
 Introduction to Machine Learning

Author: Guanzhou (Jose) Hu 胡冠洲 @ MIT 6.036

Teachers: see the teaching staff list here

 Introduction to Machine Learning
Introduction

High-Level Fundamentals
Different Settings of ML
Supervised Learning Basics
ML as Optimization Problem

Feature Representation
Quantifying Real World Data
Feature Transformation

Perceptron Algorithm
Perceptron Training Algorithm
Convergence Theorem

Linear Logistic Classifier
Sigmoid Function
Negative Log-Likelihood (NLL) Loss
Solve by Gradient Descent

Linear Regression
Ordinary Least Squares (OLS)
Ridge Regression
Solve by Gradient Descent
Stochastic Gradient Descent (SGD)

Neural Networks (NN)
Neural Net Basics
Adaptive Step-size
Regularization against Overfitting

Convolutional Neural Networks (CNN)
Filters & Channels
Subsampling
Typical CNN Architecture
Back-prop on CNN

Markov Decision Process (MDP)
State Machines
Definition of MDP
Finite Horizon
Infinite Horizon

Reinforcement Learning (RL)
Bandits & Model-Based Learning
Policy Search
Q-Learning

Recurrent Neural Networks (RNN)
Sequence-to-Sequence Learning
Backpropagation Thorugh Time (BPTT)
Gating Technique & LSTM

Recommender Systems

Introduction

The core idea behind machine learning (ML): Instead of "human writing a program to recognize a face" (which is hard), we
"write a program that analyzes data to decide how to recognize a face".

High-Level Fundamentals

It does not mean that human engineering becomes less important: instead, human plays a crucial role to frame the
problem:

Acquire & Organize data
Define space of possible solutions

https://lms.mitx.mit.edu/courses/course-v1:MITx+6.036+2020_Spring/courseware/welcome/6_036_Information_You_Should_Know/4?activate_block_id=block-v1%3AMITx%2B6.036%2B2020_Spring%2Btype%40vertical%2Bblock%40teaching_staff_vert

Characterize objective
Design & Tune learning algorithms
Apply algorithm to data (run it)
Validate the results

Conceptual basis: problem of induction, we assume that previously seen data will help us predict the future. Specifically,

Estimation (statistics)
Generalization (modeling)

A crucial link is feature representation: transform real-world data point into well-designed features .

Different Settings of ML

There are different problem settings of ML:

Supervised learning: we are given list of pairs (i.e., we know the answers of what we have
got), and when given a new , we should be able to predict a

Classification: is an element of a discrete set of values
Regression: is continuous

Unsupervised learning: we are given a data set , and we are expected to find some patterns or
structure inherent in it

Density estimation: samples are drawn independent and identically distributed (i.i.d.) from some distribution ,
and the goal is to predict ; sometimes serves as subroutines in other settings
Dimensionality reduction: the goal is to re-represent samples in lower dimentional space while retaining
information
Clustering: the goal is to find a partitioning (clustering) of the samples that groups "similar" samples

Reinforcement learning: using an agent to learn on the way by interacting with the environment w/o prior data (choices
affect both the reward & the ability to observe the environment)

Sequence learning: learn a state machine that when given input sequence , it generates desired output
sequence

Semi-supervised learning: based on supervised, we have an additional set of values with no known , but can still
use them to improve the performance

...

Supervised Learning Basics

Elements of supervised learning:

Hypothesis (model) : , where is the parameters

Loss function : how far are we from guess to actual?

Training set error : somehow summing over losses on training data, scoring how good is the model on the
training data

Example error:

Minimizing traning set error not necessarily guarantee a small error on testing set!

