
 Data Structures

Author: Jose 胡冠洲 @ ShanghaiTech

 Data Structures
Arrays

Simple Array
Definition
Performance

Linked Lists
Node-based Impl.

Definition
Performance

Array-based Impl.
Definition
Operations

Doubly-linked List
Definition
Performance

Stacks
Singly-linked List Impl.

Definition
One-ended Array Impl.

Operations
Queues

Singly-linked List Impl.
Definition

Circular Array Impl.
Definition
Operations

Double-ended Queue (Deque)
Definition

Trees: Introduction
Terms & Properties
Tree Traversal
Forest

Definition
Trees: Binary Tree

Definition
Operations
Expression Tree
Complete Binary Tree
Left-child Right-sibling Binary Tree

Trees: Binary Heaps
Definition
Operations
Heapsort
Huffman Coding

Trees: Binary Search Trees (BST)
Definition
Operations

Trees: AVL Tree
Definition
Must-Know Patterns
Operations

Trees: Red-Black Tree (RBT)
Definition
Must-Know Patterns
Operations

Hash Tables
Mapping objects onto numbers
Hash Functions
Collisions Dealing: Chained List
Collisions Dealing: Open Addressing - Linear Probing

Operations

Analysis
Collisions Dealing: Open Addressing - Quadratic Probing

Disjoint Sets (Union-Find Set)
Array-based impl.

Definition
Performance

Tree-based impl.
Definition
Performance

Graphs: Introduction
Categories

Undirected Graph
Directed Graph

Representations
Adjacency Matrix
Adjacency List

Graphs: Traversal (Searching)
Breadth-First Search
Depth-First Search
Topological Sort

In-degree Based Procedure
Performance
Finding Cirtical Paths

Graphs: Minimum Spanning Tree (MST)
Prim's Algorithm

Procedure
Performance

Kruskal's Algorithm
Procedure
Performance

Graphs: Shortest Path
Dijkstra's Algorithm

Prerequisites
Procedure
Performance
Special Cases

Bellman-Ford Algorithm
Procedure
Performance

Floyd-Warshall Algorithm
Procedure
Performance

 Search
Prerequisites
Procedure
Performance

Sorting
Notations
Stupid Sorting Algorithms
Insertion Sort

Procedure
Performance

Bubble Sort
Procedure
Performance
Possible improvements

Heap Sort
Procedure
Performance

Merge Sort
Procedure
Performance

Quick Sort
Procedure
Performance
Possible improvements

Bucket Sort
Prerequisites
Procedure

Performance
Radix Sort

Prerequisites
Procedure
Performance

Arrays

Simple Array

Definition

Performance

Access -th Entry:

Insert or Erase at

Front:
-th:

Back:

Linked Lists

Node-based Impl.

Definition

Performance

Achieved with help of list_tail pointer.

Array-based Impl.

Definition

list_head points to first index

Every cell points to next index
Tail cell contains NULL

stack_top points to first empty index

Every empty cell points to next empty index
Last empty cell contains NULL

Operations

Pushing & Poping

Insert into stack_top / Push empty cell into stack

Remember to modify stack_top & list_head !
Reallocation

Enlarge:

Remember to update capacity & stack_top

Shrink:

Remember to update all members

Doubly-linked List

Definition

Performance

Stacks

Last in, First out (LIFO).

Two principal operations, both

push to top
pop the top

Singly-linked List Impl.

Definition

One-ended Array Impl.

Operations

Enlarging Schemes

 every time

Each push time

template <typename Type>

class Stack {

 private:

 Single_list<Type> list;

 public:

 bool empty() const;

 Type top() const;

 void push(Type const &);

 Type pop();

};

Wasted space
 every time

Each push time
Wasted space

Applications of Stacks

XML matching
C++ Parsing
Function calls
Post-fix (Reverse-Polish) notation

Queues

First in, First out (FIFO).

Two principal operations, both

enqueue to bottom
dequeue the top

Singly-linked List Impl.

Definition

Circular Array Impl.

Definition

Operations

Enlarging Schemes

template <typename Type>

class Queue{

 private:

 Single_list<Type> list;

 public:

 bool empty() const;

 Type front() const;

 void enqueue(Type const &);

 Type dequeue();

};

template <typename Type>

class Queue{

 private:

 int queue_size;

 int ifront; // Initially 0.

 int iback; // Initially -1.

 int array_capacity;

 Type *array;

 public:

 Queue(int = 10);

 ~Queue();

 bool empty() const;

 Type front() const;

 void enqueue(Type const &);

 Type dequeue();

};

Solution 1:

Solution 2:

Double-ended Queue (Deque)

Definition

Trees: Introduction

Terms & Properties

Terms

Root, Leaf, Internal Nodes (including Root)...

