
 Distributed Systems
Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS739

Teacher: Prof. Michael Swift

 Distributed Systems
Introduction

Properties
Kinds of Failures

Sharding, Replication, & Scalability
Grapevine
Giant-Scale Services
LARD
Epidemic Algorithms
Chubby

Stronger Consistency & Consensus
Chain Replication
Logical Clock
Distributed Snapshot
Two-Phase Commit (2PC)
Raft
Paxos
PBFT
Blockchain

Availability & Failure Recovery
Dynamo
Maelstrom

Distributed File Systems
NFS
AFS
GFS
XFS
Petal + Frangipani
Ceph

Authentication, Privacy, & Security
Kerberos
Get Off My Cloud
Zanzibar

Serverless Computing
Serverless Workloads
Peeking Serverless

Introduction
A distributed system is a collection of independent, autonomous hosts connected through a communication network,
collaboratively providing a uniform service to users.

Properties

A distributed system is desired to have the following four properties (these are reasons why people are interested in using
a distributed system; otherwise, a monolithic server is always a better choice):

1. Fault-tolerant: allows component failures without revealing any incorrectness
2. Highly-available (Reliable): can resume providing services even when some components have failed
3. Scalable: can scale "out" (not "up") to a larger volume/serve more users without significant performance degradation
4. Physical distribution: distributed geographically, letting local users communicate faster with each other

However, the distributed nature will make many things harder to provide compared to a monolithic setting. To build a
good distributed system, these are the additional internal properties that system designers must keep in mind:

Recoverable: failed components can restart & rejoin the system

https://pages.cs.wisc.edu/~swift/

Consistent: in presence of concurrency & failure, can coordinate components and provide a "right" answer, based on
some definition of what is considered "right"
Predictable performance: provides desired responsiveness in a timely manner
Secure: authenticates user access to data and services

Kinds of Failures

Being tolerant to failures is one of the main reasons people wanna use distributed systems. These are some categories of
failures we are interested in:

Halting failures: a component stops. No way to guarantee detection/notification of whether/when it stopped

Fail-stops: special, clean kind of halting failures where it is assumed that a component will always send
notifications when it stops

Network failures: a network link gets congested or breaks completely

Omission failures: a message gets discarded due to congestion/bad link, without notification to either side
Partitioning failures: special kind of network failures where the topology breaks down to two or more disjoint
sub-network partitions

Timing failures: some temporal property of the system is violated, e.g., timeouts, or deviating clocks

Byzantine failures: the hardest scenario - components within the system may corrupt data/modify messages/drop
data on purpose, including being attacked by malicious programs. The only guarantee is cryptographic math still hold

Sharding, Replication, & Scalability

Grapevine

Link: https://users.soe.ucsc.edu/~sbrandt/221/Papers/Dist/schroeder-tocs84.pdf

Motivation

To scale out by adding more machines instead of scale up by making more powerful machines
Users distribute geographically around the globe, want local machines in different cities
Availability: keep service running when machines go down
Targeting an environment of mixed LAN & WAN networks with low reliability

Contribution

A messaging system where users send emails to users

Each machine runs a message server + a registration server
Red - user sending a message
Green - user checking its inbox
Blue - user accessing a remote service which uses Grapevine as a location/authentication mechanism

Highly-available: guarantees that if any machine is running, the service is up

Replication:

Each registry is replicated on multiple machines
Primary & secondary inbox for each user; Tertiary inbox at the other end of unreliable link
Functions of all services run on every machine - machines are homogeneous

Relaxed consistency:

Allow users to see a partial/stale inbox

https://users.soe.ucsc.edu/~sbrandt/221/Papers/Dist/schroeder-tocs84.pdf

Messages are asynchronously delivered - do not need the entire system to do the messaging
Idempotent operations:

Messages/Registration operations are "ID"ed and can be performed multiple times without hazards
Can scale out to a large number of users across the globe:

Partitioning (Sharding):

Registration info split up into small registries
Registry sizes are kept small - scale by making more registries
Making an indirect hierarchy for large distribution lists; Move distribution list expansion to multiple servers

Caching:

Buffer authentication results to boost performance
Locality:

Group frequently communicating users into registry (manually)
Allow local users to communicate over local links

Don't replicate large objects; Delta replication

Attempts to do load balancing:

Put secondary inboxes of different users onto different machines
Manual assignment of registries to machines, according to domain knowledge
Admission control: rejects requests when disks almost full, reserves idle capacity for fail over

Allows decentralized administration: expert could manage the system remotely

Drawbacks

Eventual consistency: if we wait infinitely, up-to-date messages should eventually go through

But users can see partial/stale data
Message content is not replicated - only the registration metadata
No consensus algorithm: needs manual recovery from replicas

"Stupider the program, the stronger consistency we may want". Human are more tolerable to inconsistent
results compared to strict programs.

