
 Distributed Systems Engineering
Author: Guanzhou (Jose) Hu 胡冠洲 @ MIT 6.824

Teachers: Robert Morris

Many high-level theory about distributed computer systems have been covered in the course note of CS290K. For this
note, I will only pick up some highlights as a complement.

 Distributed Systems Engineering
Distributed Systems Highlights

Threads & Concurrency
Fault Tolerance
Consistency Models
Distributed Transactions

Other Case Studies
The Go Programming Language
MapReduce (Lab 1); Spark
Consensus Algorithm - Raft (Lab 2~4)
ZooKeeper over Zab
Chain Replication (CR)
Amazon Aurora DB
Google Spanner
Microsoft FaRM
Blockchain + P2P Systems

Distributed Systems Highlights
Essential of distributed systems engineering is to hide details of the reality of distribution. However, that may sometimes
limit what you can do (e.g., the MapReduce model). This is the core tradeoff.

We want scaling. Scaling out is good, but that not always solves the problem! Scaling also brings many new problems!

Threads & Concurrency

We are particularly interested in using threads in distributed systems (combined event-driven programming) because:

1. I/O concurrency (disk IO, networking IO, waiting for remote response, ...)
2. Parallelism
3. Sometimes convenient, especially for background/periodic timing or checking

Challenges of using threads arise because they must be synchronized over shared memory to avoid races. Correct
programming of concurrent events heavily rely on the language & hardware support we are using. A good candidate for
concurrent programming is the Go language, because that is what it is designed to do. Go's memory model particularly
demonstrates the importance of correct synchronization in multi-threading.

Fault Tolerance

Fault tolerance is one main reason behind distributed systems. Key property is to make the system still useable despite
some classes of failures. The hard part is to still maintain the following ideal properties:

Strongly consistent
Transparent
Efficient

To overcome Fail-stops, we use multiple replicas:

Direct state transfer: periodically mirroring the whole machine's state;

Replicated state machines: just sending external events

Flavors:

Primary/Backup Replication, e.g., VMware FT
Consensus algorithms such as Paxos, Multi-Paxos, Raft, ...;

https://pdos.csail.mit.edu/~rtm/
https://golang.org/ref/mem
https://pdos.csail.mit.edu/6.824/papers/vm-ft.pdf
https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf

Need to worry about:

1. How abstractive is the state
2. How close is the synchronization: must ensure primary backup clients
3. Cut-over mechanism: no way to guarantee no duplicate outputs on cut-over
4. Split-brain situations
5. Building new replicas

All replication-based FT techniques can only guarantee to cope with fail-stops, not Byzantine failures or SW/HW bugs.

Consistency Models

Highlights the tradeoffs between consistency performance, fault tolerance functionality.

"Strong": same behavior as a single server Linearizability:

An example history of logged operations (seen from clients!):

12 34 time

read-b

read-a

write-2

write-1

write-3

write-4

client
invokes
operation

client
receives
response

Definition of linearizability: an order of R/W operations s.t.

1. If finishes before starts in the history, then must be ahead of in the order, AND
2. Each R sees the most recent (upto itself) W in the order

To prove / disprove linearizability:

Prove - find such an order
Disprove - find a dependency cycle

Some notes on enabling strong consistency:

Replication makes this very hard to guarantee
If an operation can timeout and client may resend, then we must avoid duplicated commands (by using, e.g.,
unique identifier for each operation)

"Weak": looses some of the constraints; one successful example is GFS

Spectrum of consistency models (strong to weak):

Figure from the COPS paper.

Eventual consistency: reads will eventually reflect all writes, but is allowed to temporarily read stale version, and
different replicas may temporarily see different data and in different order

Is a common design choice for web applications to achieve local writes + background pushes, by using
last_writer_wins with Lamport Clocks (since wallclock is hard to synchronize among datacenters):

 = the highest seen in incoming writes from replicas;
 = ,

Out-of-order anomacy might be hard for programmers to reason about

Examples: AWS DynamoDB, Cassandra

Causal consistency tries to solve the above anomacy (see the COPS paper) by encoding causal dependencies
between operations, but may suffer from cascading dependency waits. Not popular in practice.