Path, Depth(length of path from root)...

Height: maximum depth, Count # of edges, NOT nodes

Only Root
Empty

Ancestor, Descendant (including the Node itself)

Properties

Recursive definition: Subtrees
Each Node, other than Root, has exactly one node pointing to it
No Loops, nodes edges
Detach first before Attaching

Tree Traversal

BFS (Breadth-First Traversal): use Queue,

DFS (Depth-First Traversal): use Recursion / Stack,

Pre-order, mark when first visited

A, B, C, D, E, F, G, H, I, J, K, L, M

Post-order, mark when leaving it

D, C, F, G, E, B, J, K, L, I, M, H, A

Forest

Definition

Collection of Disjoint Rooted Trees

Traversal can be achieved by treating the roots as children of a Notional Root.

Trees: Binary Tree

Definition

Notations

Full binary tree: each node is full / leaf, Complete

Complete: All left-most nodes are filled

Perfect: All leaf at same depth; all other nodes are full

 nodes
Height

Operations

template <typename Type>

class Binary_node {

 protected:

 Type element;

 Binary_node *left_tree;

 Binary_node *right_tree;

 public:

 Binary_node(Type const &);

 Type retrieve() const;

 Binary_node *left() const;

 Binary_node *right() const;

 bool is_leaf() const;

 int size() const;

};

Traversals

Pre-order (先根)
In-order (中根)
Post-order (后根)

NOTE: How many different forms a binary tree with height can have? A: Catalan #:

Expression Tree

Use Post-ordering DFS to get Reverse-Polish format

Use In-order Traversal to get Infix format

Need to add Brackets!!!
符号 prev- 符号, add " "
符号 -back 符号, add " "

Complete Binary Tree

Left-child Right-sibling Binary Tree

Knuth Transform: Store general tree as Binary Trees.

Empty left sub-tree no children
Empty right sub-tree last in its siblings
Pre-order traversal identical
Post-order traversal of original tree In-order traversal of Binary

For forests, consider all roots to be siblings.

Trees: Binary Heaps

First in, Highest priority out (A specific implementation of Priority Queues).

parent = k >> 1;

left_child = k << 1;

right_child = left_child + 1;

Definition

Take a Min-heap for example:

Key of Root Keys of subtrees
Subtrees are also Min-heaps
Usually, use Complete Binary Trees to ensure Balanceness Space:

Operations

Pop Root:

1. Remove root, replace with the last node

2. From the new root, (percolate)

1. If smaller than both children, DONE
2. Else, Swap with smaller child
3. Go down and Recurse

Push (Insert):

1. Add to the first empty slot

2. From the inserted node, (percolate)

1. If bigger than parent, DONE
2. Else, Swap with parent
3. Go up and Recurse

Build Heap - Floyd's Method:

1. for to

1. Percolate down array[i]

Observations on this method:

We can directly use an Array to represesnt a Heap
For a Complete Tree, Leaf Nodes
Only those Non-leaf Nodes need percolation Time complexity is

Heapsort

1. Use Floyd's Method to build a max-heap as array

2. Pop the root

This will make an empty space near end of array
Put the poped element there
Repeat until finish

Huffman Coding

1. Scan text, count frequencies

2. Build Huffman-Tree

1. Pick smallest two
2. Combine
3. Push back

3. Traverse through Huffman-Tree to determine code

Left gets , Right gets
4. Go through text to encode

Trees: Binary Search Trees (BST)

Definition

Left sub-tree (if any) is a BST and all Elements are less than the Root
Right sub-tree (if any) is a BST and all Elements are larger than the Root

Worst case of a BST:

Operations

Find Minimum (Maximum): ()

1. Go to left (right) most node

Find: ()

1. Do Binary Search
2. If empty node reached, return NULL

Insert: ()

1. Do find
2. If found, return NULL
3. Else insert at that empty node

Find Successor:

1. If has a right subtree, do find_minimum in right subtree

2. Else, go up toward root

1. Find the first larger object on this path

Delete:

