
 Advanced Distributed Systems

Author: Jose 胡冠洲 @ ShanghaiTech

Teacher: Prof. Tao Xie from San Diego State

Figures come from professor's slides, unless otherwise specified.

 Advanced Distributed Systems
Distributed Systems Basics

Characteristics of Distributed Systems
Challenges & Issues

System Models
What is a Model
Architectural Models
Fundamental Models

Interprocess Communication (IPC)
Middleware Layer of Communication
Request-Reply Protocol
RMI & RPC
Events & Notifications

Distributed File Systems
FS & DB Terms
File Service Design

Peer-to-Peer Systems (P2P)
Overview of P2P Systems
Overlay Networks

Time & Global State
Distributed Timing
Global State

Coordination & Agreement
Distributed Mutual Exclusion
Election Algorithms
Multicast Algorithms
Consensus Algorithms

Transactions Interface
Definition of Transactions
Concurrency Control
Recoverability from Aborts
Nested Transactions

Replications
Replication Transparency
Fault-Tolerant Services
Highly Available Services

Security

Distributed Systems Basics

"Distributed Systems: Concepts & Design", Chapter 1

Characteristics of Distributed Systems

Definition: Independent components (may be far apart) working collaboratively by passing messages over computer
networks.

1. Concurrency
2. Lack of a global clock
3. Independent failures

Compared to Parallel Computing (focusing on multiple homogeneous processors in ONE computer), distributed systems
require a better understanding of: Heterogeneity, Openness, Security, Scalability, Failure handling, Concurrency, Transparency.

https://taoxie.sdsu.edu/

Challenges & Issues

Heterogeneity: Different hardware, OS, network architecture, languages; VMs

Openness: Standard published interfaces; RFC

Security: Confidentiality + Integrity + Availability

Scalability: Extensiveness, cost v.s. performance

Fault Tolerance: Detecting faults, masking (hiding), ignoring, recovery; Dependence via Redundancy

Concurrency issues

Transparency:

Access Transparency
Location Transparency
Concurrency Transparency
Replication Transparency
Failure Transparency
Mobility Transparency
Performance Transparency
Scaling Transparency

System Models

"Distributed Systems: Concepts & Design", Chapter 2

What is a Model

A description of a complex entity or process, simplified by ignoring certain details.

Architectural models: focusing on distribution & communication of data / tasks amongst physical nodes

Fundamental models: focusing on conceptual issues to be solved

Architectural Models

Follow 3 steps to build an architectural model:

1. Functions of individual components

2. Placement of the components across a network
3. Interrelationships between the components

A distributed system usually expose to users services, which masks over heterogeneity of the underlying platform.
Servers (a process that accepts requests from other processes) provide services, and clients access services.

Clients-Server pattern - simple

1 / more servers
1 / multi-level servers; caches
Run code remotely v.s. Retrive code and run locally

Peer-to-Peer (P2P) pattern - decentralization, improves scalability

Design requirement of distributed architectures:

Performance: throughput, load balancing
Quality of Service (QoS): latency
Dependability: safety

Fundamental Models

Fundamental models describe basic issues (shared among different architectures).

Interaction model

Sequential v.s. Distributed timing / state
Synchronous v.s. Asynchronous

Failure model

Crashes / Fail-stops
Omission Failures: failed to do what it is supposed to do (end up doing nothing); can recover by reapply
Timing failures: takes longer than time bound
Arbitrary Failures (Byzantine): inconsistent failures at arbitrary times

Security model

Authorization: access rights
Authentication: identity
Denial of Service (DoS) attacks Distributed DoS (DDoS)

Interprocess Communication (IPC)

"Distributed Systems: Concepts & Design", Chapter 4

Middleware Layer of Communication

Layers:

IPC relies on Remote Method Invocatons (RMI) / Remote Procedure Calls (RPC) / Events

RMI / RPC / Events are implemented upon Request-Reply protocol

Request-Reply protocol is built upon User Datagram Protocol (UDP) / Transmission Control Protocol (TCP, streams)

Defines external data representation, e.g. HTTP, XDR, Java object serialization
UDP / TCP are provided by the operating system, they must act on proper hardware, with a message destination

Destination can be IP address + Port / multicast
Often utilized through the Socket programming API

Request-Reply Protocol

Retransmit Request Message
on Failure?

Duplicate Request
Filtering?

Re-execute / Retransmit Reply on
Duplication?

