
 Database Management Systems
Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS564

Teacher: Paris Koutris

Figures included in this note are from Prof. Koutris's slides unless otherwise stated.

 Database Management Systems
Introduction
Data Models

Relational Model
Entity-Relationship (E/R) Model
Key-Value Model

Entity-Relationship (E/R) Model
Relationships
Subclasses
Constraints
Converting ER to Relational Model

Functional Dependencies (FD)
FD Properties
Closure Algorithm
Superkeys & Minimal Basis

Schema Normalization
Decomposition
Lossless-Join & Chase Algorithm
Dependency Preserving
Boyce-Codd Normal Form (BCNF)
Third Normal Form (3NF)

Relational Algebra
Basic Operators
Derived Operators
Extended RA Syntax

Data Storage
Buffer Manager
File Organization
Page Organization
Record Format

Index Structures
Indexing Basics
Hash Tables
B+ Trees
Bitmaps & Bitslices

Supporting SQL Operators
External Sorting
Selection Operator
Projection Operator
Join Operator
Aggregation Operation

Query Optimizer
Annotated RA Trees
Optimization Plans
Cost Estimation

Transaction Management
Definition of Transactions
The "ACID" Principle
Write-Ahead Logging (WAL)
Transaction Concurrency

Introduction
This course focuses on two parts:

http://pages.cs.wisc.edu/~paris/
file:///D:/Dropbox/UW-Madison/Computer-Sciences/CS564-DB/Notes/database-management.html

1. User's view on using a database management system (DBMS)
2. Designing, implementing, and maintaining a DBMS

A Database (DB) is an organized collection of structured data. A Database Management System (DBMS) is software that:

Automate operations on data in a DB
Boost performance of data storage/retrieval
Safely allow concurrency
Scale up / out to very large databases
Protect from system crashes

Some terms used in the database world:

Data model = abstract layout of data, e.g., table, array, key-value, graph, ..

Schema = a concrete type of a data model, e.g., a SQL table structure saying "the 1st column is ID, the 2nd column is
Name, ..."

Instance = a data record, a concrete value of a schema

Query language = high-level language allowing user interactions with a DBMS

Types:

Declarative: e.g., SQL, Relational Calculus
Procedural: Relational Algebra

Data Independence: a desired feature of a query language that application does not need to change when
underlying data models change

Data Models
Data model is the most important layer of abstraction we will learn in this course.

Relational Model

A Relational data model organizes data as a collection of tables (relations). A table looks like:

Every column is an attribute
Every row is a data record (tuple*)
A domain is the valid range of an attribute's value
Every attribute has an atomic type, i.e., non-composite type

The SQL (Structured Query Language) is a query language over a relational-model database to query & manipulate
relational data.

Details about the SQL language can be found in the slides, in this tutorial, and in course activities notebooks; Some
notes from slides #2, #3, #4:

Null values, NOT NULL constraints, null propagation, IS NULL
3-valued logic
Multiset semantic & using DISTINCT
Set semantic & using UNION ALL
Compute maximum - ORDER BY with LIMIT 1 vs. nested check
Foreign key constraint: reject vs. cascade update/delete vs. set null
Multiple FROM sources: inner join by , , outer joins
Correlated subqueries execute multiple times

https://www.w3schools.com/sql/

Set comparison - ANY , ALL
COUNT(DISTINCT attr)

Aggregation with GROUP BY & HAVING
A good point of using a query language is that it hides implementation details of the DBMS. Users only need to follow
a standard set of semantics - and the DBMS takes care of translating the query commands into actual high-
performance query operations

Entity-Relationship (E/R) Model

Entity-Relationship (E/R) model is a data model describing what information a database should hold and the relations
between them. It is a good visual starting point when designing schemas for a given scenario. We can then easily convert
an ER model to a relational model for actual SQL coding.

See the ER model section below.

Key-Value Model

A key-value model (sometimes called KV, NoSQL) is a new data model gaining popularity, given the fact that traditional
relational databases have poor performance on some modern workloads. This course will not go into details about KV
stores.

Entity-Relationship (E/R) Model
An ER model is a collection of entity sets and their relationships:

Every object instance is an entity, i.e., an object distinguishable from other objects

An entity set (rectangle) represents a collection of entities of the same category

Each entity set has a set of attributes (oval) attached to it

A relation (diamond) is a subset of the cartesian product of two entity sets , e.g.,

Note: Here, 1, 2, 3, and a, b, c, d are entities (instances) of that entity set.

An example of an ER model:

Relationships

A relation can have one of the following types of multiplicity:

1. One-one:

E.g., a UW student one-one maps to a CS login account.