Corss-validation can be used when new data is expensive to get

Learning algorithm: taking in data set and generates (from) a "best" hypothesis

Be a clever human / Use optimization methods (which should converge)
An algorithm can take hyper-parameters as the configuration (e.g., # training iterations / error threshold)
Parameters are trained during training; Hyper-parameters are adjusted during validation

One thing to remember: evaluating a learning algorithm is different from evaluating a classifier! When we are evaluating
whether or not a learning algorithm is good enough - if 100 datapoints can already help us distinguish among those
algorithms, it does the work ;)

Cross validation procedure:

ML as Optimization Problem

We can generalize most of the ML problems into optimization problems:

Object function: , where captures all the parameters of the model (e.g., and in perceptron, weight matrices
in neural net, ...)
We want to find

The most typical objective function used in ML is:

The first term is averaged training error over our training set datapoints
 is the regularizer, which penalizes (using our experience) to relax overfitting

 is a hyper-parameter, which governs the degree to which we try to fit on data

Feature Representation

Data points' values in different dimensions represent their different features.

Quantifying Real World Data

To get data, the first step question would be: how can we quantify and formularize real-world stuff into numeric data that
can be used in ML training?

Real-world is numeric: simple, but pay attention to proper scaling (standardization:)

One-hot boolean representation for classes
Thermometer code to imply ordering

Factorizing the representations with domain knowledge and split separate stages into multiple features helps future
learning!

Feature Transformation

How the data are laid out depends on how we represent the features. Some non-separable data under lower dimensions
can be easily separated if we take proper transformation of their feature values into higher dimensions. For example, in
Perceptron algorithm, not-through-origin linearly separable data in -dimension can be transformed by appending a 1 to
the last dimension and make them through-origin linearly separable in -dimension.

Transforming feature representation (efficiently & meaningfully) is one of the fundamental parts of ML.

A systematic way of doing this is called kernel methods:

Polynormial basis: using -order basis = include a feature dimension for every possible product of different
dimensions of your original -dimensional input (with a 1 concatenated)

 Resulting # dimensions = # terms in the expansion of = # solutions to the equation "
" where are natural numbers =

e.g., appending a 1 as an extra dimension is equivalent to 1-order polynomial basis
...

DANGER: Transforming into too higher-dimensional space increases the risk of overfitting!

Perceptron Algorithm

The classic learning algorithm for linear classification (data separatable by a dimensional hyperplane).

Perceptron Training Algorithm

Use to denote a linear classifier, that is a hyperplane, and a point is classified as positive when
, vice versa.

cross_validate(D, k):

 divide D into k chunks

 for i = 1 to k:

 train h_i on D \ D_i

 compute "test" error E_i on D_i

 return averaged E

 is the norm vector, perpendicular to the hyperplane, and pointing to the positive side
 is the unit norm

 is the offset, which allows the hyperplane to not go through the origin

This defines a hypothesis class of linear classifiers .

Algorithm pseudocode:

Figure taken from MITx Week2.

Convergence Theorem

A dataset is said to be linearly separable if there is some s.t. all points are classified correctly. Perceptron
algorithm converges on datasets with linear separability.

The margin of a data point with respect to a separator is:

and the margin of a dataset is then defined as the minimum margin of its members:

The Perceptron Convergence Theorem states that,

If the dataset satisfies:

there is s.t. for all , and
 (all data points contained in a ball of radius)

Then perceptron algorithm will make at most mistakes.

Proof can be done by induction: denoting to be the hyperplane after we made mistakes, converges to
1.

That said, an extreme initial would still increase # mistake s the algorithm makes during a run.

Linear Logistic Classifier

(Logistic Regression) Still linear classification, but introduces continuity and derivatives, and uses optimization methods
to solve.

Sigmoid Function

Loss function used in Perceptron algorithm is a strict 0-1 loss. However, it is NP-hard to solve a 0-1 optimization problem
optimally. Thus, ML people come up with a way to "smooth" this loss: the Sigmoid function (Logistic function):

which "smoothes" out the 0-1 step function, and is differentiable (which gives the algorithm the ability to know "where
should I go to make the loss smaller?").

Figure of a standard sigmoid:

https://lms.mitx.mit.edu/courses/course-v1:MITx+6.036+2020_Spring/courseware/Week2/perceptron/1?activate_block_id=block-v1%3AMITx%2B6.036%2B2020_Spring%2Btype%40vertical%2Bblock%40perceptron_notes

This can give us a new hypothesis class of sigmoid linear separators . These separators give a
contiguous value in range , instead of discrete (+, -).

