

Author: Jose 胡冠洲 @ ShanghaiTech

Data Structures Arrays Simple Array Definition Performance Linked Lists Node-based Impl. Definition Performance Array-based Impl. Definition Operations **Doubly-linked List** Definition Performance Stacks Singly-linked List Impl. Definition One-ended Array Impl. Operations Queues Singly-linked List Impl. Definition Circular Array Impl. Definition Operations Double-ended Queue (Deque) Definition **Trees: Introduction Terms & Properties** Tree Traversal Forest Definition Trees: Binary Tree Definition Operations **Expression Tree Complete Binary Tree** Left-child Right-sibling Binary Tree Trees: Binary Heaps Definition Operations Heapsort Huffman Coding Trees: Binary Search Trees (BST) Definition Operations Trees: AVL Tree Definition Must-Know Patterns Operations Trees: Red-Black Tree (RBT) Definition Must-Know Patterns Operations Hash Tables Mapping objects onto numbers Hash Functions Collisions Dealing: Chained List Collisions Dealing: Open Addressing - Linear Probing Operations

Analysis Collisions Dealing: Open Addressing - Quadratic Probing Disjoint Sets (Union-Find Set) Array-based impl. Definition Performance Tree-based impl. Definition Performance Graphs: Introduction Categories Undirected Graph Directed Graph Representations Adjacency Matrix Adjacency List Graphs: Traversal (Searching) Breadth-First Search Depth-First Search **Topological Sort** In-degree Based Procedure Performance Finding Cirtical Paths Graphs: Minimum Spanning Tree (MST) Prim's Algorithm Procedure Performance Kruskal's Algorithm Procedure Performance Graphs: Shortest Path Dijkstra's Algorithm Prerequisites Procedure Performance **Special Cases** Bellman-Ford Algorithm Procedure Performance Floyd-Warshall Algorithm Procedure Performance A* Search Prerequisites Procedure Performance Sorting Notations Stupid Sorting Algorithms **Insertion Sort** Procedure Performance **Bubble Sort** Procedure Performance Possible improvements Heap Sort Procedure Performance Merge Sort Procedure Performance Quick Sort Procedure Performance Possible improvements **Bucket Sort** Prerequisites Procedure

Performance Radix Sort Prerequisites Procedure Performance

Arrays

Simple Array

Definition

Performance

- Access k-th Entry: $\Theta(1)$
- Insert or Erase at
 - Front: $\Theta(n)$
 - k-th: O(n)
 - Back: $\Theta(1)$

Linked Lists

Node-based Impl.

Definition

Performance

	Front/1st node	k th node	Back/nth node
Find	Θ(1)	O(n)	Θ(1)
Insert Before	$\Theta(1)$	Θ(1)*	Θ(1)
Insert After	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Replace	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Erase	$\Theta(1)$	Θ(1)*	$\Theta(n)$
Next	$\Theta(1)$	$\Theta(1)^*$	n/a
Previous	n/a	O(n)	$\Theta(n)$

Achieved with help of list_tail pointer.

Array-based Impl.

Definition

- list_head points to first index
 - Every cell points to next index
 - Tail cell contains NULL
- stack_top points to first empty index
 - Every empty cell points to next empty index
 - Last empty cell contains NULL

Operations

- Pushing & Poping
 - Insert into stack_top / Push empty cell into stack

Remember to modify stack_top & list_head!

Reallocation

Remember to update all members

Doubly-linked List

Definition

list_head—
list_tail

TR

Performance

	Front/1st node	k th node	Back/nth node
Find	Θ(1)	O(n)	Θ(1)
Insert Before	$\Theta(1)$	$\Theta(1)^*$	$\Theta(1)$
Insert After	$\Theta(1)$	$\Theta(1)^*$	Θ(1)
Replace	$\Theta(1)$	$\Theta(1)^*$	Θ(1)
Erase	$\Theta(1)$	⊖ (1)*	$\Theta(1)$
Next	Θ(1)	$\Theta(1)^*$	n/a
Previous	n/a	$\Theta(1)^*$	$\Theta(1)$

Stacks

Last in, First out (LIFO).

- Two principal operations, both $\Theta(1)$
 - push to top
 - pop the top

Singly-linked List Impl.

Definition

```
template <typename Type>
class Stack {
   private:
       Single_list<Type> list;
    public:
       bool empty() const;
       Type top() const;
       void push( Type const & );
       Type pop();
};
```

One-ended Array Impl.