2. Many-one:

E.g., a company 1 can manufacture two products a & c, but a product can only be manufactured by one particular
company.

3. Many-many:

E.g., a person 1 can by two products a & c, and a product c can be bought by two persons 1 & 2.

A relation can also be multi-way, where it is the cross product of more than two entity sets. You can also label the edges to
indicate roles: collapsing two entity sets into one when we need the same entity set multiple times.

A relation can have attributes as well:

Subclasses

An entity set can have subclasses, i.e., entity sets that inherit all its attributes (and probably having their own extra
attributes). Subclasses of an entity set are expressed through a triangle.

Constraints

A constraint is an assertion about an ER model that must be true at all times. It's good to have as much constraints as
possible when drawing an ER diagram.

There are several types of constraints:

Key (underline): an attribute uniquely specifies an entity object

Single-value: an entity has at most one value for a given attribute or relationship

That attribute of this entity set has a single value
A many-one relation implies a single value constraint

Referential integrity (round arrow): a relationship is many-one, is single-value, and it must exist for every entity in the
entity set on the "many" side

An entity set is called weak when its complete key attributes come from other classes to which they reference, for example
the team entity set here:

To design a beautiful E/R model, remember:

Avoid redundancy

Keep it simple

Make something an entity set ONLY IF:

It is more than a name; it has at least one non-key attribute, OR
It is the "many" in a many-one / many-many relation

Avoid weak entities; give unique key identifier to every entity set

Converting ER to Relational Model

ER model is good for representing application requirements, while relational model is better for efficient computation. So
we first design an ER schema then convert that to a relational schema. Translation rules:

Entity set

Normal: New table with key attributes as primary key + its own non-key attributes as normal columns
Weak: New table with its own key attributes AND all referenced sets' key attributes as primary key + its own
non-key attributes as normal columns

Relationship

Many-many: New table with ALL key attributes from connected entity sets as primary key + the relation's own
attributes as normal columns
Many-one / one-one: Give the "many" side table a new column of the primary key of the "one" side as a
foreign key + the relation's own attributes as new columns

Subclasses:

Option 1: Each entity set as a separate table, each having all of that class's attributes
Option 2: Each entity set as a separate table; Parent has its all attributes; Children have only primary key +
subclass-specific attributes
Option 3: Only having the parent entity set table with all attributes, including all subclass attributes, and leave a
column null when you don't need it

Functional Dependencies (FD)
By now, we have figured out how to use E/R model to model an application and then transform the E/R diagram to a
relational schema to build a relational database. In this section, we show how to use functional dependencies to refine
(normalize, decompose) a "bad" relational schema.

If two tuples agree on attributes then they MUST agree on the attributes , then we
say functionally determines (i.e.,).

Example: in

FD Properties

Functional dependency has the following properties:

If , then & are independently determined by

We can split this FD into two FDs: and
We CANNOT do the same thing to the left hand side

An FD is trivial if belongs to the attributes set

Armstrong's Axioms:

Transitivity: If and , then
Reflexivity: For any subset , we have
Augmentation: If , then

An FD is domain knowledge, meaning an inherent property of the application, NOT a temporary thing we can infer from a
set of tuples. Given a table of a set of tuples:

1. We can confirm that a certain FD is definitely invalid
2. We can say an FD seems to be valid
3. We can NEVER prove that an FD is valid: there might be violating tuples not included in this table

Keys are special cases of FDs: all other columns in a relational schema.

Closure Algorithm

Its natural to think about closures under this notation:

For a set of FDs , its closure is the set of all FDs logically implied by
For an attributes set , its closure is the set of all attributes such that

Example:

Given

We have

Computing the closure of an attribute set is straightforward, much like the -closure algorithm in programming languages:

To compute the closure of a set of FDs :

1. For each FD

1. For each subset of , compute based on
2. Then for each subset ,

Superkeys & Minimal Basis

A superkey is a set of attributes such that this set functionally determines any other attribute in the
relational schema.

I.e., the full set of attributes

A key is a minimal superkey where none of its subsets can determine all other attributes

Similarly, a minimal basis of a set of FDs is iff:

Every FD has exactly one attribute on the right hand side
If we remove any FD from , then is no longer
If for any FD we remove one or more attributes from the left hand side, then is no longer

To compute the minimal basis of , follow the algorithm:

1. Split the right hand side into only one attribute
2. Remove all redundant FDs which can be logically implied by remaining ones
3. Clean up remaining FDs' left hand side

Schema Normalization
We now use FDs to help decompose and normalize "bad" schemas.

Decomposition

We can decompose a relation by creating two relations and , where
. We then say the instance of is the projection of onto the

dimensions .