Giant-Scale Services

Link: https://courses.cs.washington.edu/courses/cse454/05sp/papers/GiantScale-IEEE.pdf

Motivation

Models the design of datacenters serving a huge number of users from the Internet

Workload properties of giant-scale services:

Read mostly, e.g., web search, forums, social media, ...
Interactive (query-driven)
Short requests, won't crash in the middle
Can give back flexible (partial) results, e.g., web search, mails, shopping list, ...

Contribution

System architecture modeling of a giant-scale service site (Fig 1.):

Load balancing techniques:

Round-robin DNS: distributes different IP addresses for a single domain in round-robin

Balances load well, but does not hide inactive servers
Ignores cache locality on backends

Switches:

Layer-4 switches: understand TCP & port numbers
Layer-7 switches: understand application-level (HTTP) requests; can detect down nodes in this case

Assumes backends are connected through a backplane (backbone) network and do both replication + partitioning

https://courses.cs.washington.edu/courses/cse454/05sp/papers/GiantScale-IEEE.pdf

Proposed several availability metrics:

Uptime = (MTBF - MTTR) / MTBF

To improve uptime, either increase MTBF or reduce MTTR

Increase MTBF: more reliable hardware/software
Reduce MTTR: faster reboot; faster reconfiguration; faster initialization; be stateless

Yield = #queries completed / #queries offered

Harvest = size of data returned / total amount of data should've returned

DQ principle:

D := amount of data accessed per query; Q := number of queries served per time unit

DQ = D Q = bandwidth of cluster available, largely fixed in hardware

One machine's failure reduces DQ by a machine's worth

Replication: failure reduces Q

Partitioning: failure reduces D

Overload after failure:

Replication: load from failed machine distributed to remaining ones - need to reserve capacity to handle failures
Partitioning: just reduce D

The 3 ways of doing online upgrades have the same DQ loss (Fig 5.)

Fast reboot
Rolling upgrade
Big flip

LARD

Link: https://www.cs.rice.edu/~alc/comp520/papers/p205-pai.pdf

Motivation

Targets a web server cluster scenario where you have 1 frontend node dispatching connections to N backend nodes

Caching is significant: popular content follow a Zipf curve

So we'd better send requests for an object to the same backend, to make cache on the backend hot

Previous load balancing policies do not consider locality

Weighted round-robin (WRR)
Hash-based dispatching; Consistent hashing
Multicast
Random mapping

Can respond to changing workloads, dynamic

Contribution

Combines locality-aware content distribution with load balancing (Fig 3.)

Distributes requests on each piece of target data to only a subset of backend servers to improve cache locality
Dynamically adjusting the assignment list for each target based on backend load to achieve load balancing
Load is measurement as #open TCP connections

Load behavior of the system:

https://www.cs.rice.edu/~alc/comp520/papers/p205-pai.pdf

Hot objects may need more than one cache, so should do LARD with replication

Add new backends periodically if least-loaded server 's load is

, then no matter what, add a new one to help
, and if some node is , add it to help

Remove most-loaded replica if set hasn't changed for a while; make threshold time K long enough to prevent
thrashing

Designs a TCP handoff protocol to allow the frontend peek packet content then forward the connection to a backend

Epidemic Algorithms

Link: http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/CSL-89-1_Epidemic_Algorithms_for_Replicated_Datab
ase_Maintenance.pdf

Motivation

Xerox wanted a globally-replicated database of a huge number of small-sized machines

Each update is injected at a single site and must be propagated to other sites
Flooding may cause way too much traffic (300 sites 90000 messages per night)
Also wants short time to propagate to all sites

Fundamental problem: replicating data to many machines across wide area

Very large number of participants
Machines/links may fail and come back
Network topology not uniform

Biggest idea: use randomness, rely on probabilities to propagate

Contribution

Categorizes three types of communication techniques (Sec 0.):