Operations

- Enlarging Schemes
 - $\circ \ \ +=1 \ {\rm every} \ {\rm time}$
 - Each push $\Theta(n)$ time

- Wasted space $\Theta(1)$
- $\circ \ \ *=2 \ {\rm every \ time}$
 - Each push $\Theta(1)$ time
 - Wasted space $\Theta(n)$

Applications of Stacks

- XML matching
- C++ Parsing
- Function calls
- Post-fix (Reverse-Polish) notation

Queues

First in, First out (FIFO).

- Two principal operations, both $\Theta(1)$
 - enqueue to bottom
 - dequeue the top

Singly-linked List Impl.

Definition

```
template <typename Type>
class Queue{
    private:
        Single_list<Type> list;
    public:
        bool empty() const;
        Type front() const;
        void enqueue( Type const & );
        Type dequeue();
};
```

Circular Array Impl.

Definition


```
template <typename Type>
class Queue{
    private:
        int queue_size;
        int ifront; // Initially 0.
        int iback; // Initially -1.
        int array_capacity;
        Type *array;
    public:
        Queue( int = 10 );
        ~Queue();
        bool empty() const;
        Type front() const;
        void enqueue( Type const & );
        Type dequeue();
}
```

};

Operations

• Enlarging Schemes

Double-ended Queue (Deque)

Definition

Trees: Introduction

Terms & Properties

- Terms
 - Root, Leaf, Internal Nodes (including Root)...
 - *Path, Depth*(length of path from root)...
 - *Height*: maximum depth, Count # of edges, NOT nodes
 - Only Root $\Rightarrow 0$
 - Empty $\Rightarrow -1$
 - Ancestor, Descendant (including the Node itself)
- Properties
 - Recursive definition: Subtrees
 - Each Node, other than Root, has exactly one node pointing to it
 - \circ No Loops, $n \operatorname{nodes}
 ightarrow n-1$ edges
 - Detach first before Attaching

Tree Traversal

• **BFS** (Breadth-First Traversal): use **Queue**, $\Theta(n)$

- **DFS** (*Depth-First Traversal*): use **Recursion / Stack**, $\Theta(n)$
 - Pre-order, mark when first visited

A, B, C, D, E, F, G, H, I, J, K, L, M

• Post-order, mark when leaving it

D, C, F, G, E, B, J, K, L, I, M, H, A

Forest

Definition

• Collection of Disjoint Rooted Trees

Traversal can be achieved by treating the roots as children of a Notional Root.

Trees: Binary Tree

Definition

Ŀ

- Notations
 - Full binary tree: each node is full / leaf, \neq Complete
 - Complete: All left-most nodes are filled
 - Perfect: All leaf at same depth; all other nodes are full
 - $2^{h+1} 1$ nodes
 - Height $h = \lg (n + 1) 1$

```
template <typename Type>
class Binary_node {
    protected:
        Type element;
        Binary_node *left_tree;
        Binary_node *right_tree;
    public:
        Binary_node( Type const & );
        Type retrieve() const;
        Binary_node *left() const;
        Binary_node *right() const;
        bool is_leaf() const;
        int size() const;
};
```

Operations

- Traversals
 - Pre-order (先根)
 - ◎ In-order (中根)
 - 。 Post-order (后根)
- NOTE: How many different forms a binary tree with height h can have? A: Catalan #: $\binom{2n}{n} \binom{2n}{n-1}$

Expression Tree

- Use Post-ordering DFS to get Reverse-Polish format
- Use In-order Traversal to get Infix format
 - Need to add Brackets!!!
 - 。 符号 prev- \rightarrow 符号, add "("
 - 符号 ←-back 符号, add ")"

Complete Binary Tree

3 9 5 14 10 6 8 17 15 13 23 12

parent = k >> 1; left_child = k << 1; right_child = left_child + 1;

Left-child Right-sibling Binary Tree

- Knuth Transform: Store general tree as Binary Trees.
 - Empty left sub-tree \Rightarrow no children
 - Empty right sub-tree \Rightarrow last in its siblings
 - Pre-order traversal identical
 - Post-order traversal of original tree = In-order traversal of Binary

For forests, consider all roots to be siblings.

Trees: Binary Heaps

First in, Highest priority out (A specific implementation of Priority Queues).