The "CAP" theorem states that a distributed replicated state machine cannot achieve all the following three properties at
the same time:

(Strongly) Consistent
(Always) Available
(Network) Partition-tolerent

Some systems use caching to improve performance, where we need to consider the problem of cache coherence.

https://pdos.csail.mit.edu/6.824/papers/gfs.pdf
https://pdos.csail.mit.edu/6.824/papers/cops.pdf
https://pdos.csail.mit.edu/6.824/papers/cops.pdf

Frangipani](https://pdos.csail.mit.edu/6.824/papers/thekkath-frangipani.pdf) is a successful design which
achieves both caching and strong consistency
For modern web services, normally we need extremely high throughput but do not require strong consistency,
thus allow a certain degree of staleness and only require eventual consistency. Memcache(d) @ Facebook is a
perfect example of such extreme high-load NoSQL KVStore design

Distributed Transactions

Distributed transactions solve different problems from consensus algorithms. It is used for a data-sharded scenario (e.g.,
banking database) where we want to issue different requests to different instances (e.g., one instance debiting account A
and another instance crediting account B for the same amount). A transaction consists of several records.

Distributed transactions Concurrency control Atomic commits.

The "ACID" principle states:

Atomic: all or none, will not commit partial result

Consistent: called external consistency in database scenarios - obeys application-specific invariants

Isolated Serializability - transactions cannot see each other's intermediate results but only complete (committed)
transaction results

Formally, a serial order of executions of transactions that yields the actual result

If we wanna optimize the performance of Read-Only transactions (i.e., avoid 2PC for RO transactions):

Using multi-version DB & timestamps, can be achieved by snapshot isolation: RW transactions stamped
commit time, and RO transactions stamped start time, then when a RO transaction starts a read, all the
reads in it get the latest version that is no newer than its timestamp
Time synchronization is a fundamental issue that must be solved for taking such timestamps

Different from the notion of linearizability as linearizability is for a replicated single object and serializability is for
transactions among shards

Durable: persistently stored once committed

Concurrency control models:

Pessimistic concurrency control: lock a record before using it

Conflicts cause delay; Faster when conflicts are frequent
Examples: Simple locking, Two-Phase Locking (2PL)

Optimistic ocncurrency control (OCC): use w/o locking, leaving commits to check serializability

Conflicts cause abort (+ retry)
Faster when conflicts are rare

Atomic commits are typically done by Two-Phase Commit (2PC). READ HERE. The major disadvantage of 2PC is that the
system stalls and is unavailable when a single participant crashes right after responding "YES" to a "PREPARE". 3PC allows
participants to commit when the coordinator crashes, but it assumes bounded network delay. Under practical network
partition scenarios, 3PC does not guarantee atomicity, thus not very interesting.

We could make each instance a replicated state machine over a consensus algorithm for better availability. See
Spanner & FaRM case studies below.

Other Case Studies

The Go Programming Language

https://pdos.csail.mit.edu/6.824/papers/thekkath-frangipani.pdf
https://pdos.csail.mit.edu/6.824/papers/memcache-fb.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos418/docs/L6-2pc.pdf

Go-lang, developed by Google, is really powerful in handling concurrency and communication. It is designed to do that.
Worth to mention that Go adopts Garbage Collection (GC), which greatly eases programming with only some tiny
performance degrade (if GC is highly optimized).

Go-lang: official website
Go RPC package document
Go memory model document, particularly the definition of "happens before"

MapReduce (Lab 1); Spark

Classic distributed computing model which makes it a lot easier for users to utilize distributed computing resources, but
limits the freedom of what programmers can do.

MapReduce paper

Also see Spark & RDD for keeping intermediate results in memory and using the lineage graph for fault-tolerance:

Spark paper

Consensus Algorithm - Raft (Lab 2~4)

A modern & practical consensus algorithm which guarantees strong consistency over a distributed system with instance fail-
stops, networking delay, and communication failures.