A good schema decomposition should achieve:

Minimize redundancy
Avoid information loss (Lossless-join): For any instance , joining (recovering) the decomposed relations will give

Preserve all the FDs (Dependency preserving)
Ensure good query performance

Lossless-Join & Chase Algorithm

The Chase algorithm for checking lossless-join decomposition:

1. Create a table with attributes of the original relation and one row for each relation we split into

2. At each iteration, for every FD, check:

If in a row, the left hand side has no subscription and the right hand side does, then remove the subscription

If the left hand side has different subscription with the right hand side, then make the right hand side's
subscriptions to be the left hand side's

3. Repeat until no more updates.

If there is a row without any subscription, then we can say the decomposition is lossless-join

Otherwise, it is not

Dependency Preserving

Given and a set of FDs , the procedure to determine dependency preserving split:

1. Compute the closure of the FD set
2. For each split relation, say , then its FD set all non-trivial FDs in with attributes in
3. If by forcing all FDs in all split relations , we can recover all FDs in , then we say this split is dependency

preserving

A bad example which is NOT dependency preserving:

Boyce-Codd Normal Form (BCNF)

A relation is in Boyce-Codd normal form (BCNF) if: whenever is a non-trivial FD, then is a superkey of .
Equivalently, it means that for every attribute set , either (trivial), or all attributes (superkey).

Example: three attributes, only FD is , and key
Every binary relation is in BCNF

To decompose a relation into all BCNF relations, follow:

1. Find an FD that violates BCNF condition

2. Split into and as:

3. Repeat until no BCNF violations can be found

Such BCNF decomposition has the following properties:

Removes certain redundancy
Is always lossless-join
NOT always dependency preserving; example is the same as above section

Third Normal Form (3NF)

A relation is in third normal form (3NF) if: whenever , one of the following is true:

 (it is trivial), or
 is a superkey, or
 is part of some key of (we say contains prime attributes)

Notice that BCNF implies 3NF. Every BCNF relation is in 3NF.

It is always possible to lossless-join & dependency-preserving decompose a relation into 3NF! The algorithm:

1. Apply BCNF decomposition until all relations are in 3NF

2. Compute the minimal basis of

3. For each non-preserved FD in , add a new relation

If all FDs are already preserved, then is indeed in BCNF

Relational Algebra
Relational Algebra is a mathematically formal way of representing queries to a relational database. It is different from
relational calculus because relational algebra is more like an operational, procedural representation of how to compute.

Operands: relations or variables representing relations
Operators: common computation we need to do with relations
Inputs & Outputs are relational instances, but the schema is fixed for a given expression
In SQL we use multisets (multiple rows could be exactly the same), but in relational algebra we consider relations as
sets (meaning NO duplicate rows)

Basic Operators

Basic operators in relational algebra:

Selection:

 is a condition; can be a composite one; CANNOT have subqueries in
Outputs the rows of that satisfy ; output schema is the same as input schema
SELECT * FROM table WHERE condition;

Projection:

Outputs only the columns from ; output schema is
MUST remove any duplicate tuples, because the output instance is a set as well
SELECT DISTINCT A1, A2 FROM table;

Union:

Inputs schemas should be the same
Outputs the unioned rows from both; output schema is the same
Will remove duplications in the output

Difference:

Inputs schemas should be the same
Outputs the rows in but NOT in ; output schema is the same

Cross Product:

Cartesian product of all tuples in with all tuples in
Say input schemas are and and they do not overlap, then output schema is

SELECT * FROM t1, t2;

Renaming:

Say input schema is , it will be renamed to output
This operator is important for name-based relational algebra (as opposed to positional)
SELECT b1 AS a1, b2 AS a2 FROM table;

Operators are compositional, but logically equivalent expressions MAY represent different procedures of computation:

: select, then project
: project, then select

Derived Operators

Derived operators in relational algebra, which can be derived from basic operators:

Intersection:

Input schemas should be the same
Outputs the intersected rows from both; output schema is the same
SELECT t1.a, t1.b FROM t1, t2 WHERE t1.a = t2.a AND t1.b = t2.b;

Theta Join:

Essentially, a cross product with condition
SELECT * FROM t1, t2 WHERE theta;

Equi-Join:

Theta join where the condition only contains equalities between attributes
SELECT * FROM t1, t2 WHERE t1.a = t2.b;

Natural Join:

Equi-Join on all the common attributes of the two tables

Input schemas may have common attributes, and output schema will be the set of all attributes, keeping only
one copy of each common attribute

If inputs do not have any common attribute, natural join is cross product
If input schemas are the same, natural join is intersection

