
GDB Cheatsheet (Basic)
Author: Guanzhou Jose Hu 胡冠洲 @ ShanghaiTech

GNU's official doc: https://sourceware.org/gdb/current/onlinedocs/gdb/.

Remember to compile with debugging info by setting flag -g .

Invoke / Exit GDB

$ gdb your_executable ; $ gdb -p pid to invoke GDB

often used trick: $ gdb -p $(pgrep exec_name) to debug a running executable
flag -f forces GDB to catch every child process that the executable forks

target remote host:port

link a remote target who is listening for GDB connection on host:port
commonly used pattern is localhost:1234 for debugging a kernel with QEMU

r [args]

start running the program
command-line args to the program should be provided here, not at GDB invocation

q

quit GDB, need confirmation if program is still running

Breakpoints

b function ; b file:function

break at function entrance, right after stack setup
file name can be a path

b file:line

break at line in file, right before this line is executed

b ... if cond

conditionally break if cond != 0 when reaching the breakpoint
cond can be any valid expression

b *addr

break at code instruction at address addr

rbreak regex ; rbreak file:regex

match function name with regex expression
regex specification follows $ man grep

info b

view the info of all breakpoints

clear ...

clear a breakpoint by ... (just like how you set them)

delete

delete all breakpoints (and watchpoints)

https://sourceware.org/gdb/current/onlinedocs/gdb/

Watchpoints

watch var ; watch file::var ; watch function::var

break whenever var is written and the value changes
watching requires special hardware support, otherwise GDB inserts software watchpoints that make the execution
very slow

watch *addr

break whenever address addr is written into and is modified

rwatch ...

break whenever the thing is read

awatch ...

break whenever the thing is read or written

info watch

view the info of all watchpoints

Continue Execution

c

continue running, until finish or reaching the next breakpoint

s ; s count

step forward 1 / count source lines
will go inside function calls

n ; n count

step forward 1 / count source lines
will proceed until function calls in the line return

u location

continue running until either the specified location or the current stack frame returns
location can be in any acceptable form that b accepts

si

step forward one machine code instruction

ni

step forward one machine code instruction
if that is a function call, will proceed until the function returns

Code Listing

l ; l line ; l file:line ; l function

show 10 source lines around certain line
default is the current position of execution

l - ; l +

show 10 source lines before/after the previous listing

info line ; info function

show the starting & ending address of the compiled code of source line/function

disass function ; disass start, end

show disassembled machine instructions of function function or instructions from memory address start end
if current execution is pausing at somewhere within the instructions shown, that instruction will be prefixed with a =>

disass /m ...

show disassembled stuff along with the source code

Examine / Modify Data

p expr

execute the expression expr and show its value

expr can be any valid expression:

variable name
arr[idx]

&arr[0] : start address of a buffer
*arr@len : first len elements in arr
arr[idx]@len : the idx th to idx + len - 1 th elements in arr

expr can modify the program state (e.g., an assignment), so it can be used for modifying variables

x/<n><f><u> addr

examine memory content at addr

configurations:

<n> is the repeat count (how much after addr you want to examine)

<f> is the display format just like those in printf (e.g., x , d , c , ...)

<u> is the unit size, which is any of:

b - byte
h - halfword (2 bytes)
w - word (4 bytes)
g - giantword (8 bytes)

display expr

automatically show the value of expr every time we break

Examine Frame

f

show a brief info of the current stack frame

info f

show a more verbose info of the current stack frame

info locals

print current value of all local variables in current stack frame

info args

print current value of all arguments of current function

p local_var@entry

print local_var 's value at the time when we entered the current function

Backtracing

bt

show a calling stack back-tracing
order is later earlier from top bottom

bt full

show a calling stack back-tracing with all their local variables' values

f frame_id

force jumping to the specified stack frame
frame_id can be acquired from bt

up num ; do num

go up/down num stack frames

Multiple Threads

info threads

list ids, info, and current status of all current threads

thread thread_id

switch to the specified thread
thread_id is the first field shown by info threads

thread apply <id_list|all> command

apply command command to specified threads

<id_list> is a space-separated sequence, where each element can be:

a single thread id number
a range, e.g., 3-7

Or use all to apply to all threads

Jumping

j line ; j function

jump to and immediately start execution from the specified location
line and function can be given just like how you list source code using l

j *addr

jump to and immediately start execution from instruction at address addr

Examine Registers

info registers [reg]

show value of register reg
default is to show values of all registers

Miscellaneous

Run a shell command cmd by: !cmd or shell cmd .

Auto completion of symbol names/commands by double-tapping TAB.

Abbreviations:

r = run
q = quit
c = continue
s = step
n = next
u = until
si = stepi
ni = nexti
l = list
p = print
f = frame
bt = backtrace
do = down
j = jump