Definition

Take a Min-heap for example:

- Key of Root \leq Keys of subtrees
- Subtrees are also Min-heaps
- Usually, use **Complete** Binary Trees to *ensure* Balanceness \Rightarrow Space: O(n)

Operations

Pop Root:

- 1. Remove root, replace with the last node
- 2. From the new root, (percolate)
 - 1. If smaller than both children, DONE
 - 2. Else, Swap with smaller child
 - 3. Go down and **Recurse**

Push (Insert):

- 1. Add to the first empty slot
- 2. From the inserted node, (percolate)
 - 1. If bigger than parent, DONE
 - 2. Else, Swap with parent
 - 3. Go up and Recurse

Build Heap - Floyd's Method:

```
1. for i = \frac{size}{2} to 0
```

1. Percolate down array[i]

Observations on this method:

- We can directly use an Array to represesnt a Heap
- For a Complete Tree, $\lceil \frac{size}{2} \rceil$ Leaf Nodes
- Only those Non-leaf Nodes need $\textit{percolation} \Rightarrow \textit{Time complexity is } \Theta(n)$

Heapsort

1. Use Floyd's Method to build a *max-heap* as array

2. Pop the root

- This will make an empty space near end of array
- Put the poped element there
- **Repeat** until finish

Huffman Coding

- 1. Scan text, count frequencies
- 2. Build Huffman-Tree
 - 1. Pick smallest two
 - 2. Combine
 - 3. Push back
- 3. Traverse through Huffman-Tree to determine code
 - Left gets 0, Right gets 1
- 4. Go through text to encode

Definition

- Left sub-tree (if any) is a BST and all Elements are less than the Root
- Right sub-tree (if any) is a BST and all Elements are larger than the Root

Operations

Find Minimum (Maximum): (O(h))

1. Go to left (right) most node

Find: (O(h))

- 1. Do Binary Search
- 2. If empty node reached, return NULL

Insert: (O(h))

- 1.Do find
- 2. If found, return NULL
- 3. Else insert at that empty node

Find Successor:

- 1. If has a right subtree, do find_minimum in right subtree
- 2. Else, go up toward root
 - 1. Find the first larger object on this path

Delete:

- 1. Case 1: leaf, delete directly
- 2. Case 2: has one child, replace by this child
- 3. Case 3: has two children
 - 1. Find the Successor
 - 2. Replace by the successor
 - 3. Delete the successor

Find k-th Object

- 1. If size(left_subtree) == k, return current node
- 2. If size(left_subtree) > k, go to left subtree, and Recurse
- 3. Else, go to right subtree
 - 1. Recurse on finding the $(k-\texttt{size(left_subtree)}-1)$ -th entry

Trees: AVL Tree

Definition

AVL Balanced means:

- $|h(l) h(r)| \leq 1$
- Both left subtree and right subtree are balanced

Must-Know Patterns

- # of nodes upper bound $=2^{h+1}-1$
- # of nodes lower bound

•
$$F(h) = F(h-1) + 1 + F(h-2)$$

• F(h) = Fibonacci[h+3] - 1

Operations

Insertion:

- 1. Follow Binary Tree Convention
- 2. Check unbalanceness, Find the LOWEST unbalanced node:

Deletion

- 1. Follow Binary Tree Convention
- 2. Trace back to root, Check unbalanceness!
 - Rotate to fix, then go upward
 - Need to check every node on this path! (include Root)

Trees: Red-Black Tree (RBT)

Definition

- Each node Red / Black (1 bit)
- *Null Path*: path starting from the root where the last node is not full
- Restrictions:
 - 1. Root must be black
 - 2. Red node can only have black children
 - 3. Each null path have same # of black nodes

Must-Know Patterns

- Red node must be either full / leaf
- If node *P* has exactly one child *Q*:
 - Q must be red
 - Q must be leaf
 - P must be black
- Worst case RB Trees
 - *k*: # of black nodes per null path, *h*: height
 - F(k) (total # of nodes): $F(k) = F(k-1) + 2 + 2(2^{k-1} 1)$
 - $\circ \hspace{0.2cm} h_{worst} = 2 \lg \left(n + 2 \right) 3$

Operations

Bottom-Up Insertion:

- 1. MUST insert a red node, o.w. The global rule c. will be violated
- 2. Find the place where it will be inserted

3. If parent is black, DONE

4. Else if parent is Red

3. If the root becomes Red at last, Colour it Black

Top-Down Insertion:

1. From the root, every step downward:

- 1. Check: current node is black AND there are two red children ?
 - 1. If true \Rightarrow Swap color
 - 2. If the root becomes Red, Colour it Black
- 2. Check: After Swaping, parent AND self both Red?