SELECT SSN, Age, Dept FROM Person, Department WHERE Person.SSN = Department.SSN;

Semi-Join:

Natural Join followed by a projection on the attributes of
Essentially, removes the rows in that does not join

Division:

Suppose and , the output will contain all values such that, for EVERY tuple in , tuple
 is in

Say input schemas are and , then output schema is

Extended RA Syntax

There are still some syntaxes in an extended RA:

Simple Aggregate:

 is an aggregation operation (sum, count, min, max) on attributes
Output schema is
SELECT COUNT(y) FROM table;

Group-By Aggregate:

Group by attributes
 is an aggregation operaation on attributes

Output schema is
SELECT x, COUNT(y) FROM table GROUP BY x;

Some more not used in this course

Any RA expression can be expanded in the form of an expression tree. For example, expands to:

Relational algebra has limited expressive power. For example, transitive closures (recursions) cannot be expressed by RA
Anything related to "ordering" in SQL language also cannot be expressed by RA, e.g., LIMIT , ORDER BY , ROW NUMBER

Data Storage
Starting from this section, we are entering the second phase of this course: DBMS implementation.

General architecture of a storage manager:

I will skip the parts involving:

Disk hardware anatomy, Flash SSD anatomy, and sequentiality
Basic ideas of memory hierarchy and caching

Because they have been explained in detail in OS courses.

Buffer Manager

The cache used in a DBMS for caching data in main memory is often called a buffer manager.

Actual disk blocks are called pages
Slots in the buffer are called frames; supports reading, flushing, and releasing

Each frame bookkeeps:

Pin count: number of current users of the page in this frame; only pin count = 0 frames are considered available
(some what different from classical caching, where in-use cache lines can still be evicted)

Pining on request, pin count += 1
Unpinning on release, pin count -= 1

Dirty bit: for write-back cache, indicates modified page; write I/O is lazy - it happens when some page replaces the
dirty page

Cache eviction policies are those common ones used, e.g., LRU, FIFO, CLOCK, MRU, ...

LRU: when pin count reaches 0, push to the tail of the LRU queue (essentially, a FIFO in classic caching)
CLOCK: when pin count reaches 0, flip the reference bit; when fetching an available frame, the first time we arrive at
an available frame with reference bit = 1, we clear it to 0 and move on (essentially, a second-chance FIFO)

The sequential scan problem is termed sequential flooding here.

File Organization

To store data in files, we need to consider:

How to organize pages within a file?
How to organize records within a page?
How to organize data within a record?

We can store pages as an unordered (heap) file. Each page has its unique ID (pid) and each record has its unique ID (rid). A
heap file can be organized as different layouts:

Two doubly-linked lists:

Page directory:

Page Organization

A page is a collection of record slots. An rid = <pid, slot number within the page>. A page can be formatted as:

Fixed-length records: each slot has a fixed length

Packed organization: first slots for the records; remaining slots are free space; last slot for storing the
current number of records

Insert to the next free slot
Delete will require moving the last record to fill the empty gap - that record's rid will change

Unpacked organization: last slot for storing a bitmap of slots + the total number of slots in this page

Insert looks up an empty slot in the bitmap
Delete will require clearing a bit in the bitmap

Variable-length records:

Maintains a slot list at the end of the file
Deletion sets the offset to
Insertion to the start of free space; if no enough space is available, we need to reorganize (to remove
fragmentation)
The rid of a record keeps unchanged when we move the record at reorganization, since it is defined by the slot
number in the slot list

Record Format

The number of fields + type of each field (i.e., column) will be stored in a common system catalog. To organize fields in a
record, we have the following choices:

Fixed-length fields

Variable-length fields:

Use delimiters to denote separation of fields - need a scan of the whole record to locate a field

Use an array of offsets at the beginning of the record

The problem with this row-store format is that it is very inefficient when we want to SELECT a column from a table - a
common workload in SQL! To address this problem, to can instead store the table vertically:

Each column of a relation is stored in a different file
Each split "record" in a file will then only have one field
This is called the column-store design

Index Structures
Alternative to unordered heap files, there are many other organizations which fit other access patterns than sequential
scans. We can have sorted files to speedup range queries, but the insertion and deletion overhead will be very bad.

Modern DBMS use various types of indexes:

Hash table
B+ tree
Bitmap index
...

Indexing Basics

An index is a data structure that organizes records of a table to speed up lookups. The attribute or combination of
attributes we use to lookup the records is called the search key. A search key can be composite, which means a
combination of attributes.

