GDB Cheatsheet (Basic)

Author: Guanzhou Jose Hu #5@ill @ ShanghaiTech

GNU's official doc: https://sourceware.org/gdb/current/onlinedocs/gdb/.

Remember to compile with debugging info by setting flag -g.

Invoke / Exit GDB

$ gdb your_executable ; $§ gdb -p pid to invoke GDB

* often used trick: $ gdb -p $(pgrep exec_name) to debug a running executable
* flag -f forces GDB to catch every child process that the executable forks

target remote host:port

* link a remote target who is listening for GDB connection on host:port
e commonly used pattern is Tocalhost:1234 for debugging a kernel with QEMU

r [args]

* start running the program
* command-line args to the program should be provided here, not at GDB invocation

* quit GDB, need confirmation if program is still running
Breakpoints

b function ; b file:function

* break at function entrance, right after stack setup
¢ file name can be a path

b file:1line
* break at line in file, right before this line is executed
b ... if cond

¢ conditionally break if cond != 0 when reaching the breakpoint
* cond can be any valid expression

b *addr
* break at code instruction at address addr
rbreak regex ; rbreak file:regex

* match function name with regex expression
* regex specification follows $ man grep

info b

* view the info of all breakpoints
clear ...

* clear a breakpoint by ... (justlike how you set them)
delete

¢ delete all breakpoints (and watchpoints)


https://sourceware.org/gdb/current/onlinedocs/gdb/

Watchpoints

watch var ; watch file::var ; watch function::var

* break whenever var is written and the value changes
* watching requires special hardware support, otherwise GDB inserts software watchpoints that make the execution
very slow

watch *addr
* break whenever address addr is written into and is modified
rwatch ...
* break whenever the thing is read
awatch ...
* break whenever the thing is read or written
info watch

e view the info of all watchpoints

Continue Execution

e continue running, until finish or reaching the next breakpoint
s, s count

e step forward 1/ count source lines
e will go inside function calls

n; n count

* step forward 1/ count source lines
* will proceed until function calls in the line return

u location

* continue running until either the specified location or the current stack frame returns
* TJocation can be in any acceptable form that b accepts

si
* step forward one machine code instruction
ni

* step forward one machine code instruction
e ifthatis a function call, will proceed until the function returns

Code Listing

1;1 line; 1 file:Tine ; 1 function

e show 10 source lines around certain line
e default is the current position of execution

T-51+

* show 10 source lines before/after the previous listing
info line ; info function

* show the starting & ending address of the compiled code of source line/function
disass function ; disass start, end

* show disassembled machine instructions of function function or instructions from memory address start — end
e if current execution is pausing at somewhere within the instructions shown, that instruction will be prefixed with a =>

disass /m ...



* show disassembled stuff along with the source code
Examine / Modify Data

p expr
* execute the expression expr and show its value

* expr can be any valid expression:

o

variable name

o

arr[idx]
o &arr[0] :start address of a buffer
o *arr@len:first Ten elementsin arr
o arr[idx]@len:the idxthto idx + len - 1thelementsin arr
e expr can modify the program state (e.g., an assignment), so it can be used for modifying variables

x/<n><f><u> addr

® examine memory content at addr

* configurations:
o <n> is the repeat count (how much after addr you want to examine)
o <f> is the display format just like those in printf (e.g., x, d, c,...)
o <u> is the unit size, which is any of:

= b -byte

= h - halfword (2 bytes)
= w -word (4 bytes)

= g -giantword (8 bytes)

display expr

* automatically show the value of expr every time we break

Examine Frame

* show a brief info of the current stack frame
info f
* show a more verbose info of the current stack frame
info locals
* print current value of all local variables in current stack frame
info args
* print current value of all arguments of current function
p local_var@entry

* print Tocal_var's value at the time when we entered the current function

Backtracing

bt

* show a calling stack back-tracing
e order is later — earlier from top — bottom

bt full
* show a calling stack back-tracing with all their local variables' values
f frame_id

e force jumping to the specified stack frame
e frame_id can be acquired from bt



up num ; do num

* go up/down num stack frames
Multiple Threads

info threads
e listids, info, and current status of all current threads
thread thread_id

* switch to the specified thread
* thread_id is the first field shown by info threads

thread apply <id_list|all> command

* apply command command to specified threads
* <id_list> isaspace-separated sequence, where each element can be:

o asingle thread id number
© arange, e.g., 3-7
® Oruse all to apply to all threads

Jumping
j Tine ; j function

* jump to and immediately start execution from the specified location
* Tine and function can be given just like how you list source code using 1

j *addr

* jump to and immediately start execution from instruction at address addr
Examine Registers

info registers [reg]

* show value of register reg
e default is to show values of all registers

Miscellaneous

Run a shell command cmd by: !'cmd or shell cmd.
Auto completion of symbol names/commands by double-tapping TAB.

Abbreviations:

°
-
I

run
® g =quit
® C = continue
® s = step
® n = next

® u = until

® si = stepi
® ni = nexti
e ] =Tist

® p = print

e f = frame
®* bt = backtrace
® do = down

® j = Jjump