1. If true, do a Rotation!

2. When already reaches bottom, only needs at most one more rotation

Deletion:

When deleting a node:

- If Node is Leaf, delete it
- If Node is internal, replace it with its Successor, then actually deletes the Successor

Therefore patterns can ONLY be:

Now the whole subtree (rooted at P) lacks a black node, **Recurse**!

Hash Tables

Scenary: Error code vary in range 0~65536, but in total 150 different error conditions

- Solution 1 Array of length 150: Slow to locate an error code (Binary search)
- Solution 2 Array of length 65536: Large memory space wasted
- Solution 3 Hash Table

Mapping objects onto numbers

- Predetermined. e.g. Student ID #
 - May make two equivalent objects having different hash values
- Arithmetic, e.g. a determinstic function
 - For rational #s: define $rac{p}{q} \Rightarrow p+q$
 - Problem 1 $\frac{1}{2}$ and $\frac{2}{4}$ hashes differently: Divide by gcd
 - Problem 2 $\frac{1}{2}$ and $\frac{-1}{-2}$ hashes differently: Use *abs* form
 - For strings: Let individual characters represent coefficients of polynomial of x

Hash Functions

The process of mapping a number onto an integer index in a given range.

- Requirements
 - Must be in O(1) time
 - Output is determinstic: Always same output for same input
 - Could have *collision* situations
- Types
 - Modulus: H(n) = n%M = n & ((1 << m) 1), $M = 2^m$
 - Fast, just take last m bits
 - Multiplicative: $H(n) = \operatorname{certain} m \text{ bits in } n * C = ((C * n) >> \operatorname{shift}) \& ((1 << m) 1)$

o ...

Collisions Dealing: Chained List

Use linked lists to store collisions.

- Operations
 - push_front to list head every time
 - Search should now go through the list ($O(\lambda)$)
- Load Factor $\lambda = \frac{n}{M}$ represents the length of linked lists
 - If λ goes high, **re-hash** (Double the table size and re-insert all elements)
 - Choose hash functions that avoid *clustering*!
- Could replace each linked list with an AVL tree

Collisions Dealing: Open Addressing - Linear Probing

Operations

Insert:

- 1. If bin k empty, occupy it
- 2. Otherwise, go to bin k + 1, k + 2... **until an empty bin is found** (*Circular array*!)

Search:

- 1. Start from bin k, search forward until
 - item found, true
 - empty bin found, false
 - traversed entire array, false

Erase:

- 1. **Erase slot** k, making a *hole* at bin k (hole = k)
- 2. Repeat:
 - 1. Go to next adjacent bin k' (occupied by element n)
 - 2. If H(n) is at OR before hole but after k^\prime
 - Move n into hole, resulting in a new hole (hole = k')
- 3. Until next bin is empty

Lazy Erasing:

- Erase slot k, mark it as ERASED
- When searching meets ERASED, regard it as occupied
- When insertion meets ERASED, regard it as un-occupied
 - Need searching before insertion to avoid duplicate elements
- When calculating $\lambda,$ regard ${}_{\rm ERASED}$ as occupied

Analysis

- Primary Clustering: Probability of increasing length of a length-*l* cluster = $\frac{l+2}{M}$
- # of probes for a successful search: $\frac{1}{2}(1 + \frac{1}{1-\lambda})$
- # of probes for a un-successful search: $\frac{1}{2}(1 + \frac{1}{(1-\lambda)^2})$
- Keep λ under a certain *bound*

Collisions Dealing: Open Addressing - Quadratic Probing

Move forward by different amounts every time.

- Using $M = 2^m$, step forward 1 at first probing, then 2, 3...
- Must use Lazy Erasing
- Analysis
 - Secondary Clustering: Object hashing to same bin follows same sequence
 - # of probes for a successful search: $\frac{\ln \frac{1}{1-\lambda}}{\lambda}$
 - # of probes for a un-successful search: $\frac{1}{1-\lambda}$

Disjoint Sets (Union-Find Set)

- Partition elements according to equivalence relations
- Use a **representative** to represent all elements in set
 - find(a) operation returns the representative of set that a is in
 - union(a, b) operation unions two sets containing a, b

Array-based impl.