In the index structure, every entry can be either:

The full record data itself, i.e., the index structure itself is a file organization of records - at most one index on a given
table can use this choice
<Key , rid / pointer of the record data> - better for large data records

Every file can have multiple indexes on different search keys. An index can be classified as:

Primary (contains the primary key) vs. Secondary (otherwise)

In a primary index, there are no duplicates for one value of search key
If the search key contains a unique key, then it is called a unique index - also no duplicates

Clustered (order of entries matches the physical storage order of records, often implied by the full-record-data index
storage choice) vs. Unclustered

An index structure has the following properties:

Supported access types:

Equality search
Range query

Time to lookup (access, search) a record

Time to insert a record

Time to delete a record

Space complexity of the structure

When deciding creating indexes on tables, we should consider attributes in WHERE clauses to be the candidates for search
keys and the choice of index structure should match what search conditions we are going to use (e.g., single-point equality
for hash tables, range conditions for B+ trees).

Hash Tables

Hash tables are efficient for single-point equality queries but not suitable for range queries. Hash tables have (in
expectation) constant time for both search and insert.

Static (closed-address): bucket as linked list of primary page + overflow pages

Ideal hash function is uniform - low load factor
Skew distribution of keys over buckets is bad
Table may need to be resized - expensive operation

Extendible (dynamic resizing)

Use the last global depth bits of the binary form of search key to locate bucket

Every "bucket" is a pointer to a page, which has a fixed capacity

Every page has a local depth, originally the same as global depth

Whenever a bucket gets full on insertion:

If it has a local depth equal to global depth:

1. Increase global depth by 1
2. Split the overflowed bucket by new global depth bits
3. Local depth increases for the split bucket; Remains the same for other buckets - they don't need to split

at this time
If it has a local depth smaller than global depth, it means some buckets have been split at this level - just
split the overflowed bucket and increment the local depth

On deletion:

(optional) Can choose to coalesce with its sister page if they fit in one

If the bucket becomes empty:

1. Remove the empty page
2. Update the directory to point to its sister page

If the full directory fits in memory, then only one I/O for each lookup

Open-address: not mentioned in this course

The ratio of actual storage size over meaningful record data is called the fudge factor , typically ~1.2.

B+ Trees

B+ trees are great indexing structures for range conditions. A B+ tree is a self-balancing tree structure similar to AVL and
red-black trees, but not binary. It is widely used in file systems and DBMSs.

Basic structure of a B+ tree:

B+ tree has an order of ; each node of a B+ tree contains entries, where

The root node can have entries

A non-leaf (internal) node with entries has pointers to lower-level nodes in different ranges:

A leaf node with entries has pointers to data records (rids), along with two pointers to previous & next page

Every leaf node resides in its own page on storage

Search (point query & range query):

1. Start from root node, examine internal nodes to traverse until the correct leaf node

2. Check that leaf node:

If doing equality search, done;
If doing range search, traverse the leaves sequentially using previous/next pointers

Cost model for point search:

 is height,
 is the number of levels fit in buffer

 if clustered, otherwise

Cost model for range query:

 is the number leaf pages we read
 is the number of record result pages we read

Insert:

1. Find the correct leaf node like in searching

2. Insert data entry into :

If has enough space, done;

Else, split into two leaf nodes and a new node to the right, redistributing entries evenly:

1. Copy up the now leftmost key of into the correct place of the parent node
2. Add the pointer to into as well
3. If now exceeds the capacity limit , recursively propagate the procedure upwards; If the root node

exceeds its capacity limit, we will eventually split the root node into two and add a new root node atop,
increasing the tree height by 1

Delete:

1. Find the correct leaf node like in searching

2. Remove the entry from :

If is at least half-full, done;

Else, falls down to only entries, we try to borrow an entry from neighbor sibling nodes

If any of the two neighbors have entries, borrow one and done;

Else, we have to merge and siblings:

1. If merge occurs, must also delete an entry from parent
2. This can lead to being less than half-full, so the procedure may recursively propagate upwards; If

merging the second-topmost level and the root node only has 1 entry, merge with the root node,
decreasing the tree height by 1

There are several common metrics people use to measure B+ tree costs:

Fan-out : number of pointers to child nodes coming out of a non-leaf node

Typically assumed as constant as the upper bound is limited by
Fill-factor : the percentage of available slots in the B+ tree that are filled

Typically around

Height : number of levels of non-leaf nodes

, where is the number of leaf pages
The number of leaf pages = number of records / (page capacity)

Higher fan-out means smaller height & less cost per search
Typically around 3 or 4

Internal levels often do not take much space and can be kept in the cache for quick access.

Bitmaps & Bitslices

Bitmaps are an efficient way for storing values with a small domain.