1. Case 1: leaf, delete directly

2. Case 2: has one child, replace by this child

3. Case 3: has two children

1. Find the Successor
2. Replace by the successor
3. Delete the successor

Find -th Object

1. If size(left_subtree) == , return current node

2. If size(left_subtree) > , go to left subtree, and Recurse

3. Else, go to right subtree

1. Recurse on finding the size(left_subtree) -th entry

Trees: AVL Tree

Definition

AVL Balanced means:

Both left subtree and right subtree are balanced

Must-Know Patterns

of nodes upper bound

of nodes lower bound

Operations

Insertion:

1. Follow Binary Tree Convention

2. Check unbalanceness, Find the LOWEST unbalanced node:

L-L (symmetric to R-R)

L-R (symmetric to R-L)

Deletion

1. Follow Binary Tree Convention

2. Trace back to root, Check unbalanceness!

Rotate to fix, then go upward
Need to check every node on this path! (include Root)

Trees: Red-Black Tree (RBT)

Definition

Each node Red / Black (1 bit)

Null Path: path starting from the root where the last node is not full

Restrictions:

1. Root must be black
2. Red node can only have black children
3. Each null path have same # of black nodes

Must-Know Patterns

Red node must be either full / leaf

If node P has exactly one child Q:

Q must be red
Q must be leaf
P must be black

Worst case RB Trees

: # of black nodes per null path, : height
 (total # of nodes):

Operations

Bottom-Up Insertion:

1. MUST insert a red node, o.w. The global rule c. will be violated

2. Find the place where it will be inserted

3. If parent is black, DONE

4. Else if parent is Red

1. If grandparent has only one child: Then DONE

2. If grandparent has two children: (uncle must be red) Then Recurse!

1. Recursion Case 1: Then DONE

2. Recursion Case 2 Then DONE

3. Recursion Case 3 Then Continue Recursion!

3. If the root becomes Red at last, Colour it Black

Top-Down Insertion:

1. From the root, every step downward:

1. Check: current node is black AND there are two red children ?

1. If true Swap color
2. If the root becomes Red, Colour it Black

2. Check: After Swaping, parent AND self both Red ?

1. If true, do a Rotation!
2. When already reaches bottom, only needs at most one more rotation

Deletion:

When deleting a node:

If Node is Leaf, delete it
If Node is internal, replace it with its Successor, then actually deletes the Successor

Therefore patterns can ONLY be:

1. Deleting a Red leaf, DONE

2. Deleting Black node with a Red leaf, Replace value Then DONE

3. Deleting a Black leaf! (不是最简但最直观)

1. Sibling Red:

2. Sibling Black & Parent Red:

3. Sibling Black & Parent Black:

Now the whole subtree (rooted at P) lacks a black node, Recurse!

4. Sibling Black & has left child:

5. Sibling Black & has only right child:

Hash Tables

Scenary: Error code vary in range 0~65536, but in total 150 different error conditions

Solution 1 - Array of length 150: Slow to locate an error code (Binary search)
Solution 2 - Array of length 65536: Large memory space wasted
Solution 3 - Hash Table

Mapping objects onto numbers

Predetermined. e.g. Student ID #

May make two equivalent objects having different hash values
Arithmetic, e.g. a determinstic function

For rational #s: define

Problem 1 - and hashes differently: Divide by

Problem 2 - and hashes differently: Use form

For strings: Let individual characters represent coefficients of polynomial of

Hash Functions

The process of mapping a number onto an integer index in a given range.

Requirements

Must be in time
Output is determinstic: Always same output for same input
Could have collision situations

Types

Modulus: n & ((1 << m) - 1) ,

Fast, just take last bits
Multiplicative: ((C * n) >> shift) & ((1 << m) - 1)

...

Collisions Dealing: Chained List

Use linked lists to store collisions.

Operations

push_front to list head every time
Search should now go through the list ()

Load Factor represents the length of linked lists

If goes high, re-hash (Double the table size and re-insert all elements)
Choose hash functions that avoid clustering!

Could replace each linked list with an AVL tree

Collisions Dealing: Open Addressing - Linear Probing

Operations

Insert:

1. If bin empty, occupy it
2. Otherwise, go to bin , ... until an empty bin is found (Circular array!)

Search:

1. Start from bin , search forward until

item found, true
empty bin found, false
traversed entire array, false

Erase:

1. Erase slot , making a hole at bin (hole = k)

2. Repeat:

1. Go to next adjacent bin (occupied by element)

2. If is at OR before hole but after

Move into hole , resulting in a new hole (hole = k')
3. Until next bin is empty

Lazy Erasing:

Erase slot , mark it as ERASED

When searching meets ERASED , regard it as occupied

When insertion meets ERASED , regard it as un-occupied

Need searching before insertion to avoid duplicate elements
When calculating , regard ERASED as occupied

Analysis

Primary Clustering: Probability of increasing length of a length- cluster
of probes for a successful search:

of probes for a un-successful search:

Keep under a certain bound

Collisions Dealing: Open Addressing - Quadratic Probing

Move forward by different amounts every time.