Invocation
Semantics

No \ \ Maybe

Yes No Re-execute the procedure At-least-once

Yes Yes Retransmit reply At-most-once

Request-Reply paradigm:

Involves send & receive operations, and can be synchronous / asynchronous. Some techniques can be used to protect /
optimize this procedure:

Idempotent operations: can be performed repeatedly with the same effect as performing once
Cache history of replies to avoid re-execution on the same requests
Timeout & Retrying
...

Marshalling & Unmarshalling: convert internal data to / from standard external transferring format.

RMI & RPC

Local v.s. Remote invocation pattern:

RMI needs:

Message structure: defines how a message is composed

Example: | Message type | Request ID | Remote object reference |

Remote object reference: an identifier throughout the distributed system to access the remote object

Example: | IP address | Port # | Time | Object ID | Remote interface |

Remote interface: specifying which methods can be invoked remotely, and their signatures

Example: implemented using Interface Definition Languages (IDL)

Three possible effects of RMI:

1. The state of the receiver may get changed
2. A new object may be instantiated
3. Further chained invocations of other methods

Three fault-tolerance semantics choices:

Maybe is suitable when occasional failed invocations are acceptable
At-least-once is suitable for idempotent invocations
At-most-once is completely fault tolerant

A Proxy on the client side plays the role of a local object gate as to the invoking object, it marshalls the request and
sends it downwards & unmarshalls the received result. (In RPCs, called a Stub)

A Binder is a table that maps remote object textual names to remote object references / maps remote procedures
to local ports. Servers register into the binder, and clients lookup this table.

To void polling, often uses Callbacks (Server calls a remote call-back method on client call-back object on reply).

Events & Notifications

Events & Notifications pattern:

Components of this pattern:

Object of Interest: the object that experiences changes of state

Event: occurs at the end of the state change of an Object of Interest

Notification: a marshalled message containing information about an Event

Subscriber: an object that is interested in a certain type of Events; will receive Notifications of that type of Events

Publisher: the object responsible for generating Notifications

Can be the Object of Interest, or
An Observer Object (Proxy): an object gate, like proxy in RMI, but at the server side

Distributed File Systems

"Distributed Systems: Concepts & Design", Chapter 12

FS & DB Terms

Filesystem (FS):

Local FS [Kernel-level]: part of the operating system kernel, which wraps over naked storage devices (HDD, SSD, …)
and provides POSIX API for upper applications to use these devices; e.g. NTFS (Win), Ext4, XFS, BtrFS, … (Linux), HFS,
APFS (Apple)

Virtual FS (VFS) [Kernel-level]: an OS module that supports interactions with multiple devices formatted as different FS
formats; e.g. Linux VFS supports reading and writing over Ext4 and also a plugged-in FAT-32 USB drive (may
sometimes be considered as part of the local FS)

FS Middleware [User-level]: a middle layer between user applications and the local FS, which often provides parallel /
distributed optimizations for IO scheduling to improve FS performance; e.g. GPFS, Lustre, Sun NFS, OrangeFS (PVFS),
Ceph, ...

Can be integrated into the OS kernel as well, like NFS protocol integrated in Linux kernels
Can run as FUSE (Filesystem in User SpacE)
Can be implemented as an application-level dynamic library; may require user applications to get re-compiled
with the designed APIs instead of POSIX

Database (DB):

Application-level DB [User-level]: similar to FS Middleware, provides a new layer of data management over the local
FS to unify data format and provide in-memory caching; e.g. MySQL
Naked-device DB [Kernel-level]: databases that directly operate on naked devices to improve performance, started
supported by Oracle (no longer popular)
Object Storage (Key-Value Store, KV Store) [Kernel-level / User-level]: databases built upon new object storage devices
(or somehow simulated using traditional disks), guided by NoSQL design; e.g. Redis, Oracle NoSQL

Distributed FS we discuss here are mostly FS Middleware operating over multiple distributed nodes connected over a
network.

File Service Design

Distributed FS have many different kinds of design and implementation, each having its own characteristics and suited
workloads.

A typical distributed file service model:

Typical caching techniques for distributed FS:

Server-side caching:

Read-ahead
Delayed-write / Write-back v.s. Write-through v.s. Commit

Client-side caching (Collective IO)

Peer-to-Peer Systems (P2P)

"Distributed Systems: Concepts & Design", Chapter 10

Overview of P2P Systems

Purpose: Utilize data and computing resources available in personal computers on the Internet. Requires Scalability,
Reliability, and Security.

Classification:

Pure P2P: Peers act as equals; No central managing server; No central router
Hybrid P2P: Has a central server that keeps info and responds requests

Key aspect of a P2P system is a set of algorithms for the placement and subsequent retrieval of information objects.