One bitmap per possible value in domain + NULL value
To efficiently map rids to bit positions, we layout bitmap pages so that pids are sequential
More space-efficient than a B+ tree when size of value domain data entry size of B+ tree

Bitslices are a way to apply bitmaps on values with larger domain, such as integers.

Convert integer values into fix-length binary representation, then for each bit position (slice), use a bitmap to store it

Querying a bitslice for values threshold:

1. Convert the threshold value also to binary representation

2. Create a result bitmap for storing query results

3. Start from the highest bitslice, compare data record bit with threshold bit:

If threshold bit is 0 and data record bit is 1, put 0 in result bitmap
If threshold bit is 1 and data record bit is 0, put 1 in result bitmap
Otherwise, cannot decide yet for this data record, leave blank and need to consult the next lower bitslice

4. If there are any blanks in the result bitmap, move to the next lower bitslice

Aggregation with bitslices, e.g., SUM :

1. Count the number of 1's in slice 15 and multiply the count with
2. Count the number of 1's in slice 14 and multiply the count with , add to the result
3. Repeat...

Supporting SQL Operators
In this section, we are gonna see how to use the buffer manager and storage indexing structures to efficiently support
actual SQL workloads.

External Sorting

External sorting is the variant of sorting where not all data can fit in the main memory, so we must interact with external
storage devices. External sorting happens when users issue ORDER BY on a big table, in B-tree bulk loading, or in some
join algorithms. It is essential to all DBMS systems.

We first start with external merging where:

We want to merge two sorted lists, one with pages and the other with pages
We want to merge them into one big sorted list of pages, with the fewest number of I/Os -
We have a buffer of 3 frames = # input lists + 1

The algorithm:

1. Read the two smallest pages from each list, merge into the remaining empty frame until it becomes full;
2. Write the merged frame to disk, then continue merging until we finished any of the two input pages;
3. Read the next page of that list (whose first page has been exhausted), and repeat merging.

Using the external merging algorithm, we can build the external merge-sort algorithm:

1. Split the table into chunks small enough to sort in memory (called runs, size each)
2. Merge the runs using external merging
3. Every sorting of run / merging of runs is called a pass: pass 0 is the sorting to get initial runs, and subsequent passes

merge the runs

Say we have an input table of pages and a buffer of frames, the best I/O cost of external merge sort is

where in the first pass we make runs and then, in every subsequent pass, we merge of the runs. Every pass
takes I/Os to finish.

An optimization to external merge sorting is replacement sorting, which creates initial runs of average size , instead
of fixed size of . See slides #16, page 33.

Using the index structures, the buffer manager, and a method to do large sorting, we now look into how to implement
relational operators with the support of the I/O layer.

Logical operators: union, selection, projection, join, grouping, ... (SQL semantics)
Physical operators: nested loop join, sort-merge join, hash join, index join, ... (How are they implemented by a DBMS)

Selection Operator

The essential notion for selection operator implementation is access path:

File scan: scan entire file to search for the record; I/O cost = number of pages

Index scan: if an index is already available on some predicate that is usable; I/O cost depends on the index

Hash index on equality predicates only: if no duplicates

B+ tree index: , where is height, is number of index pages in buffer, and depends on
whether the index is clustered:

Unclustered: number of selected tuples in the worst case
Clustered: number of selected tuples number of tuples per page

We say an index matches a selection predicate if the index can be used to evaluate the selection.

A hash index on composite key matches a selection if all attributes in the composite key appear in the
selection predicate with equality

A B+ tree index on composite key matches a selection if a set of attributes in the predicate form a prefix of
the composite key, with any operations

A predicate can match more than one index; For conjunction (ANDs), we can choose to:

Use one index, then check remaining conditions for retrieved tuples
Use multiple indexes, and intersect them

For disjunction (ORs):

Use one index, then check remaining conditions for retrieved tuples
If some indexes cover all the conditions, where we union them and then retrieve the records

Selectivity of an access path means the percentage of records in relation that satisfy the selection condition and
retrieved by the access path. We generally want to choose the most selective (minimal selectivity) path. See slides #17,
page 23~26 for estimating selectivity.

Projection Operator

Simple case is without DISTINCT where we just scan the file and proejct out the attributes. Hard case is with DISTINCT
where we need to remove duplicates:

Sort-based: scan the file and project out attributes, sort the resulting set of tuples, then scan it again to discard
adjacent duplicates
Hash-based: first project out attributes and split the results into partitions using a hash function, then read
each partition into memory and use an in-memory hash table to remove duplicates
Index-based: if the projection attributes are a prefix of the search key of some ordered index structure, we can
retrieve the index entries in order, and simply discard unwanted fields and remove duplicates along the way

Cost estimation, see slides #17, page 30~38.

