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Lecture 1. Probability Basics & Binary Indicator

Basic Probability Calculus

Let  be Random Variables (RVs).

Joint probability: 

Marginal probability:  if discrete or  if continuous

Conditional probability: 

If  are independent, then 

Expectation & Variance

Assume discrete random variables.

Expectation of : 

 is not a function of  and  in general

If  are independent, then 

Conditional expectation: 

If  are independent, then 

Variance of : 



Sum of Random Variables

Let  be random variables.

 is the covariance between 

If the 's are independent, 

Let  be the binary indicator variable of event .𝟙

The empirical probability of event  happening is 𝟙

𝟙

Meaning the empirical probability is an unbiased estimator of the true probability

𝟙

Meaning if sample size  is small, however, it may have a large variance

Lecture 2. Discrete Distributions & Classification

Common Discrete Distributions

Common discrete probability distributions:

Bernoulli: binary variable  taking value 1 with probability 

Binomial: consider independent and identically distributed (i.i.d.) Bernoulli variables 

The sum of i.i.d. Bernoullis  follows a Binomial distribution: 

Multinomial: consider  i.i.d. random variables  that take values in 

𝟙

Let  be the number of times value  appears,  follows a Multinomial distribution: 

Poisson: non-negative integer-valued variable  with distribution:

Optimal Binary Classification

The goal of classification is to learn a mapping  from the feature space  to the label space .

The mapping  is called a classifier

Assume  and  in the following examples

We measure the error of a classifier using a loss function

e.g., the 0-1 loss 𝟙

The risk is defined to be the expectation of the loss: 

In the 0-1 loss case, 

In the 0-1 loss case, the total number of mistakes  is a binomially distributed RV



Performance of a classifier can be evaluated in terms of how close its risk is to the Bayes risk.

The Bayes risk

The Bayes classifier achieves the Bayes risk

where . We have .

Probability of error of the optimal classifier 

𝟙 𝟙

Classification Error Estimation

A common approach to estimate the error rate of classifier  is to evaluate on a test set  drawn i.i.d. from 

.

The empirical error rate is 𝟙

 has a Binomial distribution

Nearest Neighbor Classification

The nearest neighbor classifier labels a new point  by finding the closest point in the training set and assigning the

corresponding label of it.

The distance function can be any valid distance measure:

e.g., the Euclidean distance

, denoted as , is the asymptotic error

Histogram Classifier

The histogram classifier is based on a partitioning of a hypercube space into  smaller cubes of "bins" of equal size. Let

the bins be denoted , the classifier is an assignment of 0 or 1 to each bin:

A reasonable rule is to assign the majority vote of training examples that fall into each bin

i.e., if , label 1, otherwise label 0
𝟙

𝟙

Equivalently, we can have an estimator 𝟙

and classify according to if  or not; label 1 if 

The bias of histogram classifier tends to 0 as ; the variance tends to 0 as 

We say histogram classifiers are universally consistent, i.e., their error rate converges to the Bayes error rate

"Plug-in" Classifier

Let  be any approximation to , the "plug-in" classifier is:

Markov's Inequality

Let  be a nonnegative random variable, the Markov's inequality states that .

Jensen's Inequality

For any convex function , that is,  for any , we have Jensen's

inequality: .

Obvious results:  and 



Lecture 3. Multivariate Gaussian Models

Multivariate Gaussian (or Normal, MVN)

Let the feature space be , the MVN density function is given by:

where  is the mean and  is the covariance matrix. We write .

 is always positive-semi-definite in order to be a valid covariance matrix

Linear transformations of Gaussian random variables are also Gaussian

MVN Multi-class Classification

Consider features  of examples belonging to class , i.e., the class conditional distributions of , are all Gaussian: 

.

The optimal classification rule is 

By Bayes rule, 

 is the marginal probability that a random example belongs to class ; often called the prior probability

of class 

 is the marginal density of ; for classification of a given , this value is a constant

Therefore, the rule can be expressed as 

 is called class conditional likelihood of 

Consider the special case of binary classification:

This is called the log-likelihood ratio test (LRT).

For Gaussian class-conditional densities, the ratio is a quadratic function in , so the decision boundary is a

quadratic curve/surface in the feature space

For Gaussian class-conditional densities with equal covariances AND equal prior probabilities, the ratio simplifies

to:

which is a linear classifier (Fisher's linear discriminant).

 is the threshold of the test; LRT, with an appropriate threshold, is optimal

Lecture 4. Learning MVN Classifiers

"Plug-in" MVN Classifier

Consider a set of training data. Denote training data with label  as .

If we "plug-in" these estimates to obtain an MVN model for data in class , i.e., let  for all classes, we

obtain a "plug-in" MVN classifier.