Setting a threshold value ? reduces it back to a linear separator; gives exactly a 0-1 loss bound
 controls how steep the curve is, and controls the offset of the central point

Negative Log-Likelihood (NLL) Loss

How can we define a loss function over the outputs of sigmoid function? Think of the sigmoid values as a probability that
the datapoint is classified as positive. Then, probability of making all things right is:

which is totally equivalent to

Because multiplications are hard to take the derivative, we want to convert this formula into a summation. This can be
done by taking the log. Then take the negative of it, and it gives the negative log-likelihood loss function (also called log loss
/ cross entropy):

Solve by Gradient Descent

Now we can formally defined our objective function:

Notice that a regularization term is added here to let the algorithm try a little bit less hard to classify really distant
datapoints.

We need a way to solve the optimization problem. The simplest solution is to use Gradient Descent (GD) algorithm. Details
omitted here.

where is the learning rate (step size), and iterations stop after error is suffiently small (threshold) or after enough #
iterations. The gradient for our logistic regression objective function can be simplified as:

Algorithm pseudocode in 1D:

Figure taken from MITx Week4.

(Batched) GD is pretty naive in optimization but it works well in ML. Several challenges:

Falling into local optima (objective function not convex, too small)
Not converging well (too large)
How to calculate the partial derivatives (gradient)?

Taking the sum at every step is still a little bit expensive. Sometimes, we use Stochastic GD (SGD), where in each
iteration we randomly pick one dimension of the parameters and only update that dimension. It helps the algorithm
to avoid getting stuck in local minima. Also, step size is now a function of # iterations which decreases over time
(adaptive learning rate), instead of a constant.

Linear Regression

https://lms.mitx.mit.edu/courses/course-v1:MITx+6.036+2020_Spring/courseware/Week4/gradient_descent/?child=first

So far, we have covered simple linear classification problems. Regression is another class of supervised-learning
problems where the outcome is no longer a discrete classification but contiguous value, i.e., or .

Ordinary Least Squares (OLS)

In linear regression, the hypothesis is simply (we do not take the sign or sigmoid function,
because we are not interested in discrete classification anymore). The simplest loss function we measure in linear
regression is called the Squared Error (SE):

and it provides the following advantages:

Penalizes both too-high and too-low predictions
Easy to take the derivative, and the worse, the bigger the derivative

Thus, the objective function looks like:

An analytical solution is by taking the derivative with respective to and set it to 0, which gives us a closed-form solution:

（

Ridge Regression

One problem with the analytical solutioni is that might not be invertible. To overcome this, we again include a
regularization term :

and setting its derivative to 0 gives:

where the matrix is adjusted by a "ridge" so that it is guaranteed to be invertible. (See MITx Week 5 notes for the detailed
procedure of solving the optimal theta.)

Solve by Gradient Descent

Another remaining problem with the analytical solution is that computing the inverse is in the complexity of . To
pursue better performance, we apply GD on :

Since an OLS objective function is convex, we are guaranteed to find the optimum. But the complexity is still high.

Stochastic Gradient Descent (SGD)

To further optimize for performance, we introduce Stochastic Gradient Descent (SGD). SGD applies when a gradient takes
the form of a sum. Instead of computing the whole sum at each step, we randomly sample one piece of the sum and
compute the gradient only for it.

Notice that the learning rate is now a function of for convergence purpose. Convergence to local optimum is almost
ensured if and . A simplest choice would be .

Two parts may contribute to the final test error:

Structural Error: hypothesis class itself does not contain a good solution
Estimation Error: not having enough data/not using regularization to specify well

A comprise between whole GD & stochastic GD is by using mini-batches of size , called batched GD (make sure the data is
randomly shuffled):

Neural Networks (NN)

Neural Net Basics

老生常谈了，实在不想再整了，盗个图 from this website.

Neuron: ; Neural net:

Formula:

Forward feeding:

A single neuron -

A neural net layer -
Overall objective -

Backward propagation:

One layer -

Weight initialization matters in neural nets because loss - weight function is normally not convex. We can easily fall into
local optima. It would be better to initialize the weights at random. Making networks bigger is another possible solution.

Whole training process looks like:

Figure taken from MITx Week6.