1. Direct mail (direct flooding): each update immediately mailed to all other sites - this is NOT epidemic

Cons:

Node may not know everybody else
Mailing message can fail
Overwhelming amount of traffic

2. Anti-entropy: site regularly chooses another site at random, and the two exchange database contents to resolve
any differences between the two

Pros: complete sync of all info
Cons: expensive to run, may need better data structures to reduce data transmission

3. Rumor mongering: when a site receives a new update it becomes a "hot rumor"; while a site holds a hot rumor, it
periodically chooses another site at random and ensures it has seen the update; when a site has tried to share a
hot rumor with too many sites that have already seen the update, the rumor becomes cold without further
propagation

Pros: less traffic
Cons: some sites could miss the information (i.e., has residue); must back it up with above two mechanisms

Push vs. Pull, active DB vs. quiescent DB (Page 10.)

Let be the probability of a node remain susceptible after round
Pull follows , works better for active DB where is small; good for ending a rumor

Push follows , works better for quiescent DB; good for starting a rumor

quickly
Three metrics for rumor mongering (Page 9.; Tab 1.,2.,3.):

Residue: how many nodes untouched after the end of the rumor
Traffic
Delay: average vs. last

Drawbacks

Can at best achieve eventual consistency

Chubby

Link: https://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf

http://bitsavers.trailing-edge.com/pdf/xerox/parc/techReports/CSL-89-1_Epidemic_Algorithms_for_Replicated_Database_Maintenance.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/chubby-osdi06.pdf

Motivation

Needs a service that is easier for applications to use - locking is natural
Must support a huge number of concurrent clients

Contributions

A distributed locking service running with small, odd number of servers over a consensus protocol (Fig 1.)

Organizes locks (which are small files called nodes) as a UNIX file system semantic

But does not maintain info like last modify time
Provides distributed locking: servers agree on which lock node is now acquired by which client

Reader lock can be held by many clients
Write lock can be held by at most one client at a time
Locks are advisory - not holding a lock does not prevent you from accessing the resource it protects; so
assumes client libraries are honest, but allows more flexible administration

Locks are just small files, so clients can communicate through some small data in the lock file

Client cache session states locally for much better performance and scalability:

Sends periodic KeepAlive RPCs to the Chubby master

Master replies with notifications - refreshes lock leases

Consistent caching achieved by master including cache invalidations in the notifications; only when a client acks
this invalidation can a master grant the write lock to another client

Turns out to be a great fit for a name service, and a better approach than the current TTL-based DNS caching

Lock sequencer number progress every time the lock is given to a different client - avoids a timed-out client waking up
later and tries to use the lock it used to hold

On master fail-over, client times-out a KeepAlive

Client now cannot use the locks
Client starts a grace period, keep sending KeepAlive RPCs to Chubby
If a new master is now elected, new master acks a KeepAlive and grants a new lease to the client

Stronger Consistency & Consensus

Chain Replication

Link: https://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf

Motivation

Need replication for fault tolerance, not for performance

Assume a replicated state machine (SMR) model, and tries to provide strong consistency (global ordering)

Replicas need to agree on which put requests have been completed
Completed puts must take effect on all replicas and to all subsequent client gets

Contribution

Use a chain topology of machines, is a variant of primary-backup (Fig 2.):

Puts arrive at the head node, propagate through the chain to the tail, completes when acknowledged by the tail
Gets all served by the tail node - so returns the latest value seen by the tail at this point (linearizability)

When machine fail-stops, the monitoring service will detect it by timeout and removes it out of the chain (Fig 3.)

New replica added to be the new tail

To tolerate failures, need servers

Drawbacks

Chain replication itself is not complete when you need membership changes - you will need some external Raft/Paxos
consensus to determine who is the head node & the chain topology; clients talk to this monitoring service to find out
this info as well
NO network partition tolerance

https://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf

A typical critique is that strong-consistency consensus algorithms seem to make one leader node the performance
bottleneck. However, this is not a fair argument: even if we have some algorithm that does not have a central leader,
to achieve consensus, every request still must be seen by all participants - so overall we cannot yield better than one
machine's throughput.