Definition

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25

 1
 2
 1
 4
 1
 2
 1
 4
 1
 2
 1
 6
 1
 1
 1
 1
 2
 1
 8
 1
 1
 1
 1
 16
 1
 2
 1
 8
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Performance

- find takes $\Theta(1)$
- union takes $\Theta(n)$

Tree-based impl.

Definition


```
size_t find( size_t i ) const {
    if (parent[i] != i)
        parent[i] = find(parent[i]);
    return parent[i];
}
void union(size_t i, size_t j) {
    i = find(i);
    j = find(j);
    if ( i != j )
        parent[j] = i;
}
```

Performance

• find takes $\Theta(h)$

• Apply path compression

- union takes $\Theta(h)$
 - Point root of shorter tree to taller one

• Depth is $\frac{\ln n}{2} = O(\ln n)$ without path compression

• Depth is $O(\alpha(n))$ with path compression

Application of Disjoint Sets: Maze Generation

- 1. Divide the maze into square cells, each surrounded by four walls
- 2. Make every cell a disjoint set

3. Repeat:

- 1. Randomly choose a wall
- 2. If it connects two disjoint sets of cells, remove it, union two sets
- 4. Until all cells in one set

Graphs: Introduction

G = (V, E), where V is set of Vertices, and E is set of Edges.

Categories

Undirected Graph

- Vertex & Edge
 - Assume $\{v_1, v_1\}$ (self-loop) is not an edge
 - $|E|_{max} = \frac{|V|(|V|-1)}{2} = O(|V|^2)$
- Neighbours: adjacent vertices
- **Degree** of a vertex: # of neighbours
- Subgraph $G_s = (V_s, E_s)$ where V_s is subset of V, E_s is subset of E

• Vertex-included sub-graph $G' = (V, E_s)$

- Path from v_0 to v_k
 - Length of a path is # of edges it passes through
 - **Simple Path** has no repetition vertices (except maybe $v_0 = v_k$)

- **Simple Cycle** is a simple path with $v_0 = v_k$
- Connected: exists a path between
 - A Connected Graph has a path between any pair of vertices
 - A Connected Component is a maximum connected subgraph
- Weight of an edge might be assigned
 - Length of a weighted path is Sum of edge weights it passes through
- A Tree is:
 - 1. Connected & There is a unique path between any two vertices
 - 2. Have exactly n-1 edges for n nodes
 - 3. Acyclic
 - 4. Removing any edge creates two unconnected sub-graphs
- A Forest is any graph that is Acyclic
 - $\circ \ \ \, \text{ \# of trees in forest} = |V| |E|$

Directed Graph

- $|E|_{max} = |V|(|V| 1) = O(|V|^2)$
- In Degree of a vertex: # of inward edges
 - In degree = 0 Source
- Out Degree of a vertex: # of outward edges
 - Out degree = 0 Sink
- **Connected**: exists a path between
 - Strongly Connected: there exists a directed path from and to any two vertices
 - Weakly Connected: view it as undirected and then connected
- Directed Acyclic Graphs (DAG)

Representations

Adjacency Matrix

- Symmetric for undirected graphs
- M[a,a] = 0, $M[a,b] = \infty$ if a, b are not connected
- Suitable for *Condense Graphs*

Adjacency List

- For undirected graphs, consider every edge to be *doubly directed*
- Suitable for Sparse Graphs

Graphs: Traversal (Searching)

Breadth-First Search

Uses a **Queue**, O(|V| + |E|).

- 1. Choose a vertex, mark as VISITED, push into an empty queue
- 2. Repeat:
 - 1. Pop queue head v
 - 2. For each neighbour of v: u that is NOT VISITED:

- 1. Mark u as **VISITED**
- 2. Set u's parent to be v
- 3. Push u into queue
- 3. Until queue is empty
 - If all vertices visited now, then graph is Connected
 - Parent pointers form *a BFS Tree*

Depth-First Search

Uses a **Stack**, O(|V| + |E|).

1. Choose a vertex, mark as VISITED, push into an empty stack

2. Repeat:

- 1. If vertex at **stack top** *v* **has an NOT VISITED neighbour** *u*:
 - 1. Mark u as **VISITED**
 - 2. Set u's parent to be v
 - 3. Push \boldsymbol{u} into stack
- 2. Otherwise, pop v

3. Until stack is empty

- If all vertices visited now, then graph is Connected
- Parent pointers form a DFS Tree

Applications of BFS & DFS:

- Finding Connected Components
- Determine **Distances** from source
 - Use BFS, s.d=0
 - At every parent setting, u. d = u. parent. d + 1
- Test Bipartiteness
 - Use BFS, alternately set every *layer*
- Find Strongly-Connected Components Kosaraju's SCC Algorithm:
 - 1. DFS(*G*), record *Discovery-time* and *Finish-time*
 - 2. Reverse all edges in G, get G^T
 - 3. DFS(G^T), pick nodes in decreasing order of Finish-time
 - 4. Each DFS Tree formed in second DFS is an SCC!