The purpose of activation function (non-linear) is that otherwise the net is equivalent to a single linear transformation.

Output layer activation function should be matched with the loss function we choose for our problem, e.g., using
sigmoid when our loss is NLL, and using softmax when our loss is NLLM
Choices for other layers: step function, ReLU , sigmoid , tanh , ...

An epoch of training is defined as "once through the training data" (or sometimes "once through a sample/mini-batch").

Adaptive Step-size

Adaptive step-size can better match SGD:

1. Momentum averages gradients over time and focus more on recent gradients and less on older gradients:

A running average of a sequence is defined as :

When is a constant, it is called a moving average:
. This average is exponentially more sensitive to recent

points

https://pathmind.com/wiki/neural-network
https://lms.mitx.mit.edu/courses/course-v1:MITx+6.036+2020_Spring/courseware/Week6/neural_networks/1?activate_block_id=block-v1%3AMITx%2B6.036%2B2020_Spring%2Btype%40vertical%2Bblock%40neural_networks_notes

When , then it is the true average of all data
Using the idea of moving average, we define Momentum as:

Then, we update the weight like:

2. Adagrad & Adadelta introduces the idea that we take big steps when we have low curvature (accelerates the training),
and small steps when we have high curvature (easier to fall into the optima):

Use a moving average to record current curvature, will be high when we are recently going through a curvy
region:

Then, we update the weight like:

Combining the above two techniques, we get to the Adam step-size update strategy:

and use the following weight upate rule:

Adam is a practical default used widely nowadays, but under certain circumstances, it may wreck the convergence
guarantee.

Regularization against Overfitting

Regularization is another important point to consider when we are using neural nets.

1. Weight decay: using the regularizer , then weights get updated like ,
which potentially helps on shrinking the weight

2. Early stopping: as it means, stop early on training data

3. Perturbing the data with a little gaussian-distributed perturbation

4. Dropout: randomly select a neuron and set its output to 0, thus randomly someone does not affect earlier layers

5. Batch normalization (BN):

The gradient explosion/diliminishing problem: gradient of objective respective to earlier layers' weights is
exponential of weights & derivative of activation function

Suppose we are doing mini-batches: Interpose a BN box between two layers which processes the output of
previous layer as:

Initially address the problem of covariate shift:

External: dataset's underlying distribution shifts (trained on a specific training set, but applied to a different
set with different distribution)
Internal: previous layer's weights change, so the next layer is exposed to a different distribution in the next
epoch

Also helps with easing gradient explosion/diliminishing

Also check unsupervised learning (e.g., autoencoders) & semi-supervised learning (e.g., GNNs).

Convolutional Neural Networks (CNN)

Advanced neural networks take use of our prior knowledge about the input structures / hypothesis space and use that to
enrich a standard (fully connected) neural net - so that we get better efficiency and performance.

CNNs are a specific kind of neural nets for signal processing scenarios. Suppose inputs are images, they take use of:

Pixel space locality: pixels taken into consideration to find a cat should be near one another

Translation invariance: pattern of pixels that characterizes a cat should be the same no matter where in image the cat
occurs

We will focus on images as inputs in the following subsections.

Filters & Channels

A filter a function . To implement a filter, we normally describe it as a convolution kernel
and slide this kernel over input pixels - that's how CNN gets its name. Examples:

1D left-edge detector:

2D edge detector:

We suppose using padding when doing the convolution.

A set of filters used in a CNN filtering layer is called a filter bank:

number of filters:
size of each filter: - each filter is a 3D tensor itself!
stride size: - we do a convolution every pixels away

It takes an tensor (i.e., a stack of images) and outputs an tensor (i.e., a stack of

shrinked images).

We normally call a high-dimensional matrix (especially 3D) a tensor, e.g., a stack of same-sized images is a tensor.
We sometimes call it channels.

The things to be adjusted in filtering layers are the filter values. Why filters are interesting? Because we only train on the
filter values which should be way fewer than using fully-connected weights. Our locality assumption states that the
mapping from input image pixels to output image pixels should only take effect locally.