Using , step forward at first probing, then , ...

Must use Lazy Erasing

Analysis

Secondary Clustering: Object hashing to same bin follows same sequence

of probes for a successful search:

of probes for a un-successful search:

Disjoint Sets (Union-Find Set)

Partition elements according to equivalence relations

Use a representative to represent all elements in set

find(a) operation returns the representative of set that a is in
union(a, b) operation unions two sets containing a, b

Array-based impl.

Definition

Performance

find takes
union takes

Tree-based impl.

Definition

Performance

find takes

Apply path compression
union takes

Point root of shorter tree to taller one

Worst case: Pascal's Triangle

Depth is without path compression

Depth is with path compression

Application of Disjoint Sets: Maze Generation

1. Divide the maze into square cells, each surrounded by four walls

2. Make every cell a disjoint set

3. Repeat:

1. Randomly choose a wall
2. If it connects two disjoint sets of cells, remove it, union two sets

4. Until all cells in one set

Graphs: Introduction

, where is set of Vertices, and is set of Edges.

Categories

Undirected Graph

Vertex & Edge

Assume { } (self-loop) is not an edge

Neighbours: adjacent vertices

Degree of a vertex: # of neighbours

Subgraph where is subset of , is subset of

Vertex-included sub-graph
Path from to

Length of a path is # of edges it passes through
Simple Path has no repetition vertices (except maybe)

size_t find(size_t i) const {

 if (parent[i] != i)

 parent[i] = find(parent[i]);

 return parent[i];

}

void union(size_t i, size_t j) {

 i = find(i);

 j = find(j);

 if (i != j)

 parent[j] = i;

}

Simple Cycle is a simple path with
Connected: exists a path between

A Connected Graph has a path between any pair of vertices
A Connected Component is a maximum connected subgraph

Weight of an edge might be assigned

Length of a weighted path is Sum of edge weights it passes through
A Tree is:

1. Connected & There is a unique path between any two vertices
2. Have exactly edges for nodes
3. Acyclic
4. Removing any edge creates two unconnected sub-graphs

A Forest is any graph that is Acyclic

of trees in forest

Directed Graph

In Degree of a vertex: # of inward edges

In degree - Source
Out Degree of a vertex: # of outward edges

Out degree - Sink
Connected: exists a path between

Strongly Connected: there exists a directed path from and to any two vertices
Weakly Connected: view it as undirected and then connected

Directed Acyclic Graphs (DAG)

Representations

Adjacency Matrix

Symmetric for undirected graphs
, if are not connected

Suitable for Condense Graphs

Adjacency List

For undirected graphs, consider every edge to be doubly directed
Suitable for Sparse Graphs

Graphs: Traversal (Searching)

Breadth-First Search

Uses a Queue, .

1. Choose a vertex, mark as VISITED , push into an empty queue

2. Repeat:

1. Pop queue head

2. For each neighbour of : that is NOT VISITED :

1. Mark as VISITED
2. Set 's parent to be
3. Push into queue

3. Until queue is empty

If all vertices visited now, then graph is Connected
Parent pointers form a BFS Tree

Depth-First Search

Uses a Stack, .

1. Choose a vertex, mark as VISITED , push into an empty stack

2. Repeat:

1. If vertex at stack top has an NOT VISITED neighbour :

1. Mark as VISITED
2. Set 's parent to be
3. Push into stack

2. Otherwise, pop

3. Until stack is empty

If all vertices visited now, then graph is Connected
Parent pointers form a DFS Tree

Applications of BFS & DFS:

Finding Connected Components

Determine Distances from source

Use BFS,
At every parent setting,

Test Bipartiteness

Use BFS, alternately set every layer
Find Strongly-Connected Components - Kosaraju's SCC Algorithm:

1. DFS(), record Discovery-time and Finish-time
2. Reverse all edges in , get
3. DFS(), pick nodes in decreasing order of Finish-time
4. Each DFS Tree formed in second DFS is an SCC!

Topological Sort

An ordering of vertices in DAG s.t. is before if there's an edge ().