Examples of P2P systems:

Music exchange services: Napster, ...
File sharing: Freenet, Gnutella, Bit Torrent, ...
Overlay Networks middleware running on top of the Internet (routing not necessarily specified by IP address): Pastry,
Tapestry, ...

Overlay Networks

Before overlay networks, P2P uses Flooding-Style Networks (using Time-To-Live limits, TTL):

1. Send query to all known neighbors;
2. Each neighbor checks to see whether they can reply (by matching keys);
3. If match, then reply; If not, ++hop_count, and forward to its neighbors;
4. If hop_count passed the TTL limit, stops forwarding.

[Distributed Hashing] Consistent Hashing and its classic implementation Chord: a Ring-based Overlay Network, nodes
are linked in a circle, each having only two neighbors. A middleware layer takes the responsibility for routing request from
any client to a host that holds the object to which the request is addressed (specified by a GUID). Nodes may:

Join and leave the network
Create / remove objects

A request on an overlay network is guaranteed to be handled.

A Routing Table can help reduce the number of hops of a message (by pushing a message to a node with longer common
GUID prefix, instead of just searching in its leaf set, i.e., doing binary search. READ HERE).

Time & Global State

"Distributed Systems: Concepts & Design", Chapter 14

Distributed Timing

Physical computer clocks (meaning the clock signal for electric circuits) are circuit oscillations at a well-defined frequency.
Every designed number of oscillations trigger a timer interrupt. In a distribuetd system, timing is mostly ambiguous.
Timing in different machines cannot guarantee to run at the same frequency.

Algorithms for keeping absolute times for distributed systems:

Centralized timing for intranets:

Christian's Algorithm: For a cluster with one time server that has access to WWV time (UTC)
Berkeley UNIX Algorithm: For a cluster with no WWV access, time server polls other machines local times,
computes an average, and tells all machines to adjust according to that

Decentrailzied timing for intranets

Internet time synchronization

Algorithms for keeping a logical time (not necessarily correct, but all machines agree):

Lamport Timestamps: All machines agree on events' occurrence order, if they have message passing dependency

If A is the event of machine 1 sends a message, and B is the event of machine 2 receives it, we say A happens
before B ()
If A and B happen in different machines and do not have dependency, we do not care about who happens first;
we say they are cocurrent ()
Lamport's Clock Algorithm ensures if , then all machines agree to . READ HERE and refer
to "Lec11.pdf".

Global State

Global state of a cluster can be recorded by a Snapshot, reflecting a state in which the distributed system might have
been.

 is the History of node , which is a vector of events

Global history is the union of all individual histories

A Cut of is a subset of the global history. A cut is consistent iff for every event it contains, it also contains all events
happened before that event

Can contain a msg send event without the corresponding receive event
CANNOT contain a receive event without the corresponding send event

Chandy-Lamport Algorithm: for recording a consistent global state. READ HERE and refer to "Lec12.pdf".

Coordination & Agreement

"Distributed Systems: Concepts & Design", Chapter 15

Distributed Mutual Exclusion

Without shared variable, how can we achieve Mutual Exclusion only by message passing? Mutual exclusion
requirements: 1. safety (mutual exclusiveness), 2. liveness (bounded waiting), 3. ordering.

https://blog.csdn.net/21aspnet/article/details/6635542
https://en.wikipedia.org/wiki/Lamport_timestamps
file:///D:/Dropbox/ShanghaiTech/%E4%BF%A1%E6%81%AF-CSMajor/%E9%AB%98%E9%98%B6%E5%88%86%E5%B8%83%E5%BC%8F%E7%B3%BB%E7%BB%9F-CS290K/%E7%AC%94%E8%AE%B0/https://en.wikipedia.org/wiki/Chandy%E2%80%93Lamport_algorithm

Evaluating a distribteud mutual exclusion algorithm:

Bandwidth: number of messages sent in each enter() or exit() operation
Client delay: waiting time at each enter() or exit()
Synchronization delay: time between exit() and next process's enter()

Different algorithms to handle this:

1. Central Server Algorithm: use a central token server which queues entry requests, dequeue one request and gives
the token to that client

Can violate " ordering"
enter() takes 2 messages (request + receive token), exit() takes 1 message (return token)
Client delay depends on size of queue
Synchronization delay is 2 messages (return token + next one receives token)

2. Ring-Based Algorithm: peers arranged in a ring, enter when token is received and exit by passing on the token to
next neighbor

Can violate " ordering"
enter() has to wait for token to come, exit() takes 1 message (pass on token)
Client delay & Synchronization delay similar to entry

3. Ricart-Agrawala Algorithm: multicasting + Lamport timestamping. READ HERE and refer to "Lec13.pdf".

Election Algorithms

How can we elect a unique process out of all distributed nodes? Election requirements: 1. safety (result either none or a
process with largest identifier), 2. liveness (each process either picks the result or crashes).