Subsampling

Subsampling layers sample the images and make them smaller. Benefits:

Extract principal characteristics
Reduce the computation size

Mostly used in practice are max / min pooling. Max pooling by takes the max value in every region in original
image. This results in a image.

Typical CNN Architecture

Typical CNN architecture is as the following (this example is the LeNet architecture):

The first part is a combination of convolutions (filtering layers) with subsampling layers. After each filtering layer there is
normally a ReLU layer. The second part is a normal standard fully-connected neural net. The step from a stack of images
to fully-connected layers is called flattening.

Back-prop on CNN

Back-propagation on a filtering layer with one filter of size and 1-D input image of size follows:

where:

 is a matrix where the -th element is

 is an diagonal matrix where each diagonal element is a derivative of ReLU

 is an vector that is the derivative of the loss function

Markov Decision Process (MDP)

Now we go beyond "learning a pure mapping from input to output", and take a look at modeling things over time. These
models are called sequential / recurrent models.

State Machines

A state machine is a 6-tuple :

Two ways of using this structure:

Transducer: takes a sequence of inputs and produces a sequence of outputs

Input sequence:

Output sequence:

1.
2.
3. ...

Environment: modeling how a "robot" interacts with an environment

Functions now probably not deterministic
Example: Markov Decision Process (MDP)

Definition of MDP

A Markov decision process (MDP) is a special kind of state machine. Instead of a deterministic transition function, the
transition function in MDP is a function , where is the set of states and is the set of actions.

, giving the probability of going to state at time , when the old state was
 and I took action .

Key assumption behind this is: , i.e., the state captures the entire
history upto it.

Formally, an MDP is defined as a 4 tuple :

 is the set of all possible states
 is the set of all possible actions
 is the transition function defined as above

 is a reward function measuring how worthy is it to take action on state

Finite Horizon

 A horizon represents the number of time steps to go. It maybe finite / infinite. Given a finite horizon and a specific policy
, we define the evaluation of a policy as a value function : the expected sum of rewards given start in state and
execute policy for steps. A recursive way of calculating this:

1. ;
2.
3. ...
4.

To efficiently compute , we may want to use dynamic programming (using memos), filling the table from s to
s.

But what about taking different policies at different steps? An optimal policy when there are steps in the future is
one that satisfies:

There might be multiple optimal policies at a step (they behave equally good).

We then denote the collection of optimal policies for an entire horizon as .

A Q function is the expected sum of rewards given start in state , take action , and then behave optimally after
that (use optimal policies). A similar recursive way of calculating Q:

1. ;
2. ...
3.

Equivalently, the optimal policy can be defined as:

Infinite Horizon

For an infinite horizon, we use a "to-continue probability" (the discount factor) to model it: every step, we end the game
with probability .

Expected length of lifetime

A very important feature of this definition is that the expected lifetime does not depend on the time if we survived
today, the expected lifetime is still as long decision does not change overtime, so we only need one policy and thus
one value function

In such settings, the Q function can be defined as:

And the optimal policy is:

Since now Q depends on the value of Q itself, calculating the values of Q are essentially solving an equation! Thus, we can
use a similar idea to Newton's method to iteratively solve for these values, called the value iteration algorithm:

Figure taken from MITx Week9.

Theory guarantees its convergence. We can even run it asynchronously in parallel, and even we use stale
intermediate results, it still converges to optimal Q values.

Reinforcement Learning (RL)

Reinforcement learning is a similar setup where an agent interacts with the environment and tries to learn a good policy.
The environment (world) here is model as an MDP, but we do not know the exact parameters of that MDP, so we have to
learn it while interacting with it.

Bandits & Model-Based Learning

A -Armed Bandit problem is a classic math/statistics problem - a simplified version of this setting. The core tradeoff is
exploration vs. exploitation. Assume a "MDP casino":

MDP casino with many rooms (states)
Each room has bandit machines
When the agent pull an arm in room , it gets a reward , and then gets teleported to a room according to
some distribution

https://lms.mitx.mit.edu/courses/course-v1:MITx+6.036+2020_Spring/courseware/Week9/state_machines/9?activate_block_id=block-v1%3AMITx%2B6.036%2B2020_Spring%2Btype%40vertical%2Bblock%40MIT6036L08f_vert

This is almost the same MDP problem as above. The fundamental difference is that we do not know the rewards and the
transition distribution - we have to learn it by exploration.

