w^T x_i) + \lambda_B ||w||^2 \) with an appropriate regularization parameter \(\lambda_B \)

More generally, let \(||f|| \) denote the norm of function \(f \).

• Norms map functions to real numbers, and that
 • \(||f|| \geq 0 \)
 • \(||f + g|| \leq ||f|| + ||g|| \)
 • If \(||f|| = 0 \), then \(f = 0 \)

• Norms based on integrals or derivative are common
 • \(||f|| := \int_{-\infty}^{\infty} \sqrt{\int |f(x)|^2 dx} \)
 • Given a norm, we can define a function space \(F = \{ f : ||f|| < \infty \} \) and classes \(F_B = \{ f : ||f|| \leq B \} \)
 • Consider learning with this class, \(\min_{f: ||f|| \leq \lambda_B} \sum_{i=1}^{n} l(y_i, f(x_i)) \) or \(\min_{f: ||f|| \leq \lambda_B} \sum_{i=1}^{n} l(y_i, f(x_i)) + \lambda_B ||f||^2 \)

Constructions of Function Classes

There are many ways of constructing function spaces and classes:

• Parametric classes: the simplest way to construct a function class is in terms of a set of parameters or weights:
 • Example: a neural network layer space
 \[
 F = \{ f : f(x) = \sum_{k=1}^{K} v_k \phi(w_k^T x + b_k), w_k, v_k, b_k \in \mathbb{R} \}
 \]
 • Input weights \(w_k \), output weights \(v_k \), and biases \(b_k \) are learnable parameters
 • We could further limit this class by placing constraints on the size of weights and biases
• **Atomic classes**: combinations of atom functions
 - Consider a family of parameterized functions \(\{ \phi_w \} \) — we call these functions atoms
 - We then take weighted combinations of atoms to synthesize more complex functions
 - Examples of atoms:
 - Neurons in a neural network
 - Fourier basis functions: \(\phi_w(x) = e^{iw^T x} \)
 - Examples of atomic class:
 \[
 \mathcal{F} = \{ f : f(x) = \sum_{w \in \mathcal{W}} v(w) \phi_w(x), v(w) \in \mathbb{R}, \sum_{w \in \mathcal{W}} |v(w)|^2 \leq B \}
 \]
 \[
 \mathcal{F} = \{ f : f(x) = \int v(w) \phi_w(x) dw, \int |v(w)|^2 dw \leq B \}
 \]
• **Nonparametric classes**: given a function norm \(||f|| \) we can define \(\mathcal{F}_B = \{ f : ||f|| \leq B \} \)
 - Examples of norms:
 - \(||f||_C^0 = \sup_{x \in [0,1]} |f(x)| \), giving \(\mathcal{F}_B^0 \)
 - \(||f||_C^k = \sum_{j=1}^{k} \sup_{x \in [0,1]} |f^{(j)}(x)| \), giving \(\mathcal{F}_B^k \supset \mathcal{F}_B^0 \)
 - A common approach in practice is to approximate functions in such classes with parametric or atomic models
 - The **Weierstrass theorem** states that if \(f \) is continuous on \([0, 1] \), then for any continuous \(f : [0, 1] \to \mathbb{R} \) and any \(\epsilon > 0 \), there exists a polynomial p.s.t. \(\sup_{x \in [0,1]} |p(x) - f(x)| < \epsilon \)

Lecture 22. Banach and Hilbert Spaces

Review of Vector Spaces

A vector space \(\mathcal{F} \) is a set of elements (vectors) with **addition** and **scalar multiplication** operators satisfying: for any \(u, v, w \in \mathcal{F} \) and any scalars \(a, b \in \mathbb{R} \):