Logical Clock

Link: https://lamport.azurewebsites.net/pubs/time-clocks.pdf

Motivation

Physical time synchronization across distributed nodes is hard

Drift of time advancement hardware
Skew: constant difference between machines
The Internet is asynchronous & best-effort

What we really care about is the ordering of the events themselves, not an accurate time value

Contribution

Defines the happens-before relation ()

Each process is a sequential program, sending/receiving messages

If and are on the same process and comes before , then
If and are the sending and receiving of a message, then
The relation is transitive

If we cannot infer the order between two events, we say they are concurrent

Introduces logical timestamps : if , then

Process increments its clock on every local event
On receiving a message, progress my local timestamp to be the message sender's timestamp if not so
This is a partial ordering; A total ordering can be achieved by breaking ties by e.g. PIDs

Distributed Snapshot

Link: https://dl.acm.org/doi/pdf/10.1145/214451.214456

Motivation

Detecting a global property (snapshot value) in a distributed system

No reference to an object so it can be GC'ed
Deadlock detection
Computation termination

The property must be a consistent one agreed by all nodes, but can be a predicate property (stable property), i.e., only
happens once per phase in the system

Once the property becomes true, it remains true
We don't need to worry about how to kick off the next phase

Contribution

An algorithm to find a consistent cut of a distributed system

A cut is inconsistent if there are events s.t. and , but

Defines (Fig 1.) global state := {process states} + {channel states}

Event is a local state transition on one process, may produce or consume a message
The system as a whole is a big state machine transiting between states (Fig 4.,7.); to reach a state from initial
state, there might be many possible paths of computation

The snapshotting algorithm:

https://lamport.azurewebsites.net/pubs/time-clocks.pdf
https://dl.acm.org/doi/pdf/10.1145/214451.214456

Sending rule: sends one marker along after records its state and before it sends further messages along

Receiving rule on receiving a marker through :

If has not recorded its state, then records its state, and then records 's state as empty
Else, records the state of as the sequence of message received along after 's state was recorded and
right before received the marker

Drawbacks

Did not talk a lot about how to collect the snapshotted global state from all processes

Write to a third-party shared FS?
Broadcast by flooding?
Put initer's name in the initial marker?

Recorded state might be one that never happened in real world ordering, e.g. Fig 7. if sends marker right after

But it is OK because it is a consistent cut - we can safely use the snapshot and still infer the correct property

Two-Phase Commit (2PC)

See https://en.wikipedia.org/wiki/Two-phase_commit_protocol.

Safe, but poor liveness: all participants wait indefinitely when coordinator fails in the second phase

Optimized server termination protocol (Slide 20.,21.)
Must use a durable write-ahead log on storage to survive across crashes

Raft

Link: https://raft.github.io/raft.pdf

Motivation

Consensus requirement on multiple nodes agreeing on the same agreement:

Termination: the procedure must eventually decide on one value
Agreement: all processes agree on the same value
Validity: the value that has been decided must have been proposed by some process

Useful for cases where we do need strong consistency and some availability, but do not need very good performance

Contribution

Strong consistency using the majority rule; To tolerate failures, need servers

Assumes servers use a log and builds the consensus algorithm directly over a replicated log

I will omit more about Raft. Please see the paper (Fig 2.) and here.

Possible follower states (Fig 7.)
Why cannot commit on entries from older terms but must wait for the commitment of something in up-to-date
term (Fig 8.)
Membership change is sent as a log entry, needs majority of both in the middle period (Fig 10.,11.)

Paxos

Link: https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

Motivation

The ancestor of all consensus protocols

Contribution

Strong consistency using the majority rule; To tolerate failures, need servers

First proposes a single-decree Paxos algorithm for agreeing on a single value:

Have proposers, acceptors, and learners
Phase #1 - prepare phase: proposer selects proposal number and tries to get acknowledgement from majority
of acceptors; acceptor replies with the highest proposal number and value it has accepted
Phase #2 - accept phase: proposer sends accept request on the highest-numbered (say) value among
responses; acceptor accepts if is still up-to-date in all prepares it has seen, and notifies the learners
See the three cases of prepare in Slide 31.,32.,33.

https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://raft.github.io/raft.pdf
https://www.josehu.com/assets/file/distributed-engineering.pdf
https://lamport.azurewebsites.net/pubs/paxos-simple.pdf

To reduce message complexity: use a distinguished learner to listen from acceptors and broadcast to other learners