Join Operator

Algorithms for equi-joins:

Nested loop join: naive approach

I/O cost = + , where is the number of pages in
Outer relation should better be the smaller one
Uses minimum number of buffers - 3 frames suffice

Block nested loop join (BNLJ):

I/O cost =

Index nested loop join (INLJ): suppose has an index on the join attribute

I/O cost = , where is the I/O cost of searching the index
Block sorted index nested loop join: combining block grouping with an ordered index for

I/O cost = , where is the cost to sort frames of tuples

and is the cost to sequentially match frames of tuples from the ordered index
Sort merge join (SMJ): sort and on the join attribute using external sorting, then read the sorted relations into
buffer in order and merge

If a relation has already been sorted on the join attribute we can skip the first step for it
Can also handle multiple matches in the merge phase, but in this case merging may take worse than linear cost (

)
I/O cost = in no duplicate case and otherwise
An optimization is to generate sorted runs of size for and , and do multi-way merge of all sorted runs;
memory requirement is and the I/O cost can be as low as

Hash join (HJ): partition and into partitions using a hash function , then join each partition of with the
corresponding partition with the same hash value of using BNLJ

I/O cost = in best case if all buckets from one of the two relations have size
Suppose a perfectly uniform hashing result, then if we can get an I/O cost of as low as

 due to the second phase BNLJ can finish in two passes
If , then hash join needs only one pass

For more general join conditions:

Multiple equalities: BNLJ always applicable; INLJ applicable if having index on the composite key or individually cover
all keys; SMJ and HJ now sort or hash using the combination of attributes

for page P_R in R:

 for page R_S in S:

 join tuples in P_R with tuples in P_S

for block of (B-2) pages from R:

 for page P_S in S:

 join tuples in block with tuples in P_S

for page P_R in R:

 probe each tuple of P_R in I to retrieve matching tuples

for block of (B-2) pages from R:

 sort the tuples in the block

 probe each tuple of the block in I to retrieve matching tuples

Inequality conditions: BNLJ always applicable; INLJ needs clustered B+ tree; SMJ and HJ not applicable

For set operations, intersection is a special case of a join, and union and difference are similar to how we remove
duplicates in projection. For aggregation operations, just sorting cost.

Aggregation Operation

For aggregation operations like SUM , COUNT , MIN , MAX used with GROUP BY :

Sort-based: sort, then scan the result produce min or max on the first seen entry for a new group

Hash-based: hash on group-by attributes, record running aggregate at hash table entry, and output the hash table

Index-based: if we have an ordered index available on aggregate attributes

Without grouping: simply use the index
With grouping: we must have the group-by attributes in the search key as well; if they form a prefix of the search
key, then the entries can be retrieved in group-by order

Query Optimizer
A query optimizer sits in between the SQL language interface and the storage manager. It first parses SQL query to
relational algebra formula, then optimizes the RA formula, generates actual query plans (annotated RA trees), and
estimates the cost.

Annotated RA Trees

A SQL query can be translated into an RA expression, hence an RA tree, which represents the order of operations to be
performed to complete this query. RA tree can be annotated with algorithm names to represent the actual plan of query
execution.

Example: for the SQL query SELECT DISTINCT ename FROM Emp E, Dept D WHERE E.did = D.did AND D.dname =
'Toy' :

A possible RA tree:

A possible partially annotated RA tree for this tree:

Note that for the same SQL query, there can be many equivalent RA trees representing different orders of operations, and
hence even more possibilities for annotated RA trees.

Optimization Plans

The space of all possible annotated RA trees is huge, so it's impractical to explore all of them and pick the best one. There
are several heuristic rules for the optimizer to make better decisions:

Pushing down selections

Always possible to push a selection through another selection

Might be possible to push a selection through a projection; not possible when the selection involves attributes
from multiple relations

Pushing down projections

Reordering joins

Rules:

Commutativity:
Associativity:

Left-deep joins are easy to but not efficient

Bushy joins better than cascading joins as we can do lower level joins in parallel:

Besides reordering operations, there is also opportunity to apply pipelining:

We can always choose to materialize intermediate results to disk before starting the next operation in tree
If the next operation is a scan-like operation (e.g., row-by-row projection), we can pipeline the computation:
Whenever we generate a tuple at this level we can feed it to the next operator

Cost Estimation

It is helpful to estimate the cost of a query plan:

Estimating the size of intermediate results

Estimating the cost of each operation step in the plan; depends on:

Input cardinalities
Complexity of the algorithm

See slides #19 page 24~ for cost estimation examples.