- If \(u, v \in \mathcal{F} \), then \(u + v \in \mathcal{F} \)
- \(u + v = v + u \)
- \(u + (v + w) = (u + v) + w \)
- There exists a null vector \(0 \in \mathcal{F} \) s.t. \(v + 0 = v \), i.e., the additive identity
- There exists a scalar \(-v \in \mathcal{F} \) s.t. \(v + (-v) = 0 \)
- If \(u \in \mathcal{F} \), then \(au \in \mathcal{F} \)
- \(a(0v) = (ab)v \)
- \(1v = v \) where 1 denotes the multiplicative identity
- \(a(u + v) = au + av \)
- \((a - b)v = av + bv \)

Many other properties can be derived from above axioms, e.g., \(0v = 0 \)

Examples of vector spaces:

- \(\mathbb{R} \) with \(v \in \mathbb{R}^d \) and \(v = [v_1, \ldots, v_d]^T \)
- \(C([0,1]) \) with \(v \) being any **real-valued continuous function** defined on \([0, 1] \)
- \(C^k([0,1]) \) with \(v \) being any **real-valued continuous** and \(k \)-times **differentiable** function defined on \([0, 1] \)
- \(P_d([0,1]) \) with \(v \) being any **polynomial** of degree \(d \) or smaller defined on \([0, 1] \)

A non-empty subset \(S \subseteq \mathcal{F} \) is a **subspace** of \(\mathcal{F} \) if \(au = bv \in S \) for all \(u, v \in S \) and scalars \(a, b \).

- \(0 \) is always \(\in S \)

Examples of subspaces:

- \(\{ v : v = [v_1, \ldots, v_k, 0, \ldots, 0] \in \mathbb{R}^d \} \) is a subspace of \(\mathbb{R}^d \)
- \(P_0([0,1]) \) is a subspace of \(C([0,1]) \)
- If \(S \) and \(T \) are both subspaces of \(\mathcal{F} \), then \(S \cap T \) and \(S + T = \{ v : v = u + w, u \in S, w \in T \} \) are also subspaces
- An affine subspace \(S_w \) w.r.t. a fixed vector \(w \in \mathcal{F} \) is \(\{ v : v = u + w, u \in S \} \)
A set of vectors \(\{ v_j \} \) is linearly independent (i.e., no vector in the set can be written as linear combination of the others) iff. \(\sum_j \alpha_j v_j = 0 \Rightarrow \alpha_j = 0, \forall j \).

- A set of linearly independent vectors \(\{ u_i \} \) in \(\mathcal{F} \) is a basis for subspace \(S \subseteq \mathcal{F} \) if every \(v \in S \) can be written as \(v = \sum \alpha_i u_i \).
- If \(\{ u_i \} \) is finite then the dimension of \(S \) is finite; otherwise, \(S \) is infinite-dimensional.

Examples of bases:
- For \(\mathbb{R}^d \), the set of unit vectors \(\{ e_i \}_{i=1}^d \) where \(e_i \) has 1 on the \(i \)-th entry and 0 elsewhere.
- \(P_d([0,1]) \) is \((d+1) \)-dimensional with basis \(\{ u_i(x) \}_{i=0}^d \) where \(u_i(x) = x^i \).

Normed Vector Spaces & Banach Spaces

A normed vector space is one equipped with a functional mapping \(\| \cdot \| : \mathcal{F} \to \mathbb{R} \) s.t. for any \(u, v \in \mathcal{F} \) and scalar \(\alpha \in \mathbb{R} \):

- \(\| u \| \geq 0 \)
- \(\| u \| = 0 \iff u = 0 \)
- \(\| \alpha u \| = |\alpha| \cdot \| u \| \)
- \(\| u + v \| \leq \| u \| + \| v \| \)

Examples of normed vector spaces:

- \(\mathbb{R}^d \) with p-norm \(\| x \|_p = \left(\sum_{i=1}^d |x_i|^p \right)^{\frac{1}{p}} \), \(p \geq 1 \)
- \(C([0,1]) \) with norm \(\| f \|_{L^\infty} = \sup_{x \in [0,1]} |f(x)| \) or \(\| f \|_{L^1} = \int_0^1 |f(x)| \, dx \) or \(\| f \|_{L^2} = \left(\int_0^1 f^2(x) \, dx \right)^{\frac{1}{2}} \)
- \(C^1([0,1]) \) with norm \(\| f \| = \sup_{x \in [0,1]} |f(x)| + \sup_{x \in [0,1]} |f'(x)| \)
- \(BV([0,1]) \) with norm \(\| f \| = \| f(0) \| + TV(f) \) where:
 - \(TV(f) = \sup_{P \subseteq \mathbb{P}} \sum_{i=0}^{n-1} \| f(x_{i+1}) - f(x_i) \| \)
 - \(\mathbb{P} \) is the set of all partitions of \([0,1] \) and \(0 \leq x_0 \leq \cdots \leq x_n = 1 \) are the boundaries of partition \(P \)

Given a norm, one can define \(d(u, v) = \| u - v \| \) to measure the distance between two vectors.

- A sequence \(\{ v_n \}_{n \geq 1} \) in \(\mathcal{F} \) is said to converge to \(v \in \mathcal{F} \) if \(\lim_{n \to \infty} \| v_n - v \| = 0 \)
- A subspace \(S \subseteq \mathcal{F} \) is closed iff. every convergent sequence in \(S \) has its limit point in \(S \)
- A sequence \(\{ v_n \}_{n \geq 1} \) in \(\mathcal{F} \) is Cauchy if for any \(\epsilon > 0 \), there exists \(N(\epsilon) \in \mathbb{N} \) s.t. for any \(m, n \geq N(\epsilon) \), we have \(\| v_m - v_n \| < \epsilon \)

A Banach Space is a normed vector space that is complete: every Cauchy sequence in \(\mathcal{F} \) converges to limit points in \(\mathcal{F} \).

Examples of Banach/non-Banach spaces:

- \(\mathbb{R} \) with absolute-value norm is Banach
- \(\mathbb{R}^d \) with p-norm, \(p \geq 1 \) is Banach
- \(C([0,1]) \) with norm \(\| f \|_{L^\infty} \) is Banach
- \(C^1([0,1]) \) with norm \(\| f \|_{L^1} \) is NOT Banach

Hilbert Spaces

We can equip a vector space with an inner product operator \(\langle \cdot, \cdot \rangle \) from \(\mathcal{F} \times \mathcal{F} \to \mathbb{R} \) s.t. for any \(u, v, w \in \mathcal{F} \) and any scalar \(\alpha, \beta \):

- \(\langle u, v \rangle = \langle v, u \rangle \) (symmetry)
- \(\langle \alpha u + \beta v, w \rangle = \alpha \langle u, w \rangle + \beta \langle v, w \rangle \) (linearity)
- \(\langle v, v \rangle > 0 \) if \(v \neq 0 \) (positive-definite)

The inner product induces an intuitive norm \(\| v \| = \sqrt{\langle v, v \rangle} \). A Hilbert space is a Banach space that is complete w.r.t. this norm. Examples of Hilbert/non-Hilbert spaces:

- \(\mathbb{R}^n \) with inner product \(\langle u, v \rangle = \sum u_i v_i \) is Hilbert
- \(L^1([0,1]) \) is NOT Hilbert
- \(L^2([0,1]) \) with inner product \(\langle f, g \rangle = \int f(x) g(x) \, dx \) is Hilbert
- \(P([0,1]) \) with inner product \(\langle f, g \rangle = \int f(x) g(x) \, dx \)
 - \(P([0,1]) \) is a subspace of \(L^2([0,1]) \)
Hilbert spaces have many interesting properties related to geometric intuitions:

- **Orthogonality**: Two vectors \(u, v \in \mathcal{H} \) are orthogonal if \(\langle u, v \rangle = 0 \), denoted \(u \perp v \)
 - \(u \) is orthogonal to a subspace \(S \subseteq \mathcal{H} \) if \(u \perp v \) for all \(v \in S \)
- **Pythagorean Theorem**: If \(u \perp v \), then \(||u + v||^2 = ||u||^2 + ||v||^2 \)
- **Parallelogram Law**: For any \(u, v \in \mathcal{H} \), \(||u + v||^2 + ||u - v||^2 = 2(||u||^2 + ||v||^2) \)