To reduce the occurrence of livelocks: elect a distinguished proposer that is the only one making proposals

Liveness issue example in Slide 34.
A complete multi-Paxos algorithm can be built upon this if we need a log of commands like in Raft:

Each server acts as a proposer, an acceptor, and a learner
System elects a leader who acts as the distinguished proposer + distinguished learner; Runs multiple instances of
the single-decree algorithm, one per client command

PBFT

Link: http://pmg.csail.mit.edu/papers/osdi99.pdf

Motivation

Byzantine faults - the Two-general paradox: if you can have faulty node or message contents can be corrupted, you can
never safely achieve an agreement with only two/three nodes

Simplified recursive proof (Slide 7.)

Previously we just assumed fail-stops. Now, if we can have Byzantine faults, we will need a more complicated protocol

Can be benign causes like hardware failure, bitflips
Or can be malicious causes like an attacker taking over several nodes

Contribution

BFT; To tolerate failures, need servers

Basic idea behind is that any two quorums will overlap in nodes, so you can tolerate failures
inside the overlap but still have the two groups achieve agreement

Each of the two quorum agrees on a value using the majority rule
There must be at least one honest node that is in both quorums, so the two agreed values must be the same

Use digitally-signed messages to ensure that honest nodes produce verifiable messages

Picking the number of failures to tolerate: Slide 27.

I will omit more about PBFT. Please see the paper.

Drawbacks

To achieve BFT, we need to exchange a huge traffic of messages - performance is terrible

Interesting critique against BFT papers: https://www.usenix.org/system/files/login-logout_1305_mickens.pdf.

Blockchain

Link to Ethereum whitepaper: https://ethereum.org/en/whitepaper/

Blockchain can be thought of as a stochastic, decentralized approach to Byzantine fault tolerance
Sybil attack, why VMs can break the majority requirement, why we must need proof of time/computation/work
I will omit more about Bitcoins. See the whitepaper and here.

Availability & Failure Recovery

Dynamo

Link: https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Motivation

http://pmg.csail.mit.edu/papers/osdi99.pdf
https://www.usenix.org/system/files/login-logout_1305_mickens.pdf
https://ethereum.org/en/whitepaper/
https://www.josehu.com/technical/2020/07/05/blockchain-essential-ideas.html
https://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Normal relational database not the right fit for some applications

Strict consistency too expensive
Many expensive & complicated features not needed: join, transactions, ...
Hard to scale
Hence, sometimes just need a NoSQL key-value database

Not all things in the ACID principle are needed:

Atomicity: yes
Consistency: no - just need eventual consistency
Isolation; N/A (updates just in one-key granularity, no transactions)
Durability: yes

Highly scalable, P2P, no master

Tolerate almost any kinds of failures

Meets 99.9% latency requirements

Contribution

Defines service-level agreements (SLA):

Expected load
%-ile latency under load
% availability

Dynamo resolves version conflicts during read instead of write - it provides this API interface:

get(key) (list, context) , a list of objects with conflicting versions

If there is conflict, client needs to resolve the conflict and tells Dynamo the result in its next put

put(key, value, context)

Client doesn't need to know all nodes, just any node

Uses consistency hashing to handle data placement (Fig 2.)

hash(X) mod k is uniform and fast, but does not handle nodes leave/join elegantly (need to move a lot of data
on config changes)

Consistent hashing hashes machines & objects all onto a circular namespace

Uses virtual nodes to map one machine to multiple places on the ring for better load balancing

Object belongs to its forward-nearest machine (its coordinator)

Also replicates to successors (its preference list) - puts/gets complete if enough quorum count acks

Tunable consistency level: have applications choose the R/W quorum sizes, s.t.

Sloppy quorum: only finding the first live (healthy) nodes

Hinted handoff: on , coordinator can try further nodes, and tells it to periodically try to forward the
update back to the intended node

Dynamo returns inconsistent results when:

During hinted handoff
When there is partition
When there are multiple failures

Use gossiping for nodes to exchange their list of known nodes - then client connects to any node and at best in one-
hop the server is able to redirect the client right to the key's coordinator

Use version vectors (vector clocks) (Fig 3.) to automatically resolve some easy-case conflicts - where the service actually
can figure out which update is strictly newer, so no need to bother sending both to the client for reconciliation

CAP theorem:

A + P: Grapevine, Dynamo, ...
C + P: Majority protocols (Paxos/Raft/Viewstamp), ...
C + A: Chain replication, single-node DB

Maelstrom

Link: https://www.usenix.org/system/files/osdi18-veeraraghavan.pdf

https://www.josehu.com/technical/2020/05/23/consistency-models.html
https://www.usenix.org/system/files/osdi18-veeraraghavan.pdf

Motivation

Facebook wants tolerance to datacenter-level physical failures: natural disasters, operational failures, bugs that tear
down an entire datacenter

Challenges:

1. Heterogeneity of datacenters
2. Every product is a collection of thousands of services, have complex dependencies
3. Data or service not deployed in all datacenters due to cost and latency requirements
4. Continuous growth/change in the products
5. Fast failover, want no cascading failures

Background

Facebook's infrastructure design (Fig 1.)

Contribution

High-level approach in steps:

1. Global deployment - service/data/storage must be globally deployed to multiple datacenters across the globe
2. Provision buffer - each datacenter has resilience in its design to accept some exceptional traffic
3. Replicate (so data is achievable elsewhere if one datacenter fails)
4. Do traffic redirection (draining) upon disaster - focus of this paper

Recognizes the importance of regular testing, health monitoring, and human intervention

Though the dependencies graph is updated by cooperating with the development teams of each product, there
might be mistakes, missing/unnecessary dependencies; Hence, do regular drain tests to ensure that the
dependencies are up-to-date and correct
Do capacity limit monitoring to decide how much to redirect to each partner datacenter
Use the runbook UI to allow easy human intervention in case any automation process goes wrong

Distributed File Systems
Distributed file systems are one of the most important application scenario of all the above distributed system theories.
They are more challenging than simple KV-stores. Major concerns:

Load balancing
Locating data
Consistent caching
Recovery & Fault tolerance
Various sized workloads, access patterns
Atomicity, file structures, stateful operations
Access control, permissions

There are typically two flavors of building distributed file systems:

1. Having some central control: NFS, AFS, GFS
2. P2P-flavor, symmetric pool: XFS, Frangipani, Ceph

NFS

Link to the relevant OSTEP chapter: https://pages.cs.wisc.edu/~remzi/OSTEP/dist-nfs.pdf

Clean server-client model architecture:

Server exposes its local FS, blocks of data cached in client-side memory

Either allow cache inconsistency to happen, write back on close()
Or do slow cache coherency protocols

https://pages.cs.wisc.edu/~remzi/OSTEP/dist-nfs.pdf

AFS

Link to the relevant OSTEP chapter: https://pages.cs.wisc.edu/~remzi/OSTEP/dist-afs.pdf

More scalable architecture design

Sub directory trees called volumes stored across machines
Client library knows the global mapping

Serving whole files on requests, caching of whole files in client-side disks

Cache write back happens if client cached copy changed, and last writer wins
Callback promise cache invalidation design much like Chubby's KeepAlive notifications

GFS

Link: https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf

Classic master metadata server design

XFS

Link: http://lazowska.cs.washington.edu/xfs.pdf

Motivation

Want a homogeneous, location-independent, P2P design

Breaking a file system into smaller pieces of services
Every machine should be able to run any ones of the services

Contribution

Example of an XFS installation:

Nothing at a fixed location; Everything is found via indirection (some map, Tab 1.)
Incorporates LFS + RAID striping (Fig 1.); Storage nodes only provide disks, not files

To locate data on disk:

Manager map: inode number manager node, globally replicated
Imap: inode number inode disk log address, split among managers
Then find the data block address from inode and find the correct storage server responsible for it through Stripe
group map
Complete file read procedure in Fig 3.

Techniques to handle load balancing issues in this setting: there will be hot files and hot directories, so a purely
uniform data structure placement might get very skewed load on different nodes

Have file manager services to decide placement and mapping
Tries to put load near client, creates file on/near the client node
Cooperative caching: if the data block is now cached on some other client, tell the requester to go to that client;
Managers remember who is caching which files; Invalidate on write
RAID stripe groups, a file could be scattered across multiple machines to allow parallel data transmission

Each map has its failure recovery scheme (Tab 2.)