Estimation cannot be 100% accurate. Production DBMS systems store statistics in the system catalog and use them to
guide the estimation, e.g.,:

Number of tuples (cardinality) of input relations
Size in pages
Number of distinct keys
Range of values

This is a hard problem and is still an active research area in DBMS field. A real-world example looks like:

Transaction Management
DBMS should also provide the support for transactions to be fault tolerant and consistent across failures.

Definition of Transactions

A transaction is a sequence of DBMS operations (e.g, SQL statements) bounded together into a single atomic unit.
Example: a bank account transfer composes of "{subtract $10 from A, add $10 to B}". The whole transaction either
succeeds or not at all - we cannot leave the DBMS state as partially committing a transaction.

Transactions are easy to guarantee on a single-node system, but much harder to do correctly for a distributed DBMS.
Please see my distributed systems note for more on this. Distributed transactions =

Concurrency control: pessimistic vs. optimistic
 Atomic commits: 2PC, ...

The "ACID" Principle

A canonical DBMS should provide the following four properties for transactions, summarized as the "ACID" principle:

Atomicity: all or none, cannot commit partial result of a transaction

Commit: all the changes are made
Abort: no changes are made, as if nothing happened

Consistency: called external consistency in the DBMS scenario (not the data consistency in distributed replicated
systems), means to obey application-specific invariants

E.g., bank account balance must be

A DB in a consistent state will remain in a consistent state after a transaction

The programmer makes sure the transaction logically takes a consistent state to a consistent state
The DBMS makes sure the transaction is actually atomic

Isolation Serializability: transactions cannot see each other's intermediate results, but only complete (commited)
transaction results

If and are interleaved, the results should be the same as either first then , or first then
Durable: once committed, the results should be persistently stored and survive across failures

There are several challenges to make a DBMS "ACID":

Power failures (fail-stops)
Users may manually abort the program - rolling back the log
Concurrent users - locking
Ensuring ACID while maintaining good performance

Write-Ahead Logging (WAL)

BEGIN TXN;

 UPDATE account

 SET balance = balance - 10

 WHERE account_no = 1;

 UPDATE account

 SET balance = balance + 10

 WHERE account_no = 2;

COMMIT;

The log is an ordered list of modifications of the form: <TXNID, location, old-data, new-data> . It should record both
redo & undo information for every update to the DBMS state.

The log itself will be duplexed on persistent storage BEFORE the flushing of actual data records (write-ahead logging, WAL;
think of a journaling FS).

The log record for a data page update is persisted before the data page update (for atomicity)
A transaction is commited only after all of its log records have been persisted (for durability)

Improvement to WAL: see the ARIES protocol as an example.

Transaction Concurrency

The DBMS typically executes multiple transactions concurrently for better multiplexing and hence better performance. It
can create a schedule for a set of concurrent transactions:

Serial schedule: , then ; or , then ; Different serial schedules may generate different results, depending on
the order, but they are all "correct" in the sense of ACID
Serializable schedule: operations interleaved, but the outcome is the same with some serial schedule

Two operations are said to conflict if they come from different transactionis, involve the same variable, and at least one of
them is write. Conflicts can lead to anomalies:

Dirty read: reads intermediate data modified by before commits (caused by W-R conflict)
Unrepeatable read: reads data twice, but the data is modified by in the middle (caused by R-W conflict)
Overwriting: writes to a place modified by but has not commited yet (caused by W-W conflict)

Two schedules are conflict equivalent if they involve the same actions of the same transactions, and every conflict is
ordered in the same direction if the two schedules. A schedule is conflict serializable if it is conflict equivalent to some serial
schedule. A conflict serializable schedule indicates that it is serializable.

The conflict graph of a schedule maps each transaction to a node and adds an edge between if there is a conflict
in the direction of to

A schedule is conflict serializable IF AND ONLY IF its conflict graph is a DAG (directed acyclic graph), i.e., it has at least
one topological ordering
Then, this schedule is serializable as if executed in serial order of that topological order

For resolving mutual exclusion, locking is used. There will be S locks (shared locks, reader locks) and X locks (exclusive
locks, writer locks). The two-phase locking (2PL) protocol is used to enforce and guarantee a conflict serializability schedule.
Strict 2PL goes:

Lock on a variable is acquired when we first meet that variable in the execution of this transaction
All locks are released all at once only after the transaction has commited

Optimized 2PL says that locks can be gradually released in the second phase (but never re-acquired).

We could have deadlocks with 2PL. We need to detect/prevent deadlocks with some mechanisms (covered in OS courses).