Lecture 23. Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Space (RKHS)

A Hilbert space \(\mathcal{H} \) of functions on domain \(X \) is said to be a **Reproducing Kernel Hilbert Space (RKHS)** if there is a function \(k \) defined on \(X \times X \)’s.t.:

- \(k(\cdot, x) \in \mathcal{H} \) for all \(x \in X \)
- \(\langle f, k(\cdot, x) \rangle = f(x) \) for all \(f \in \mathcal{H} \)
 - \(\langle k(\cdot, x'), k(\cdot, x) \rangle = k(x, x') \)
- Such a function \(k \) is called a **reproducing kernel**

Examples of RKHS and their kernel:

- \(\mathbb{R}^d \): domain \(X = \{1, \ldots, d\} \)
 - \(k(i, j) = 1 \) if \(i = j \) and 0 otherwise
- \(\mathcal{H}^1[0, 1] = \{ f : [0, 1] \to \mathbb{R}, f(0) = 0, \|f\|_X < \infty \} \) with inner product \(\langle f, g \rangle = \int f^{(1)}(u)g^{(1)}(u)du \)
 - \(k(x, x') = \min(x, x') = \int_0^x 1_{[0,x']}(u)du \)

Construction of RKHS

We can construct an RKHS by starting with a **positive-semidefinite (PSD) kernel function** \(k : X \times X \to \mathbb{R} \) where for all \(n \geq 1 \) and \(\{x_i\}_{i=1}^n \subseteq X \), the \(n \times n \) matrix \(K_{ij} = k(x_i, x_j) \) is PSD.

- Consider functions of the form \(f(\cdot) = \sum_{i=1}^n \alpha_i k(\cdot, x_i) \)
 - The set of all such functions is a vector space, denoted as \(\tilde{\mathcal{H}} \)
- Define the inner product on \(\tilde{\mathcal{H}} \) as \(\langle f, \tilde{f} \rangle_{\tilde{\mathcal{H}}} := \sum_{i=1}^n \sum_{j=1}^n \alpha_i \tilde{\alpha}_j k(x_i, \tilde{x}_j) \)
- We complete \(\tilde{\mathcal{H}} \) by including limits of all Cauchy sequences in \(\tilde{\mathcal{H}} \) and thus get \(\mathcal{H} \) which is an RKHS
 - The inner-product norm is \(\|f\|_H = \sum_{i,j=1}^n \alpha_i \alpha_j k(x_i, x_j) \)
- Any RKHS has a unique kernel \(k \)

Examples of PSD kernels:

- **Linear kernel**: \(X = \mathbb{R}^d \)
 - \(k(x_1, x_2) = \langle x_1, x_2 \rangle = x_1^T x_2 \)
 - \(f(x) = \sum_{i=1}^n \alpha_i k(x, x_i) = (\sum_{i=1}^n \alpha_i x_i^T) x \)
- **Polynomial kernel**: \(X = \mathbb{R}^d \)
 - \(k(x_1, x_2) = (\langle x_1, x_2 \rangle)^p = (x_1^T x_2)^p \)
 - Consider the case of \(p = 2 \), \(k(x_1, x_2) = \langle \phi(x_1), \phi(x_2) \rangle \) where \(\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2} x_1 x_2 \end{bmatrix} \) is a **feature map**
 - Here \(p = 2 \), meaning a 3-dimensional feature \(\phi(x) = \begin{bmatrix} x_1^2 \\ x_2^2 \\ \sqrt{2} x_1 x_2 \end{bmatrix} \)
 - By mapping data to higher-dimensional features, previously non-linearly-separable data may become linearly-separable
 - \(k(x_1, x_2) = P(\langle x_1, x_2 \rangle) \), i.e., a polynomial of \(x_1^T x_2 \); Example: \((1 + x_1^T x_2)^7 \)
These map to higher-dimensional features, e.g., \(\phi(x) = \frac{1}{\sqrt{2x_d}} \)

\[
 f(x) = \sum_{i=1}^{n} \alpha_i k(x, x_i) = (\sum_{i=1}^{n} \alpha_i \phi(x_i))^T \phi(x)
\]