Analysis of Probability of Error

Consider the simple setting  and .

The optimal classification rule after applying LRT is:



This achieves the minimum probability of error

(due to symmetry of the problem)

Note that , so the probability of error is equal to the probability that an RV 

 exceeds 

Apply Markov's inequality, 

Insight: the probability of error decreases as the distance between the means increases

Now consider a learning setup: we don't know the value of  but we have an estimator from training samples 

.

Plug-in the estimate, the probability of error is 

Since both  and  are RVs,  does not have a simple distribution

Decomposing into an offset + a zero-mean component: let  and , where 

 and 

Expand  and apply Markov's inequality, eventually all cross-terms vanish; taking the expectation first w.r.t. 

(consider  as given) and then w.r.t. , we have 

Notice that if , the bound is essentially equal to the one of the Bayes classifier 

Comparing it with histogram classifiers:

MVN plug-in classifiers require class-conditional densities to be strong MVNs and work well if the number of samples 

Histogram classifiers require nothing from data distributions but work well only if  the "curse of

dimensionality"

Empirical Mean & Covariance

Are they biased/unbiased estimators?

The empirical mean  is an unbiased estimator of 

The empirical covariance  is a biased estimator of 

, so 

As ,  is an asymptotically unbiased estimator of 

Lecture 5. Likelihood & Kullback-Leibler Divergence

Binary MVN Classification

Recall that binary MVN classification with equal covariances and equal prior probabilities yields an optimal linear classifier 

 if .

 is the squared Mahalanobis distance between the means

We can write the test statistic  as , where  is a zero-mean RV

The optimal classifier is  if , i.e.,  if 

###Kullback-Leibler (KL) Divergence

Denote the log-likelihood ratio as . We would like to derive a metric for intrisically describing the difficulty

of the classification problem.

Let  be the true distribution of  (which is either  or  in this case)



where  is the KL-divergence of distribution  from ; similarly for .

KL-divergence is non-negative, provable by convexity and Jensen's inequality

If ,  and here 

If ,  and here 

In general, KL-divergences are not symmetric: 

For binary MVN classification with equal covariances, we have 

, which is proportional to the squared Mahalanobis distance

between the means

Two classes are separable iff. the class-conditional densities do not overlap, i.e., the supports are disjoint subsets of

the feature space; in this case, the integrand in KL-divergence 's at those points is infinite, and 's are therefore not

well-defined

 is named the mutual information between  and 

If  and  are independent, this KL-divergence is 0

Lecture 6. Maximum Likelihood Estimation

Maximum Likelihood Estimate (MLE)

Maximum likelihood estimation is a common methodology for estimating the parameters of a probabilistic model family. Its

core principle is density estimation.

Consider a family of probability distributions indexed by parameter(s) . Given a bunch of observations data , we

would like to make an estimate  to pick the best model in the family that fits our data

The MLE chooses  

Viewing  as a function of , it is essentially just the class-conditional density function given the model

parameterized by a specific 

Viewing  as a function of , however, we say that it is the likelihood function for different  values to

generate the observed data 

Suppose , i.e., binary classification, MLE in this case is equivalent to LRT

Assume  for  samples and they are i.i.d., the MLE is:

, or equivalently, 

Can also express as minimization: 

It is possible that the true distribution  is not a member of the parametric family under consideration

Examples of MLE:

Let 

MLE 

TODO: Structured Mean, Poisson Mean, Linear Regression

MLE and KL-Divergence

MLE can be related with KL-divergence through the lens of loss functions:

We can view the negative log-likelihood function as a sum of "loss functions" 

, or simply , measures the loss incurred when using  to model 

The risk

The excess risk



This shows that  minimizes the risk. Consider  to be the optimal value of .

If  contains multiple i.i.d. observations , then the MLE is 

By the strong law of large numbers, for any ,  asymptotically

General technique of finding the MLE of :

1. Write out the likelihood function , or the log-likelihood form, or the negative form

2. Confirm that  is convex (concave). Do derivative  w.r.t.  and solve for 

Lecture 7. Sufficient Statistics

Definition of Sufficient Statistics

The idea is to find a lower-dimensional representation of the set of observations , denoted as , that alone carries all

the relevant information about model parameter .

Formally, given a model family parameterized by  and a set of observations 

Find a function  that preserves all information that we can use to estimate the best 

 is called a sufficient statistic of  for 

The distribution of  given  is independent of , i.e., 

Under MLE, the result  is exclusively based on the shape of the likelihood function. Any processing/compression

operations that preserve the shape will not affect the outcome of the estimation process -- this is the key idea of

sufficient statistics

Example of Bernoulli RVs where  and  is the number of 1's:

 is a sufficient statistic that carries all relevant information about 

 compresses  (  bits) to  (  bits)

A sufficient statistic is minimal if the dimension of  cannot be further reduced while still being sufficient.