Different algorithms to handle this:

1. Ring-Based Election (Chang-Roberts): READ HERE and refer to "Lec14.pdf".
2. Bully Algorithm (Garcia-Molina): can handle process failures. READ HERE and refer to "Lec14.pdf".

Multicast Algorithms

Multicast is a sending scheme where we send a message to a group of nodes, and the message gets replicated only at
path divergence.

I really don't understand the meaning and necessity of reliable / ordered multicast, so omitted here.

Consensus Algorithms

How do a group of process agree to the same single value? That is called a Consensus. Consensus algorthms have to
meet the following requirements:

Agreement: Decided value of all correct processes is the same.
Integrity: If all correct processes proposed the same value, then they must decide on that value.

BASE CASE - When processes cannot fail & communication cannot fail, the problem is easy: each processor broadcast its
proposed value waits until collected all N values choose the majority one.

HARDER - When communication is reliable (no uninteded message modifications) but processes can fail:

1. Two-Phase Commit (2PC), Three-Phase Commit (3PC): not 100% guaranteed, READ HERE.
2. Paxos Multi-Paxos Raft: higher availability. READ HERE & my blog.

EVEN HARDER - When message content can be wrong (modified / erroneous), i.e., Byzantine Generals Problem: Some of
the processes can be faulty. If it is the commander (i.e., it is broadcasting), it may give out different values to different
processes; If it is a general, it may relay a wrong value to others. (Message faults causesd by unreliable communication
links also count.)

No solution when total number of processes , where is the number of faulty processes. A correct processor
cannot tell who is falty:

For more information, read Lamport's Paper & READ HERE, and refer to "Lec16.pdf".

file:///D:/Dropbox/ShanghaiTech/%E4%BF%A1%E6%81%AF-CSMajor/%E9%AB%98%E9%98%B6%E5%88%86%E5%B8%83%E5%BC%8F%E7%B3%BB%E7%BB%9F-CS290K/%E7%AC%94%E8%AE%B0/https://en.wikipedia.org/wiki/Ricart%E2%80%93Agrawala_algorithm
https://en.wikipedia.org/wiki/Chang_and_Roberts_algorithm
https://en.wikipedia.org/wiki/Bully_algorithm
https://www.hollischuang.com/archives/681
https://zhuanlan.zhihu.com/p/46531628
https://blog.csdn.net/weixin_41978191/article/details/100514664
https://people.eecs.berkeley.edu/~luca/cs174/byzantine.pdf
https://en.wikipedia.org/wiki/Byzantine_fault

It is important for any modern real-time distributed system to be highly Byzantine Fault Tolerant (BFT); but, it's
impossible at least for now to ensure 100% correctness, given that even the electric circuits can fail.

Transactions Interface

"Distributed Systems: Concepts & Design", Chapter 16

Definition of Transactions

A Transaction (事务) is a sequence of operations on a server that satisfy the "ACID" rules of databases:

Atomicity: a transaction is either finished completely or not done at all; cannot end up in the middle (o.w., do
rollback)

For example, a failed file write may: a) write nothing at all, b) write a wrong value but checksums are used so that
readers will detect that.

These are omission failures, and
The system must provide a failure model and corresponding recovery techniques

But, this file write CANNOT write to the wrong block. That will be an arbitrary failure.

Consistency: a transaction must bring the whole system from one valid state to another ("valid" is defined by a set of
preset constraints, like some object's value must be); this is not the same term as in other contexts

Isolation: allow concorrent transactions to act on the same object, w/o causing inatomicity / inconsistency

Durability: whenever a transaction is done, its modification to objects are permanent and will not be lost even at
system crashes, so that a crashed system can recover from the permanent storage

Providing a transaction interface to user applications can make the underneath concorrency control transparent to them.
Users can simplify their application code logic by triggering transactions w/o worrying about violating the 4 rules.

Example on a banking account:

###Life History of a Transaction

The life history of a transaction must be one of the following situations:

Operations are first done on volatile memory
close = commit : flush the corresponding objects in volatile meory downto permanent storage
abort : discard the changes in volatile memory

Concurrency Control

First assumption: an operation itself must be atomic (called synchronized operations). Without this property, we cannot
discuss the concurrency issues of transactions.