- **Gaussian kernel:** let \(\alpha > 0 \)
 - \(k(x_1, x_2) = e^{-\alpha \|x_1 - x_2\|^2} \)
- **Laplace kernel:**
 - \(k(x_1, x_2) = e^{-\alpha \|x_1 - x_2\|} \)

The Representer Theorem

Let us consider the problem of learning in a potentially infinite RKHS \(\mathcal{H} \) with kernel \(k \), where the goal is to find a function \(f \in \mathcal{H} \) that best fits the set of training data and has a small norm.

For any data \(\{ (x_i, y_i) \}_{i=1}^{n} \) and any continuous loss function \(l \), the **representer theorem** states that:

- There exists \(f \in \mathcal{H} \) that minimizes \(\sum_{i=1}^{n} l(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}}^2 \), \(\lambda > 0 \)
- And that \(f \) has a representation \(f(\cdot) = \sum_{i=1}^{n} \alpha_i k(\cdot, x_i) \), where \(\alpha_1, \ldots, \alpha_n \in \mathbb{R} \)
 - In other words, the solution is a linear combination of the functions \(k(\cdot, x_1), \ldots, k(\cdot, x_n) \)
 - All our previous results in finite-parameters linear modeling can apply in the RKHS setting -- this is referred to as the **kernel trick**
- If the loss function \(l \) is convex, the solution is unique

Let \(K \) denote the \(n \times n \) matrix with \(i, j \)-th entry \(k(x_i, x_j) \) and let \(\alpha \in \mathbb{R}^n \) be a vector with \(i \)-th entry \(\alpha_i \). We can then write the norm as \(\|f\|_{\mathcal{H}} = \alpha^T K \alpha \). We can find the solution by solving the optimization problem:

\[
 \min_{\alpha \in \mathbb{R}^n} \sum_{i=1}^{n} l(y_i, \sum_{j=1}^{n} \alpha_j k(x_i, x_j)) + \alpha^T K \alpha
\]

using techniques such as gradient descent.

Lecture 24. Analysis of RKHS Methods

Rademacher Complexity Bounds

The representer theorem shows that \(\hat{f}(\cdot) = \sum_{i=1}^{n} \hat{\alpha}_i k(\cdot, x_i) \) is a solution to \(\min_{f \in \mathcal{H}} \sum_{i=1}^{n} l(y_i, f(x_i)) + \lambda \|f\|_{\mathcal{H}}^2 \).

Recall that let loss \(l \) be an \(L \)-Lipschitz function.

- The Rademacher complexity gives that with probability at least \(1 - \delta \):
 \[
 \sup_{f \in \mathcal{F}} (R(f) - \hat{R}_n(f)) \leq 2LR_{\alpha}(\mathcal{F}) + C \sqrt{\frac{\log(1/\delta)}{2n}}
 \]
 - where \(R_{\alpha}(\mathcal{F}) = \mathbb{E}[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \sigma_i f(x_i)] \).

Applying this to the constrained class of functions \(\mathcal{H}_B = \{ f \in \mathcal{H} : \|f\|_{\mathcal{H}} \leq B \} \):

- It yields a **generalization bound** of the following form:
 \[
 R(\hat{f}) \leq \hat{R}(\hat{f}) + 2LR_{\alpha}(\mathcal{H}_B) + C \sqrt{\frac{\log(1/\delta)}{2n}}
 \]
 - \(\hat{f} \) is the training loss minimizer function
 - \(\hat{R}(\hat{f}) \) is the train error; \(R(\hat{f}) \) is the test error

Recall that this bound requires losses be bounded in \([0, C] \); to check this:

- The reproducing probability yields \(\|k(\cdot, x_i)\|_{\mathcal{H}}^2 \leq \sup_x k(x, x) \)
- By Cauchy-Schwartz, we have \(|y_i f(x_i)| \leq \|f\|_{\mathcal{H}} \|k(\cdot, x_i)\|_{\mathcal{H}} \leq B \sup_x \sqrt{k(x, x)} \)
- Let \(C \) be the upper bound on the loss function over the range \([\pm \sup_x \sqrt{k(x, x)}] \), then we can bound the Rademacher complexity of \(\mathcal{H}_B \) as follows:
Put together, we have shown that with probability at least 1 − δ:

\[\mathbb{R}(\hat{f}) \leq \hat{R}(\hat{f}) + \frac{2LB}{\sqrt{n}} \sup_x \sqrt{k(x, x)} + C \sqrt{\frac{\log(1/\delta)}{2n}} \]

- For example, on logistic or hinge loss and a radial kernel like the Gaussian or Laplacian kernel, we have
 \[\mathbb{R}(\hat{f}) \leq \hat{R}(\hat{f}) + \frac{2B}{\sqrt{n}} + (1 + B) \sqrt{\frac{\log(1/\delta)}{2n}} \]
- In general, this analysis shows that learning is well-posed (won’t suffer from overfitting) if \(\frac{B}{\sqrt{n}} \) is small

Fourier Transform Study on Kernel Functions

The Rademacher complexity bound depends on the maximum value of the kernel function, but otherwise does not reflect particular characteristics of the kernel function.

- Consider translation-invariant kernels as \(k(x, x') = k(x - x') \), i.e., those that only depend on the difference between \(x \) and \(x' \)
- Using Fourier transforms, we can show that different kernels can have dramatically different decay characteristics

Lecture 25. Neural Networks (NNs)

Neural Network Function Spaces

Assume with the common activation function – Rectified Linear Unit (ReLU), defined by \(\sigma(\cdot) = \max\{0, \cdot\} \), a two-layer neural network is a function of the form:

\[f(x) = \sum_{j=1}^{m} v_j \sigma(w_j^T x + b_j), \forall x \in \mathbb{R}^d \]

- \(v_j, w_j, b_j \) are trainable parameters
- for notational convenience we append the bias \(b_j \) to the weight vector \(w_j \) and append a 1 to \(x \) in following discussion

The set of neural network functions form a vector space:

\[\mathcal{F} = \{ f : f(x) = \sum_{j=1}^{m} v_j \sigma(w_j^T x), m \geq 1, w_j \in \mathbb{R}^{d-1}, v_j \in \mathbb{R} \} \]

- The most common regularization norm is “weight decay”, equivalent to having 2-norm \(||f|| = ||w||_2 \) on a vector containing all the weights of \(f \), but this is not a valid function norm
- We can scale the input and output weights of the \(j \)-th neuron by \(\alpha_j > 0 \) and \(\frac{1}{\alpha_j} \) without affecting the neural network function, giving us the optimization \(\min_{f, \alpha} \sum_{i=1}^{n} l(y_i, f(x_i)) + \frac{1}{2} \sum_{j=1}^{m} (\alpha_j^2 ||w_j||_2^2 + \alpha_j^2 ||v_j||^2) \)
 - The regularization term is smallest for \(\alpha_j^2 = ||v_j||_2/||w_j||_2 \)
 - So the solution to the optimization \(\min_{f, \alpha} \sum_{i=1}^{n} l(y_i, f(x_i)) + \lambda \sum_{j=1}^{m} ||v_j||_2^2 \) are equivalent to the above
 - \(\Rightarrow \) the “path-norm” of the network: \(||f|| = \sum_{j=1}^{m} ||v_j||_2 \)

ReLU Neural Network Banach Space

Consider the 1-D case, fix \(||w_j||_1 = 1 \) and absorb its scale into \(v_j \), the path norm is simply \(\sum_{j=1}^{m} |v_j| \):