Fisher-Neyman Factorization

Let  be an RV with density , the statistic  is sufficient iff. the density can be factorized as 

 where:

 is an arbitrary function of 

 is a function of  and only depends on  through 

Proof:  is independent of 

Example:

Bernoulli:  is sufficient for 

Poisson:  is sufficient for 

Gaussian: , the pair of sample empiricals  is sufficient for 

Uniforms: ,  and  are sufficient for 

and , respectively

𝟙

A sufficient statistic could also be derived from the density of a joint distribution of multiple distributions that share the

same parameters .

Rao-Blackwell Theorem

Assume  and  is a sufficient statistic for . Let  be an estimator of . The Rao-Blackwell

Theorem considers the mean square error :

Define ,

then , with equality iff.  with probability 1, i.e.,  is .

Proof through Jensen's inequality:



For any RVs  and , the smoothing property shows that 

By Jensen's inequality: 

Taking expectation of both sides w.r.t.  yields the desired result.

Lecture 8. Asymptotic Analysis of MLE

Convergence of Log-Likelihood to KL

Consider the MLE setting:

By the strong law of large numbers,  asymptotically

Let 

We can show that  asymptotically

Asymptotic Distribution of MLE

Assume that the data are generated by . The notation  means that as , the distribution of MLE 

 tends to the distribution .

It is shown that ,

where  is the Fisher-Information Matrix (FIM), whose elements are given by 

This tells that the distribution tends to a Gaussian distribution. Also,  is asymptotically unbiased. The asymptotic

covariance also decays, but the structure is determined by the FIM.

The FIM measures the curvature of the log-likelihood surface.

In the case where  is scalar, the FIM is simply the second derivative of log-likelihood

The more negative the FIM (curvature), the more sharply defined is the location of the maximum

 the fewer samples we need to obtain a good estimate of 

Review of Central Limit Theorem

If  are i.i.d. RVs with mean  and variance , then , meaning the

summation of them has a distribution that tends to a Gaussian.

Lecture 9. Generalized Linear Models

Linear Modeling Approach

Consider a labeled dataset . Suppose , meaning that , where  is a

function parameterized by .

Log-likelihood of  is 

Thus, the MLE of  is given by the least squares optimization: 

If we assume a linear model, i.e., , then we have the classical least squares problem

And the MLE is a solution to the linear system 

Generalized linear models (GLM) extend this linear modeling approach by allowing the conditional probability density to

take the exponential family form , where  is a convex function of .

The Exponential Family Models

The exponential family is a class of distributions with the form:

The parameter  is called the natural parameter of the distribution



 is a sufficient static

 is a normalization constant to ensure that the probability sums/integrates to 1

 is called the log partition function

 is the non-negative base measure; in many cases it is equal to 1

We take  here as a parametric function of , e.g.,  as a linear model

The negative log-likelihood of  is 

This is a convex function of 

The first term is linear and hence convex in 

It can be shown that  is convex in 

Generalized Linear Model Examples

Many classic distribution models can be expressed in this GLM framework:

Gaussian: 

 is the first part, 

This maps to classical least squares problem if we let 

Binomial: 

This maps to logistic regression because the function  is known as the logistic function

Multinomial: , where:𝟙

 is an RV that takes value  with probability  for 

 is the "one-hot" vector 𝟙 𝟙

 where  follows 

This maps to multinomial logistic regression problem

Exponential: 

Lecture 10. Linear Models Optimization

Common Loss Functions

In GLM, assume , recall that we have .

The  function here acts as a loss function that measures the error/distortion between  and the value predicted by 

 should be convex in 

The general form of the optimization is finding the MLE 

Common valid loss functions include:

Quadratic/Gaussian: 

In the context of binary classification, 

Absolute/Laplacian: 

In the context of binary classification, 

Logistic: 

Hinge: 

0/1-loss: 𝟙



Comparison in binary classification context:     

This is a non-convex loss function, but is ideal in binary classification context since its expected value is exactly

the probability of error

Other loss functions can be viewed as convex approximations to the 0/1-loss

Optimization Approaches

In general the above optimization problem does not have a closed-form solution.