Examples

Taking courses in SIST
Wearing clothes

Having Topological Sort DAG

In-degree Based Procedure

1. Use an array to store in-degrees of all vertices

2. Find a vertex with in-degree

3. Repeat:

1. Remove , update vertices in-degrees

2. a vertex with in-degree

If none found, not a DAG
4. Until all vertices picked

Performance

Space:

Time:

Search through array for in-degree :

Every time a vertex's in-degree updated , push into queue

Queue initially contains all in-degree vertices
The array used for queue stores exactly the ordering!

Finding Cirtical Paths

Every node (task) has a computing time.

Critical Time: Minimum time of completing all tasks in parallel

Critical time of a task is earliest time that it can be finished
Critical Path: Sequence that determines the minimum time

1. Find a vertex with in-degree

2. Repeat:

1. Remove , update vertices in-degrees

2. v.cirtical_time += v.task_time

3. For every neighbour of :

If v.cirtical_time u.critical_time :

1. u.critical_time v.critical_time
2. Set u.previous

4. a vertex with in-degree

3. Until all vertices picked

Graphs: Minimum Spanning Tree (MST)

Spanning Tree: a subgraph that is a tree, and includes all vertices

Minimum Spanning Tree is the one with minimum weights
Might have Spanning Forest for un-connected graphs

Cut Property (MST Property) MST is formed by red edges

Prim's Algorithm

Procedure

1. is initially root node , is initially

2. is initially

3. Repeat:

1. Extract the edge with Minimum weight in , where is the one

2. Add into

3. Add into

4. For every edge starting from

If , add into
4. Until

Performance

Space:

Time:

With Fibonacci Heap:

Kruskal's Algorithm

Procedure

1. is initially

2. Make all vertices a disjoint set

3. Sort in non-decreasing order of weights

4. For every edge in in order:

If and are not in same set:

1. Add into
2. Union the two sets

Performance

Space:
Time:

Graphs: Shortest Path

Prerequisites: Weighted Graphs & No Negative-weighted Loops.

Dijkstra's Algorithm

Single Source Shortest Path (SSSP), similar to BFS.

Prerequisites

No Negative-weighted Edges
Based on Triangle Inequality

Procedure

1. Initialize source node

2. Initialize all other nodes

3. is initially

4. Repeat:

1. Extract vertex with minimum from

2. Mark as VISITED

3. For every neighbour of that is NOT VISITED :

If :

1.
2. Set 's parent to

5. Until is empty

Performance

Time:

Worst case -

Special Cases

Cannot apply to Negative-weighted Edges:

Output is not MST:

Bellman-Ford Algorithm

Single Source Shortest Path (SSSP), can detect Negative Loops.

Procedure

1. Initialize source node

2. Initialize all other nodes

3. Repeat times:

For every directed edge :

If :

1.
2. Set 's parent to

4. If there is an edge where :

The graph has negative loop

Performance

Time:

Floyd-Warshall Algorithm

All Pairs Shortest Paths (APSP).

Procedure

1. Let be the Adjacency Matrix

2. Let be an Matrix with if there's an edge

3. For from to :

For from to :

For from to :

If :

1.

2.

Else

4. is the all pairs shortest paths matrix

Go through Matrix to acquire the shortest path.

Performance

Time:

Modify for finding Connectiveness: .

 Search

Source-to-Destination Shortest Path.

Prerequisites

Heuristic Function :

 The minimum cost of moving from known paths to , i.e. in Dijkstra

 Heuristic Function: Estimated cost of moving from to destination

Admissible Heuristics: Ensuring

Only when using Admissible Heuristics can ensure finding optimal Shortest Path

Procedure

1. Initialize source node to have -score of

2. Initialize all other nodes to have -score of

3. is initially

4. Repeat:

1. Extract node with smallest -score in

2. If is the destination:

Path found, END the procedure
3. Mark as VISITED

4. For every neighbour of that is NOT VISITED

If :

1.
2. Set to be

5. Until is empty

6. Assert no path exists

Performance

Time: Depends a lot on
Degrades to Dijkstra's Alg when for all nodes other than destination (Discrete Distance)

Sorting

Taking a list of objects which could be stored in a linear order, returning a reordering s.t. they are in order.