Drawbacks

Incorporates too many things inside one system, not quite a clean design
No security or authentication mechanisms, but OK

Petal + Frangipani

https://pages.cs.wisc.edu/~remzi/OSTEP/dist-afs.pdf
https://static.googleusercontent.com/media/research.google.com/en//archive/gfs-sosp2003.pdf
http://lazowska.cs.washington.edu/xfs.pdf

Link: https://www.scs.stanford.edu/nyu/01fa/sched/petal.pdf

Link: https://pdos.csail.mit.edu/6.824/papers/thekkath-frangipani.pdf

Motivation

Petal is a distributed virtual disk - exposes the block-device level interface

Much simpler semantic than distributing a file system, much like KV-store
Similar ideas used widely nowadays: AWS EBS, EMC storage, ...

Shared virtual disk exposes sharing issues & locality issues if used with a tradition UNIX local FS; Frangipani is a file
system built upon Petal to make it more powerful

Contribution

Petal architecture

Virtual-to-Physical translation (Fig 4.): <vdisk, voffset> <server, pdisk, poffset>

Virtual disk directory & Global map are globally replicated using Paxos
Physical map is local to each server
The global map indirection allows transparent membership reconfiguration (Slide 38., 39.)
Client could cache the global map to reduce latency in common case

Supports data backup by copy-on-write snapshotting; Pauses client operation for app-level consistency

It is not very feasible to use parity for disk failure tolerance in a distributed scenario; Petal uses chained-
declustering (Fig 5.)

Each block having two replicas, automatically split traffic to neighbors and then cascadingly propagate
Normally, reads could go to either replica (client tracks # pending requests to decide), and writes always first
go to primary

On write, primary marks data busy (locked), then send the update to both local copy and secondary copy,
acknowledging client and clearing busy bit if both complete

If unsuccessful, client tries secondary replica
If replica detects partner failure, marks data as stale to indicate that partner should re-read them at
recovery

Frangipani design over Petal

Assumes a shared disk space, so no leaders, uses lock service (run on Petal servers) for coordination (Fig 2.)

Like a Chubby running along with Petal, since Petal uses Paxos anyway
Locking is on whole-file granularity and targeting low-sharing workloads

Virtual disk space layout (Fig 4.)

Large blocks could help with locality given that Petal serves continuous addresses well
"Wastes" (Fragments) some of the huge virtual space for efficiency

https://www.scs.stanford.edu/nyu/01fa/sched/petal.pdf
https://pdos.csail.mit.edu/6.824/papers/thekkath-frangipani.pdf

For failure recovery, each server has its own FS log somewhere on Petal; Failure of server detected by the
locking mechanism, and any healthy partner could ask for transferring locks and use 's log to recover

Nice layering approach: Frangipani over Petal, both are very simple and clean in design

Ceph

Link: http://www2.cs.uh.edu/~paris/7360/PAPERS07/weil-osdi06.pdf

Motivation

Seperate data and metadata management, making both sides scalable, not just a single metadata server
Wants to take the advantage of object storage devices

Background

Object storage devices are smart disks with some of the file system logics offloaded, and providing the upper layer an
object ID interface just like a KV-store

Contribution

Highly-scalable design on both metadata side (MDS) and data side (RADOS of OSDs) (Fig 1.)

Gets rid of the file inode mapping completely by using a statically-known hash function called CRUSH from
<file> <OSDs, obj> ; Metadata servers hence do not need to replicate these expensive mappings
Lookup-based placement (e.g., XFS) vs. Calculation-based placement (e.g., Ceph)

Data side - RADOS fault-tolerant data distribution with placement groups (PGs) and OSDs (Fig 3.)

Metadata side - globally-known CRUSH hash function (Slide 20.)

Deterministic, so known to everyone and no need to dynamically replicate
Input does require a hierarchical cluster map of all storage devices and a rule
Calculation is done on client, with information returned from MDS

Metadata side - dynamic directory tree partitioning (Fig 2.) across MDSs for load balancing directory lookup traffic

Load- & Locality-aware
MDS returns an inode number to client, client then does CRUSH

Authentication, Privacy, & Security

Kerberos

Link: https://www3.nd.edu/~dthain/courses/cse66771/summer2014/papers/kerberos.pdf