Problems that might happen w/o proper concurrency control on transactions:

1. Lost update: two transactions both read the old value

Operations:

acc.withdraw(n)

acc.deposit(n)

A Sample Transaction T:

def transaction_T(a, b, c):

 a.withdraw(100)

 b.deposit(100) # A transfers $100 to B.

 c.withdraw(200)

 d.withdraw(200) # C transfers $200 to D.

2. Inconsistent retrieval: a transaction reads an intermediate value of another transaction

Correct concurrency of transactions should be serial equivalent: the result it the same as if they are processed serially. A
serially equivalent interleaving is an interleaving of operations that makes the combined effect serial equivalent. Same
effect here means:

Read operations return the same value
Object states are the same in the end

Operations that can conflict:

read(i) and write(i, x) on the same object i
write(i, x) and write(i, y) on the same object i

These operations MUST happen in the original order of transactions. Tools like DAG dependency graphs can help.

Recoverability from Aborts

If a transaction aborts, the server must make sure that other transactions do not see any of its effects.

Problems that might happen w/o proper recoverability from aborts:

1. Dirty read: a transaction reads a modified value written by an aborted transaction

2. Premature write: in a system that uses before images, it records the snapshot before a transaction and restore to the
before image if that transaction aborts; if another transaction's write is done before the abortion, that write will get
lost after restoration

Methods to ensure recoverability:

Delayed commit: a commit is delayed until the commitment / abortion of other concurrent transactions are observed

If aborts then must also abort
May cause potential cascading aborts

Delayed read: any read operation on i is delayed until other concurrent transactions who will apply writes on i are
committed / aborted

This ensures only reading objects written by committed transactions, thus avoids cascading aborts
Delayed write: any write operation on i is delayed until other concurrent transactions who will apply writes on i are
committed / aborted

This prevents premature writes with before images
A system is said to implement strict execution if both read & write are delayed

Nested Transactions

Nested Transactions are transactions composed of subtransactions recursively. To a parent, a subtransaction is atomic,
while transactions at the same level can actually run concurrently just like over flat transactions.

Advantages:

Additional parallelism
More robust: a subtransaction failure can be properly handled by its parent, w/o restarting the whole transanction all
over

Strict execution can be implemented using strict two-phase locking. Locks, deadlocks and starvations in transactions
are omitted here. Already covered in details in the OS lectures.

Distributed Transactions, where a transaction accesses objects across multiple servers, are also omitted here.
Refer to Chapter 17 of the book and "Lec{20,21}.pdf".

Replications

"Distributed Systems: Concepts & Design", Chapter 18

Replication = Maintencance of copies of data at multiple computers. Can provide:

Performance enhancement (rare)
Fault tolerance
High availability

Replication Transparency

Replication of data should be transparent to users, which means that they appear as one single logical object, and
different online users (disregard those disconnected copies) should see a consistent value.

Each logical object is implemented by a collection of physial copies, called replicas. All replicas on one device are managed
by a replica manager (RM). The frontend (FE) talks to RMs and provides transapency to clients. Five phases in performing a
request:

1. Issue request through FE

2. Coordination among RMs

Whether to apply / not
Its ordering relative to other requests (FIFO / Causal / Total-ordering)

3. Execution

4. Agreement: RMs reach a consensus on the effect of the request

5. Response back to FE

Often implemented using dynamic Process Groups.

Fault-Tolerant Services

Replciations enable Fault-Tolerant Services, where a service / data is still available even if up to processes failed.
Different models to do that:

Passive (primary-backup) model: at any time there's a primary RM and others are backups

Needs RMs to achieve -degree fault-tolerance
CANNOT handle Byzantine failures

Active model: RMs all play the same role, and communicate with each other and compare the replicas it receives

Can use RMs to handle up to Byzantine failures
May have better performance
Needs a good consensus algorithm

Highly Available Services

High Availability is a different goal from fault tolerance. We aim to give clients quick responses for as much of the time
as possible, even if some results do not conform sequential consistency. (E.g., a disconnected client may accept some
inconsistency and will fix that later.) Updates between RMs are propagated lazily, i.e., they have less agreement to enable
shorter response time.

The Gossip Architecture is a way to provide high availability:

Two types of operations: Query (read-only) and Update (will modify)

FE sends operations to any chosen available RM, guaranteeing:

Each client gets consistent values over time, using vector timestamps
RMs eventually receive all updates, but they agree only by lazy gossips, so consistency is relaxed. Thus, a client
may observe stale data at certain timepoint

Security

"Distributed Systems: Concepts & Design", Chapter 11

Interesting names used in security protocols: Alice, Bob, Carol, Dave, Eve, Mallory, Sara ;)

This section should be found in Cryptology and Computer Security, so omitted here.