We need to solve it by gradient descent (GD) or other iterative algorithms; say start from an initial 

In each iteration: 

 is a step size (or learning rate)

If  is convex in , then GD will converge to a global minimum if  is sufficiently small

If  is continuous but non-convex, then GD may converge to a (suboptimal) local minimum

If  is discrete, e.g. the 0/1-loss, then GD cannot be used to solve this optimization

In the special case of quadratic Gaussian loss, we do have a closed-form solution 

In practice, the dimension  is probably large and this solution is hard to compute, therefore iterative approaches

such as GD are still preferable

Lecture 11. Gradient Descent

Gradient Descent & Strong Convexity

The Landweber iteration is given by: 

which is equivalent to a GD method using Gaussian loss that involves all data points in each iteration

which is still prohibitive for real-word training dataset sizes

The step size plays an important role

Too big  may diverge; Too small  may take a long time

It can be shown that 

where  is the largest eigenvalue of 

meaning the sufficient condition for convergence is 

So the error converges exponentially in 

For a measure of the "sharpness" of convexity, we have the -strongly convex notation:

 is convex if 

A convex (but not strictly convex) function is allowed to have a "flat" region

 is -strongly convex if 

Stochastic Gradient Descent

Incremental versions of GD process just one or a small batch of samples at each step, making them scalable to extremely

large datasets and problem sizes. Stochastic gradient descent (SGD) is such an incremental version; assume taking one

training example per step: 

Choices for the training example used at each step:



Round-robin: 

Uniformly at random: , hence the name "stochastic"

The expected value of the gradient is equal to the full gradient in this case

We should anticipate the algorithm will require  iterations to approach convergence, where  is the number of

feature dimensions

Subgradients for Non-differentiable 

The idea of gradient can be extended to support convex yet non-differentiable functions.

Recall that if  is differentiable at , for all  we have 

If  is non-differentiable at , we can similarly write 

where  is a subgradient; any vector that satisfies this inequality is a subgradient of  at 

The set of subgradients at  is called the differential set, denoted 

If  is differentiable at , there is only one subgradient, which is the gradient itself

Lecture 12. Analysis of Stochastic Gradient Descent

General SGD Iteration Analysis

Consider the more general problem of , where  is a convex function.

In the aforementioned least-squares case, 

The general SGD iteration is given by: 

If the training set is finite and the process makes passes over the entire training set (e.g., Round-Robin or

randomized), some bounds on convergence can be analyzed

Useful bounds:

With  (constant stepsize):

 is convex and  for all 

 is an arbitrary initial weight

With , we have 

Using a very small but constant stepsize may lead to slow initial convergence. One way around is to use a diminishing

stepsize, say :

We first modify our iteration step to include a projection step that ensures  always satisfy , some

magnitude bound:  if 

Then we have the following bound:

Lecture 13. Bayesian Inference

Bayesian Inference Components

Prior distribution  Posterior distribution of model parameter :

 is the likelihood of  when viewed as a function of 

 is the prior probability distribution of , reflecting our initial knowledge about  without observing any data

points

 is the marginal probability of , which can be viewed as a constant and is usually cancelled out when doing

estimation



 is the posterior probability distribution of , reflecting the probability of different values of  in

light of the observed data point 

Compared to MLE, using the posterior for estimation allows us to incorporate our prior knowledge about 

Bayesian inference methods consider the full posterior distribution

Maximum a Posteriori Estimator (MAP)

Maximizing the posterior produces the Maximum a Posteriori Estimator (MAP): .

 constant;  can be viewed as a regularization term

MAP biases the estimator towards  values that are higher-weighted in the prior distribution

Often meaning that MAP has lower variance and thus smaller overall mean-squared error -- a bias-variance

tradeoff

General technique of finding the MAP of :

1. Given the likelihood and the prior, write out the posterior distribution , or the log form, or the

negative form

2. Confirm that  is convex (concave). Do derivative w.r.t.  and solve for 

Taking the mean of the posterior produces the Posterior Mean Estimator (PM): .

Bias-Variance Decomposition of MSE

The mean-squared error (MSE) of any estimator  can be decomposed into:

The cross-term equals 0

 is the bias term

 is the variance term

Example: Twitter Poisson distribution with exponential prior 

The MAP is a "shrunken" version of the MLE in this case (scales down towards 0)

MVN in Bayesian Inference

If both the prior and the likelihood are Multivariate Gaussian (MVN), then the posterior distribution is also an MVN and can

be computed by simple linear-algebraic operations.

Assume the following setting:

Likelihood 

Prior 

We can derive the Wiener filter:

 so the marginal distribution is 

The cross-variance between  and , 

The MAP and PM are the same: 

Bayesian Linear Modeling

Applying the Bayesian approach to GLMs , we get:

Posterior 

The MAP of  is 



Different forms of priors  lead to different regularization, e.g.:

 leads to ridge regularization 

 leads to lasso regularization 

Lecture 14. Proximal Gradient Algorithms

Proximal Operator & Soft-Thresholding

Consider the general optimization problem ,

Both  and  are convex, and  is also differentiable

Special cases of  include the regularization term in GLMs

If  has a computationally efficient proximal operator with state-of-the-art performance, it is easy to implement

proximal gradient algorithms

The proximal operator for this problem is defined as .