Consensus algorithms solve split-brain problems by using the idea of Majority Vote: Any progress made requires a
majority's (also called a quorum) agreement, and then any majority must overlap with the previous majority!
Extend version of paper, especially its Figure 2
My personal notes on Paxos, Multi-Paxos, & Raft
Should pay special attention to referencing outer states, because those might have been mutated under concurrent
settings
Original Raft might apply a command multiple times - Non-idempotent client commands must be specially handled
(Section 8); correctness of Raft is defined as linearizability, thus this issue must be solved by the client
Many performance optimizations...

Graphical workflow illustration of a service deployment over Raft, when no failures occur:

For performance, we will want the workload to be sharded.

Check lab 4
When an operation requires atomicity across data in different shards, we must use distributed transactions,
where the involved shards are participants. E.g., debiting Alice $5 and crediting Bob $5 at the same time
Also see Spanner and FaRM below for modern solutions to sharding

All technical details matter when implementing a distributed algorithm - remember your failure on the midterm.

ZooKeeper over Zab

Zab is another consensus algorithm, similar to Raft. ZooKeeper is a general-purpose coordination service built upon Zab.

ZooKeeper paper

ZooKeeper is attractive due to:

It is a standalone general-purpose coordination service that is really independent of client semantics
Looses linearizability (can serve stale data, but guarantees per-client linearizability) and brings read performance
acceleration

Chain Replication (CR)

https://golang.org/
https://golang.org/pkg/net/rpc/
https://golang.org/ref/mem
http://static.googleusercontent.com/media/research.google.com/en//archive/mapreduce-osdi04.pdf
https://pdos.csail.mit.edu/6.824/papers/zaharia-spark.pdf
https://pdos.csail.mit.edu/6.824/papers/raft-extended.pdf
https://blog.csdn.net/weixin_41978191/article/details/100514664
https://pdos.csail.mit.edu/6.824/papers/zookeeper.pdf

Chain Replication is a very different approach from consensus algorithms.

Chain Replication (CR) paper

Chain Replication with Apportioned Queries (CRAQ) paper

CRAQ is attractive due to:

It guarantees strong consistency and meanwhile enables read from any replica
Tradeoff is that now replication is sent through a chain of servers instead of concurrently sending to all followers

 background latency

Amazon Aurora DB

Good design of storage-separated cloud database.

Aurora paper
"Logs are the database": offloads replication overhead to separate storage cluster

Google Spanner

Successful design of a global-scale distributed database.

Spanner paper

Combines 2PC with replicated state machines:

Higher-level is sharding + 2PC
Using Paxos to replicate the coordinator & participants of distributed transactions (into a Paxos Group as in the
figure above), to overcome the availability issues of 2PC (because each participant is now stronger against fail-
stops)

Introduces a novel TrueTime API which uses actual clock timestamps with a bounded uncertainty interval, to enable
snapshot isolation

Microsoft FaRM

Explores optimistic concurrency control in distributed transactions.

FaRM paper

Similar to Spanner on the choice of 2PC over replication (but here primary+backup instead of Paxos groups)

Not for geographically distributed database - Instead, pursues extremely high performance

Intra-datacenter RDMA smartNICs + kernel bypassing
Data fits in non-volatile RAM (NVRAM) with backup battery

Good example of OCC:

Reads w/o locking & directly from target shard's memory
Writes are buffered locally
Lock + Validation when writes commit
Aborts a write when there are conflicts (seeing version number updates / others locked the object)

https://www.cs.cornell.edu/home/rvr/papers/OSDI04.pdf
https://pdos.csail.mit.edu/6.824/papers/craq.pdf
https://pdos.csail.mit.edu/6.824/papers/aurora.pdf
https://pdos.csail.mit.edu/6.824/papers/spanner.pdf
https://pdos.csail.mit.edu/6.824/papers/farm-2015.pdf

Applications must handle aborts and retries

Worth thinking: is it possible to implement distributed transactions only using one-sided RDMA? FaRM enables RDMA
reads w/o locking, but is still an open question for RDMA writes.

Blockchain + P2P Systems

"Hashed chain of history" + “Decentralized broadcasting”. See my 6.829 course notes.

Bitcoin: Hash power contest to prevent private double spending (Sybil attacks)
Blockstack: Re-build the Internet naming infrastructure over blockchain; paper

https://pdos.csail.mit.edu/6.824/papers/blockstack-2017.pdf