Notations

In-place / not

In-place: with the allocation of memory,
Not In-place: requires at least memory

Run-time

Worst-case run time: Based on comparisons, CANNOT be faster than
Average-case run time: Expected
Lower-bound (Best-case) run time: Must examine each entry at least once, so

Comparison Tree

Any comparison-based sorting can be represented by a comparison tree
 - For any array instance, the Sorting procedure is passing through a path from root to a certain leaf

of leaves
Therefore height

5 Sorting Techniques

Inversions: # if pairs that is not in order, but

of inversions

Expectedly, half of all pairs are inversions:

Denoted as

Stupid Sorting Algorithms

Bogo Sort: Randomly order the objects, check if sorted. If not, repeat.

In average
Bozo Sort: Check if sorted. If not, randomly swap two entries, and repeat.

In average

Insertion Sort

Given a sorted list of length , insert the -th element into it.

Procedure

With every swap , removes an inversion.

Performance

Space: In-place

Time

Worst-case:
Average-case:

Bubble Sort

"Bubble up" the remaining smallest entry every time.

Procedure

Performance

Space: In-place
Time: In all cases

Possible improvements

Store the remaining smallest, avoid so many swaps
Use bool flag to check if no swaps occurred, then already sorted
Alternate between "Bubbling" and "Sinking"

Heap Sort

Build a max heap on array Repeatedly extract the root and put it at back.

Procedure

void insertionSort(Type *array, int const n) {

 for (int k = 1; k < n; ++k) {

 for (int j = k; j > 0; --j) {

 if (array[j - 1] > array[j])

 swap(array[j - 1], array[j]);

 else

 break;

 }

 }

}

void bubbleSort(Type *array, int const n) {

 for (int i = 0; i < n - 1; ++i) {

 for (int j = n - 1; j > i; --j) {

 if (array[j] < array[j - 1])

 swap(array[j], array[j - 1]);

 }

 }

}

Performance

Space

Originally: for the heap

In-place implementation:

Time

Worst-case / Averagely:
Best (Most entries are same):

Merge Sort

Divide-and-Conquer: Recursively Divide Merge.

Procedure

Merge Operation:

Analysis

Space:
Time:

Use insertionSort for small subarrays (size <= N).

Performance

Space: for extra array

Time: In all cases

Recursion Tree

Quick Sort

Divide-and-Conquer: Recursively Partition.

Procedure

Partition Operation:

Analysis
 - Space: In-place
 - Time:

void heapSort(Type *array, int const n) {

 max_heap = buildMaxHeapFloyd(array);

 for (int i = n - 1; i > 0; --i)

 array[i] = extractRoot(max_heap);

}

void mergeSort(Type *array, int first, int last) {

 if (last - first <= N) {

 insertionSort(array, first, last);

 } else {

 int midpoint = (first + last) / 2;

 mergeSort(array, first, midpoint);

 mergeSort(array, midpoint, last);

 merge(array, first, midpoint, last);

 }

}

void quicksort(Type *array, int first, int last) {

 if (last - first <= N)

 insertion_sort(array, first, last);

Use insertionSort for small subarrays (size <= N).

Performance

Space: In-place, BUT

Worst-case: for function call stacks
Average-case: for function call stacks

Time

Worst-case (pivot is always extreme):

Average-case (pivot is well chosen every time):

Use Median-of-three: Choose pivot as median of first, middle and last element

Possible improvements

Modify the Partition procedure to be:

1. Choose pivot using Median-of-three

If first is pivot, swap with middle
If last is pivot, swap with middle

2. Use two pointers, low at , high at

3. Repeat:

1. Increment low Until array[low] > pivot
2. Decrement high Until array[high] < pivot
3. Swap array[low] with array[high]

4. Until low > high

5. Put pivot at low , Put array[low] at n-1

Bucket Sort

Prerequisites

Numbers must be in certain range !!
Not based on comparisons.

Procedure

Throw numbers into buckets Sort inside the buckets Sequentially get numbers from buckets.

Counting Sort: count how many times an "1" occurs...

Performance

Space:
Time:

Radix Sort

Prerequisites

Numbers must be digit numbers on certain base (Not necessarily 10)
Numbers must be finitely long, i.e. in certain range !!

 else {

 Type pivot = array[last]

 int i = first - 1;

 for (int j = first; j < last; ++j) {

 if (array[j] < pivot) {

 ++i;

 swap(array[i], array[j]);

 }

 }

 swap(array[i+1], array[last]);

 quickSort(array, first, i);

 quickSort(array, i+2, last);

 }

}

Not based on comparisons.

Procedure

For certain digit numbers, apply Bucket Sort on the last digit, then..., finally the first digit.

Use Queues for a Bucket.

Performance

Space: (# of buckets)
Time: In all cases