The solution is a point close to input  with a relatively small  value

 controls the tradeoff between staying close to  v.s. minimizing 

Example: , then 

The optimization objective is separable in the coordinates

There's a closed-form solution known as the soft-threshold operation: 

Special Case of Squared Error Loss

Consider the special case where  is the squared error loss:

Notations:

 is the gradient descent iteration

Define 

We can obtain 

Define  which is the gradient descent iterate

 is in the proximal operator form

This sort of iterative optimization is often referred to as a proximal point algorithm

If , then  the ordinary GD iterate

General Proximal Gradient Algorithm

Now let  be any convex loss function, then 

 minimizes the sum of  and a separable quadratic approximation of  around 

The separability of this approximation is the key to efficient algorithms

If the regularization term  is also separable, e.g. , then we can write the optimization as a sum of individual

coordinates and solve for each scalar element separately

In the case , we have the iterative soft-thresholding algorithm (ISTA)

Solutions to ISTA tend to be sparse vectors

Analysis shows that  after  iterations.



Lecture 15. Analysis of Soft-Thresholding

Lasso Regression Soft-Thresholding Estimator

In the "Lasso" regression problem , suppose that  and that  is sparse,

then under certain assumptions on , it can be proven that the solution  is also sparse in the same locations.

Simplest setting: ,  where , the "direct" observation model

Its solution is the soft-thresholding estimator  which is much more

computationally efficient if  is sparse

Lecture 16. Concentration Inequalities

Central Limit Theorem

The Central Limit Theorem (CLT) is a classic result showing that the probability of the average of  i.i.d. RVs 

 tends to (i.e., ) a Gaussian with mean  and variance .

Chebyshev's Inequality

In many applications, we would like to say more about the distributional characteristics for finite values of .

One approach is to calculate the distribution of the average explicitly (a convolution), which is sometimes difficult or

impossible

Sometimes probability bounds are more useful:

Markov's Inequality: Let  be non-negative RV and , 

A generalization of Markov: Let  be any non-decreasing, non-negative function, 

This leads to Chebyshev's Inequality: Let ,

Applying Chebyshev's to the average, we have 

This shows that not only is the variance reduced by average, but the "tails" of the distribution (i.e., probability of

observing values more than  away from the mean) are getting smaller

Chebyshev's tail bound is loose. Under slightly stronger assumptions, much tighter bounds are possible:

Example: , , it can be proven that 

See below for examples of a few more exponential bounds

The Chernoff Method

More generally, if RVs  are bounded or sub-Gaussian (meaning the tails of probability distribution decay at least as fast as

Gaussian tails), then the tails of their average converge exponentially fast in  -- the Chernoff bounding method.

The key is to use the exponential function to generalize Markov's: 

Choose   to minimize this bound: , where 

Exponential bounds of this form can be derived explicitly for many classes of RVs:

Example: sub-Gaussian RVs  where  constant  s.t.  for all 

To verify the sub-Gaussian condition, use this theorem: If  holds for constants 

, and all  , then 

Example: Hoeffding's Inequality for bounded RVs 

If all  are bounded by , then it implies that  with 

For binary 0/1-valued RVs:

 in this case; if , then we know 



This result is usually referred to as the Chernoff Bound

Azuma-Hoeffding Inequality

Hoeffding's Inequality can be generalized in a few ways:

Using Doob's inequality, we can derive 

Consider a martingale sequence of RVs  that satisfies  for all 

Note that sums of 0-mean and independent RVs are a martingale sequence

Azuma's Inequality: Let  be a martingale sequence s.t.  bounded for all , then for

any , we have 

Application example: making a bet each day with 50/50 chance of receiving  or losing that ; Let  denote the

net gain on day  and let  be an indicator of outcome on day 

Independent betting strategy: always bet fixed , then 

Recursive betting strategy: on day , bet  for some , then  is a martingale

KL-Based Tail Bounds

It is possible to derive tighter bounds by optimizing the exponent. If the RVs belong to the exponential family, then the

resulting exponent turns out to be a KL-divergence.

Example: i.i.d. Bernoulli RVs

We can derive  by Markov's

Yielding 

Lecture 17. Probably Approximately Correct (PAC) Learning

Probably Approximately Correct (PAC) Learning

Let  denote a collection of prediction rules, where each  is a predictor function that maps from features to labels.

The aim of Probably Approximately Correct (PAC) Learning is to use the training data to select  from  s.t. its

predictions are probably almost as good as the best possible predictor in .