- We can write \(f(x) = \sum_{j=1}^{m} v_j |w_j| \sigma(\frac{w_j}{|w_j|} (x + \frac{b_j}{|w_j|})) \)
- \(\Rightarrow f'(x) = \sum_{j=1}^{m} v_j |w_j| u(\frac{w_j}{|w_j|} (x + \frac{b_j}{|w_j|})) \)
- The total variation of such a function is \(TV(f') = \sum_{j=1}^{m} |v_j| |w_j| \)
 - In other words, in the 1-D case the path-norm is equal to the TV of \(f' \)
 - The Banach space of functions with derivatives of finite total variation is called \(BV^2(\mathbb{R}) \) – this is the ReLU neural network Banach space
Lecture 26. NN Approximation & Generalization Bounds

ReLU Neural Network Banach Space

Assume \(|w|_2 = 1\) and absorb its scale into \(v\), the vectors in \(\mathbb{R}^{d-1}\) satisfying \(|w|_2 = 1\) is the surface of unit sphere, denoted by \(S^d\).

- Let \(\mathcal{F}\) be the space of all functions of the form \(f(x) = \int \sigma(w^T x)dv(w)\) where \(v(w)\) is a finite measure on \(S^d\)
 - The measure \(v\) plays the role of the output weights
 - If we take the measure \(dv(w) = \sum_{j=1}^{m} v_j \delta(w - w_j)\), the integral produces the finite-width neural network \(f(x) = \sum_{j=1}^{m} v_j \sigma(w_j^T x)\)

- Split the measure into positive and negative parts \(v = v^+ + v^-\)
 - This suggests the norm \(\|f\| = \int_{S^d} dv^+(w) - \int_{S^d} dv^-(w)\)
 - For a finite-width neural network, \(\|f\| = \sum_{j=1}^{m} |v_j|\)
 - To eliminate the problem of non-uniqueness, take the infimum over this

- Equipped with this \(\|f\|\), \(\mathcal{F}\) is a Banach space written as
 \[
 \mathcal{F} = \{ f : f(x) = \int \sigma(w^T x)dv(w), \|f\| < \infty \}
 \]
 - When \(d = 1\), this is \(BV^2\) as discussed in the last section

Approximating Functions in \(\mathcal{F}\)

In general, and \(f \in \mathcal{F}\) is represented by an infinite-width neural network. In practice, we approximate it. Let \(\mathcal{F}_m\) denote the set of all neural networks with width at most \(m\).

- For any \(f \in \mathcal{F}\), consider \(\min_{f_m \in \mathcal{F}_m} \|f - f_m\|_{L^p(\Omega)}\)
 - where \(\|g\|_{L^p(\Omega)} = \int_{\Omega} |g(x)|^p dx\) for some bounded domain \(\Omega \subset \mathbb{R}^d\)
 - A small approximation error means good approximation using \(f_m\) to \(f\)

- It can be proven that there exists a constant \(C_0 > 0\) such that for every \(m \geq 1\) and any \(f \in \mathcal{F}\), there is a width-\(m\) neural network satisfying \(\|f - f_m\|_{L^p(\Omega)}^2 \leq \frac{C_0}{m}\)

Generalization Bounds for Neural Networks

Consider the class of 2-layer neural networks:

\[
\mathcal{F}_C = \{ f : f(x) = \sum_{j=1}^{m} v_j \sigma(w_j^T x), m \geq 1, \sum_{j=1}^{m} |v_j||w_j| \leq C \}
\]

- It can be shown that the empirical Rademacher complexity of \(\mathcal{F}_C\) satisfies
 \[\hat{\text{Rad}}_n(\mathcal{F}_C(x_1, \ldots, x_n)) \leq \frac{2C}{n} \sqrt{\sum_{i=1}^{n} |x_i|^2}\]

- Note that this bound does not involve \(m\) (#neurons), but rather depends on the scale of weights
 - Indicating that having a large number of neurons does not necessarily negatively impact the ability of neural networks to generalize well