Offline case: have a free "practice" period when we can ignore the reward values (not getting penalized) and trying to
find the optimal policy
Online case: we have the rewards in mind while learning. This is more like real world, but much harder to tackle with

In model-based learning with a discrete state space and action space , we observe the set of we have
experienced, and we estimate the transitions and rewards by:

 (we are using the Laplace correction)

Policy Search

In policy-based learning (policy search), we pick a parametric form of our policy:

where is the parameters which we can train on.

Then, we do gradient descent to minimize the objective function:

Policy search works even when the environment is not MDP.

Q-Learning

Q-learning adopts the value iteration algorithm on estimated and , and a learning rate :

Figure taken from MITx Week10.

There are several different strategies to select an action. A commonly used strategy is called -greedy:

What we can further do is that we can use a neural net to approximate the Q function. This is called function
approximation. The Q update step is then essentially a "gradient descent" training step, with as the
target value for input .

Naturally, we can also do such training in batch, using experience replay.

Recurrent Neural Networks (RNN)

Basically, an RNN is a state machine where we use a neural network to implement functions and :

Sequence-to-Sequence Learning

In supervised sequence-to-sequence learning, training dataset is a set of pairs of sequences , where:

 is a length- sequence of vectors

def select_action(s, Q):

 with probability 1-eps:

 return argmax_a Q(s, a) # Greedy.

 else:

 return one uniformly at random

https://lms.mitx.mit.edu/courses/course-v1:MITx+6.036+2020_Spring/courseware/Week9/state_machines/9?activate_block_id=block-v1%3AMITx%2B6.036%2B2020_Spring%2Btype%40vertical%2Bblock%40MIT6036L08f_vert

 is a length- sequence of vectors

Each pair contains an input sequence and an output sequence of the same length. (Different pairs can have different
lengths.) For each pair (which serves as one datapoint), we use the sum of losses of all elements in the sequence as the
loss:

where each single element loss is chosen based on the problem setting. We would like to minimize the following objective
function:

Parameter captures all the five weight matrices.

Backpropagation Thorugh Time (BPTT)

Training is done by Backpropagation Through Time (BPTT). For an input (a pair of sequences), it "unrolls" the recurrent
structure to the length of the sequences.

Figure taken from MITx Week11. in the figure corresponds to , in the figure corresponds to , and 's are guesses .

Since the same weight matrices are applied in every time step, the derivatives are a little bit tricky:

The underlined part, , is defined as:

which can be computed backward recursively. Base case: . The recursive step looks like:

In summary, in each epoch, we feed forward, compute the 's backward, then get the derivatives of loss to weights.

Gating Technique & LSTM

We further introduce the concept of gates in RNNs. A gate aims to control, for each component of the state, how much we
are taking in the new value and how much we are trying to remember the old value in a time step. More specifically, we
compute an extra gate vector:

https://lms.mitx.mit.edu/courses/course-v1:MITx+6.036+2020_Spring/courseware/Week11/rnn/1?activate_block_id=block-v1%3AMITx%2B6.036%2B2020_Spring%2Btype%40vertical%2Bblock%40recurrent_neural_networks_notes

Long Short-Term Memory (LSTM) is one of the most successful examples of using the gating technique.

Recommender Systems

Recommender systems are an active area of machine learning research and an important example of modern big data
technology.

Content-based: Find feature representation of items and predict ratings Supervised regression problem, may
suffer from lack of previous ratings data

Collaborative filtering: Use relationships between people and collaboratively adopt others' ratings Maybe GNNs?

An example simple model would be that we have a sparse dataset of dimension, where we have users
and items, and we'd like to predict:

where:

 is , modeling general happiness of each user on each of the features
 is , modeling how much each item contains each of the features

We are modeling as a rank- approximation of to maintain generality

Objective function looks like:

We can train by coordinate descent, i.e., GD by one coordinate per step, alternating between Us and Vs.