Best premise of PAC: training data are i.i.d. samples from an unknown distribution , 

Goal of PAC: select a predictor that minimizes the expected loss (i.e., risk), 

Most natural approach: choose  that minimizes the errors made on training data, 

This is called empirical risk minimization (ERM)

Note that ERM /  asymptotically approaches the risk

We assume the losses are bounded in the range .

Analysis of Empirical Risk Minimization (ERM)

Denote  and .

Markov/Chebyshev's weak upper bound: 

Improved using Chernoff's bounding technique:

If  for all , then the minimizer of  should be "close to" the minimizer of .

To guarantee this approximation, we need to consider 

This is called the union bound approach

To bound this probability, we will assume here that  is finite and denote #functions by 

i.e.,  is uniformly close to  over  with probability at least 

i.e.,  with probability at least 



Let 

We say  is -PAC:  with probability at least 

The error decreases with  and increases with 

If the number of samples , then the class is PAC-learnable

Lecture 18. PAC Learning in Infinite Classes

Generalization of PAC to Infinite Classes

Consider the binary classification scenario with a 0/1-loss, .

The PAC bound for a finite class  may be stated as:

For any  and for every , with probability at least , 

Now we generalize this sort of result to infinite model classes. The prime example of such classes are linear classifiers:

For arbitrary weights  and bias , 

However, observe that the classification result does not change while we move the hyperplane of the classifier

boundary until it just touches on or more of the points

There are effectively at most  unique linear classifiers for  points in 

 is called the shatter coefficient of 

 We can apply PAC on this finite quantity

But be careful that the quantity is data-dependent on the specific locations of 's, i.e., the errors are no longer

i.i.d. RVs

Rademacher Complexity

Let  be infinite. The goal is to derive a bound of the form .

This type of bounds are called uniform deviation bounds

For the linear classifiers case described above, we can show that:

The Rademacher complexity is a standard approach to construct uniform deviation bounds.

Let  be i.i.d. bounded RVs; here they are the prediction error using  on the -th example

McDiarmid's Bounded Difference Inequality: Let  be a function satisfying:

for some constant  for all . Then, if  are i.i.d. RVs, we have:

The function  satisfies the assumption with 

Then, to bound the expectation, introduce an independent "ghost sample" ; By Jensen's and by introducing a set of

independent Rademacher RVs  with , we can derive:



The last expression is the Rademacher complexity  of the class  with loss function 

If we take th expectation only over  while holding  fixed, we have the so-called empirical Rademacher

complexity

Putting it all together, we derive that with probability at least :

Applying it to binary classification, we can show .

Lecture 19. Vapnik-Chervornenkis Theory

Shatter Coefficient & VC Dimension

Recall the set of linear classifiers , :

However, for any finite training dataset of  examples, there are at most  possible ways that

linear classifiers can label the dataset

 is called the shatter coefficient of class  of linear classifiers

More generally, for any binary classification problem:

Each classifier produces a binary label sequence for  training examples

 at most  distinct sequences; but often, not all sequences can be generated by functions 

The shatter coefficient of class  is defined as:

, but often it is much smaller; it measures the "effective size" of  w.r.t. a finite training set of size 

 measures the "effective dimension" of 

The Vapnik-Chervonenkis dimension (VC dimension) of a class , , is defined as the largest integer  s.t. 

.

Sauer's Lemma: 

 of linear classifiers class in 

The VC Inequality

Let  be a class of binary classifiers with shatter coefficient .

For any , 

Or equivalently for any , with probability at least ,

Using Sauer's bound, we can state a generalization bound. the The VC Inequality states that:

For any  and every , with probability at least 

Proof of this inequality uses Massart's Inequality: let  with  and , then 

Lecture 20. Learning with Continuous Loss Functions

Generalization Bounds for Continuous Loss

Rademacher complexity bounds are interesting only if  decays as  grows.

For continuous loss functions, e.g.:



Hinge: 

Logistic: 

Let 

We will bound  in terms of , and then bound 

Assume the loss  is -Lipschitz: , then  for the continuous

convex 's we listed above

Hinge and logistic losses are 1-Lipschitz functions

Applying this to linear classifiers , with  and .

Assumptions:

Let  be the set of such 's, 

Let  be a class of linear classifiers from , 

Assume the loss  is -Lipschitz

Then we have the bound 

Proof of  uses Cauchy-Schwarz Inequality and Jensen's Inequaility

To conclude, we have shown:

Assume  and , and let  be a solution to the convex optimization problem 

Then with probability at least , 

Similar arguments hold for the logistic loss -- just replace the term in the sum

Lecture 21. Introduction to Function Spaces

Function Spaces & Norm

A function space is a set of functions on  with certain parameters/construction restrictions.