Motivation

Authentication == Prove to a server over a network who you are. Previous solutions have exposed vulnerabilities:

rlogin - minimum authentication, just check username + IP address

Trust all client OS to provide correct username (logged in on client machine)
Easy to do man-in-the-middle (MITM) attack

ftp - server has database of users & passwords, client sends username & password

Attackers could do MITM network sniffing to learn about the passwords
Challenge mechanism

http://www2.cs.uh.edu/~paris/7360/PAPERS07/weil-osdi06.pdf
https://www3.nd.edu/~dthain/courses/cse66771/summer2014/papers/kerberos.pdf

To scale up, could use a separate domain controller (DC) entity to store the database; Server talks with DC
and DC replies yes/no
MITM still easy, just relay all the messages

Want a scalable & decoupled authentication system: client OS no longer trusted, any untrusted client laptop (no just
workstations in a fixed network) should be able to access services/data

Contribution

Defines a clear threat model

Threats:

Network sniffing
Record/Replay attacks
Client OS compromised

Constraints (Goals):

Multiple services using Kerberos, each with their own access rules
IP spoofing is hard
Scalable and highly available
Single sign-on: user login once and have access to all university services
Separate database from auth server
Don't store password on client

Kerberos essential design & workflow:

Participants:

Client
Kerberos server == the authentication server (database check not shown in this figure)
TGS == the ticket-granting server
Server == the service that uses Kerberos for authentication

 means the private key owned by entity
 means a random session key with expiration lifetime for communication between and

Kerberos Ticket-granting Ticket for single sign-on:

Kerberos Service Ticket for finally talking with the service : in similar structure

Kerberos Authenticator constructed once per service access:

Authentication workflow:

1.

2.

These two are single sign-on operations.

Why need TGS? We want to store something more secure than plain password on the client.

3.

Client OS asked for password, then use it to decrypt 2.. Client constructs .

4.

5.

6. (optional if the client wants mutual authentication) server sends back

Guards against replay attacks by having timestamps, lifetimes, and replay cache on servers that rejects all replayed
messages seen in the last 5 minutes

Used widely in universities and inspired nowadays popular OpenID systems, e.g., "Sign in with Google", ...

Get Off My Cloud

Link: https://hovav.net/ucsd/dist/cloudsec.pdf

Background

Cloud computing gets popular

Software-as-a-Service (SaaS): e.g., Google docs
Infrastructure-as-a-Service (IaaS): provide virtual machines and networking to customers
Platform-as-a-Service (PaaS): IaaS but with OS support and common services taken care of
Function-as-a-Service (FaaS): i.e., serverless computing, see the last section

Threats to cloud computing security:

Multi-tenancy, VM co-location (co-residency) + side-channel leaks
Trust cloud provider and virtualization software
Performance interference

Contribution

Describes a practical information leak attack on AWS

Learn the VM allocation policy and establish a mapping

Binpacking algorithm of AWS for locality
Use this knowledge to try to achieve VM co-residency with target victim, and do co-residency checks to be sure

Exploit various covert/side-channel attacks on shared physical resources to leak information about the victim,
e.g.,

Disk seek timing for stronger co-residency checks
Leak performance stats
Keystroke timing for guessing passwords
Cache side-channel attacks

Zanzibar

Link: https://www.usenix.org/system/files/atc19-pang.pdf

Google's distributed ACL service

Serverless Computing

Serverless Workloads

Link: https://www.usenix.org/system/files/atc20-shahrad.pdf

Various workloads have different impacts on the cold start issue

Peeking Serverless

Link: https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf

Background

Serverless functions (FaaS) have the following advantages compared to IaaS:

Scaling down when not needed (elasticity)
Scaling up very quickly
Quick response time and deployment cost
Better programmability, only need to care about the actual app logic
Cost-efficiency, fine-grained billing scheme

https://hovav.net/ucsd/dist/cloudsec.pdf
https://www.usenix.org/system/files/atc19-pang.pdf
https://www.usenix.org/system/files/atc20-shahrad.pdf
https://www.usenix.org/system/files/conference/atc18/atc18-wang-liang.pdf

Contribution

Comprehensive empirical study on three serverless platform providers: AWS Lambda, MS Azure Functions, & Google
Cloud Functions

Using VM vs. Docker vs. Processes; Isolation level, at which level is multi-tenancy (Fig 2.)
Cold start launching performance (Slide 31., Fig 8.)
Instance lifetime (Slide 39.)
Instance placement & contention (Slide 34., 37.)
Function resource configurations: CPU, memory, storage (Slide 36.)