The function space of all homogeneous linear functions is 

We can limit this further by 

 with an appropriate regularization

parameter 

More generally, let  denote the norm of function .

Norms map functions to real numbers, and that

If , then 

Norms based on integrals or derivative are common

E.g., 

Given a norm, we can define a function space  and classes 

Consider learning with this class,  or 

Constructions of Function Classes

There are many ways of constructing function spaces and classes:

Parametric classes: the simplest way to construct a function class is in terms of a set of parameters or weights:

Example: a neural network layer space

Input weights , output weights , and biases  are learnable paramters

We could further limit this class by placing constraints on the size of weights and biases



Atomic classes: combinations of atom functions

Consider a family of parameterized functions  -- we call these functions atoms

We then take weighted combinations of atoms to synthesize more complex functions

Examples of atoms:

Neurons in a neural network

Fourier basis functions: 

Examples of atomic class:

Nonparametric classes: given a function norm  we can define 

Examples of norms:

, giving 

, giving 

A common approach in practice is to approximate functions in such classes with parametric or atomic models

The Weierstrauss theorem states that if  is continuous on , then for any continuous  and any 

, there exists a polynomial  s.t. 

Lecture 22. Banach and Hilbert Spaces

Review of Vector Spaces

A vector space  is a set of elements (vectors) with addition and scalar multiplication operators satisfying: for any 

 and any scalars :

If , then 

null vector  s.t. , i.e., the additive identity

 s.t. 

If , then 

 where  denotese the multiplicative identity

Many other properties can be derived from above axioms, e.g., 

Examples of vector spaces:

 with ;  with  and each ; similarly 

 with  being any real-valued continuous function defined on 

 with  being any real-valued continuous and -times differentiable function defined on 

 with  being any polynomial of degree  or smaller defined on 

A non-empty subset  is a subspace of  if  for all  and scalars .

 is always 

Examples of subspaces:

 is a subspace of 

 is a subspace of 

If  and  are both subspaces of , then  and  are also subspaces

An affine subspace  w.r.t. a fixed vector  is 



A set of vectors  is linearly independent (i.e., no vector in the set can be written as linear combination of the others) iff. 

.

A set of linearly independent vectors  in  is a basis for subspace  if every  can be written as 

If  is finite then the dimension of  is finite; otherwise,  is infinite-dimensional

Examples of bases:

For , the set of unit vectors  where  has 1 on the -th entry and  elsewhere

 is -dimensional with basis  where 

Normed Vector Spaces & Banach Spaces

A normed vector space is one equipped with a functional mapping  s.t. for any  and scalar :

Examples of normed vector spaces:

: with -norm 

: with norm  or  or 

: with norm 

: with norm  where:

 is the set of all partitions of  and  are the boundaries of partition 

Given a norm, one can define  to measure the distance between two vectors.

A sequence  in  is said to converge to  if 

A subspace  is closed iff. every convergent sequence in  has its limit point in 

A sequence  in  is Cauchy if for any , there exists  s.t. for any , we have 

A Banach Space is a normed vector space that is complete: every Cauchy sequence in  converges to limit points in .

Examples of Banach/non-Banach spaces:

 with absolute-value norm is Banach

 with -norm,  is Banach

 with norm  is Banach

 with norm  is NOT Banach

Hilbert Spaces

We can equip a vector space with an inner product operator  from  s.t. for any  and any scalar 

:

 (symmetry)

 (linearity)

 if  (positive-definite)

The inner product induces an intuitive norm . A Hilbert space is a Banach space that is complete w.r.t. this

norm. Examples of Hilbert/non-Hilbert spaces:

 with inner product  is Hilbert

 is NOT Hilbert

 with inner product  is Hilbert

 with inner product 

 is a subspace of 



 is NOT Hilbert

Hilbert spaces have many interesting properties related to geometric intuitions:

Orthogonality: Two vectors  are orthogonal if , denoted 

 is orthognoal to an subspace  if  for all 

Pythagorean Theorem: If , then 

Parallelogram Law: For any , 

Lecture 23. Reproducing Kernel Hilbert Spaces

Reproducing Kernel Hilbert Space (RKHS)

A Hilbert space  of functions on domain  is said to be a Reproducing Kernel Hilbert Space (RKHS) if there is a function 

defined on  s.t.:

Such a function  is called a reproducing kernel

Examples of RKHS and their kernel:

: domain ,  if  and  otherwise

 with inner product : 

𝟙

Construction of RKHS

We can construct an RKHS by starting with a positive-semidefinite (PSD) kernel function  where for all 

 and , the  matrix  is PSD.

Consider functions of the form 

The set of all such functions is a vector space, denoted as 

Define the inner product on  as 

We complete  by including limits of all Cauchy sequences in  and thus get , which is an RKHS

The inner-product norm is 

Any RKHS has a unique kernel 

Examples of PSD kernels:

Linear kernel: 

Polynomial kernel: 

Consider the case of ,  where  is a feature map

Here , meaning a 3-dimensional feature 

By mapping data to higher-dimensional features, previously non-linearly-separable data may become

linearly-separable

, i.e., a polynomial of ; Example: 

https://xavierbourretsicotte.github.io/Kernel_feature_map.html


These map to higher-dimensional features, e.g., 

Gaussian kernel: let 

Laplace kernel:

The Representer Theorem

Let us consider the problem of learning in a potentially infinite RKHS  with kernel , where the goal is to find a function 

 that best fits the set of training data and has a small norm.

For any data  and any continuous loss function , the representer theorem states that:

There exists  that minimizes 

And that  has a representation , where 

In other words, the solution is a linear combination of the functions 

All our previous results in finite-parameters linear modeling can apply in the RKHS setting -- this is refered to as

the kernel trick

If the loss function  is convex, the solution is unique

Let  denote the  matrix with -th entry  and let  be a vector with -th entry . We can then

write the norm as . We can find the solution by solving the optimization problem:

using techniques such as gradient descent.

Lecture 24. Analysis of RKHS Methods

Rademacher Complexity Bounds

The representer theorem shows that  is a solution to .

Recall that let loss  be an -Lipschitz function.

The Rademacher complexity gives that with probability at least :

where .

Applying this to the constrained class of functions :

It yields a generalization bound of the following form:

 is the training loss minimizer function

 is the train error;  is the test error

Recall that this bound requires losses be bounded in ; to check this:

The reproducing probability yields 

By Cauchy-Schwartz, we have 

Let  be the upper bound on the loss function over the range , then we can bound the

Rademacher complexity of  as follows:



Put together, we have shown that with probability at least :

For example, on logistic or hinge loss and a radial kernel like the Gaussian or Laplacian kernel, we have 

In general, this analysis shows that learning is well-posed (won't suffer from overfitting) if  is small

Fourier Transform Study on Kernel Functions

The Rademacher complexity bound depends on the maximum value of the kernel function, but otherwise does not reflect

particular characteristics of the kernel function.

Consider translation-invariant kernels as , i.e., those that only depends on the difference

between  and 

Using Fourier transforms, we can show that different kernels can have dramatically different decay characteristics

Lecture 25. Neural Networks (NNs)

Neural Network Function Spaces

Assume with the common activation function -- Rectified Linear Unit (ReLU), defined by , a two-layer

neural network is a function of the form:

 are trainable parameters

for notational convenience we append the bias  to the weight vector w_j and append a  to  in following discussion

The set of neural network functions form a vector space:

The most common regularization norm is "weight decay", equivalent to having 2-norm  on a vector

containing all the weights of , but this is not a valid function norm

We can scale the input and output weights of the -th neuron by  and  without affecting the neural network

function, giving us the optimization 

The regularization term is smallest for 

So the solution to the optimization  are equivalent to the above

 the "path-norm" of the network: 

ReLU Neural Network Banach Space

Consider the 1-D case, fix  and absorb its scale into , the path norm is simply .

We can write 

The total variation of such a function is 

In other words, in the 1-D case the path-norm is equal to the TV of 

The Banach space of functions with derivatives of finite total variation is called  -- this is the ReLU neural

network Banach space



Lecture 26. NN Approximation & Generalization Bounds

ReLU Neural Network Banach Space

Assume  and absorb its scale into , the vectors in  satisfying  is the surface of unit sphere,

denoted by .

Let  be the space of all functions of the form  where  is a finite measure on 

The measure  plays the role of the output weights

If we take the measure , the integral produces the finite-width neural network 

Split the measure into positive and negative parts 

This suggests the norm 

For a finite-width neural network, 

To eliminate the problem of non-uniqueness, take the infimum over this

Equipped with this ,  is a Banach space written as

When , this is  as discussed in the last section

Approximating Functions in 

In general, and  is represented by an infinite-width neural network. In practice, we approximate it. Let  denote

the set of all neural networks with width at most .

For any , consider 

where  for some bounded domain 

A small approximation error means good approximation using  to 

It can be proven that there exists a constant  s.t. for every  and any , there is a width-  neural

network satisfying 

Generalization Bounds for Neural Networks

Consider the class of 2-layer neural networks:

It can be shown that the empirical Rademacher complexity of  satisfies

Note that this bound does not involve  (#neurons), but rather depends on the scale of weights

Indicating that  having a large number of neurons does not necessarily negatively impact the ability of neural

networks to generalize well