Topological Sort

An ordering of vertices **in DAG** s.t. v_i is before v_j if there's an edge (v_i, v_j) .

- Examples
 - Taking courses in SIST
 - Wearing clothes
- Having Topological Sort \Leftrightarrow DAG

In-degree Based Procedure

- 1. Use an array to store in-degrees of all vertices
- 2. Find a vertex v with in-degree 0
- 3. Repeat:

1. Remove v, update vertices in-degrees

- 2. $v \leftarrow$ a vertex with in-degree 0
 - If none found, not a DAG
- 4. Until all vertices picked

Performance

- Space: $\Theta(|V|)$
- Time:
 - Search through array for in-degree 0: $O(|V|^2)$
 - Every time a vertex's in-degree updated 0, push into queue

- $\Theta(|V| + |E|)$
- Queue initially contains all in-degree 0 vertices
- The array used for queue stores exactly the ordering!

Finding Cirtical Paths

Every node (task) has a computing time.

- Critical Time: Minimum time of completing all tasks in parallel
- Critical time of a task is earliest time that it can be finished
- Critical Path: Sequence that determines the minimum time

Task	In- degree	Task Time	Critical Time	Previous Task
А	0	5.2	0.0	Ø
В	1	6.1	0.0	Ø
С	3	4.7	0.0	Ø
D	3	8.1	0.0	Ø
Е	2	9.5	0.0	Ø
F	0	17.1	0.0	Ø

	Task	In- degree	Task Time	Critical Time	Previous Task
	Α	0	5.2	5.2	Ø
	В	0	6.1	11.3	Α
\rightarrow	С	0	4.7	31.3	Е
	D	0	8.1	39.4	С
	E	0	9.5	26.6	F
	F	0	17.1	17.1	Ø

1. Find a vertex v with in-degree 0

2. Repeat:

- 1. Remove v, update vertices in-degrees
- 2. v.cirtical_time += v.task_time
- 3. For every neighbour *u* of *v*:
 - If v.cirtical_time > u.critical_time:
 - 1. u.critical_time \leftarrow v.critical_time
 - 2. Set u.previous $\leftarrow v$
- 4. $v \leftarrow$ a vertex with in-degree 0
- 3. Until all vertices picked

Graphs: Minimum Spanning Tree (MST)

- Spanning Tree: a subgraph that is a tree, and includes all vertices
 - *Minimum Spanning Tree* is the one with minimum weights
 - Might have Spanning Forest for un-connected graphs

MST is formed by red edges

• Cut Property (MST Property)

Prim's Algorithm

Procedure

- 1. Vset is initially root node $\{s\}$, Eset is initially \emptyset
- 2. R is initially $\{(s, u) : \text{for every neighbour } u\}$
- 3. Repeat:
 - 1. Extract the edge (v, u) with Minimum weight in R, where u is the one $\notin Vset$
 - 2. Add u into Vset
 - 3. Add e into Eset
 - 4. For every edge (u, w) starting from u

```
• If w 
ot\in Vset, add (u,w) into R
```

4. Until Vset == V

Performance

- Space: O(|V|)
- Time: $O(|E| \ln |V|)$
 - \circ With Fibonacci Heap: $O(|E|+|V|\ln|V|)$

Kruskal's Algorithm

Procedure

- 1. Eset is initially \emptyset
- 2. Make all vertices a disjoint set
- 3. Sort ${\boldsymbol{E}}$ in non-decreasing order of weights
- 4. For every edge (u, v) in E in order:
 - \circ If u and v are not in same set:
 - 1. Add (u, v) into Eset
 - 2. Union the two sets

Performance

- Space: O(|E|)
- Time: $O(|E|\ln|V|)$

Graphs: Shortest Path

Prerequisites: Weighted Graphs & No Negative-weighted Loops.

Dijkstra's Algorithm

Single Source Shortest Path (SSSP), similar to BFS.

Prerequisites

- No Negative-weighted Edges
- Based on Triangle Inequality $\delta(s,u) \leq \delta(s,v) + w(v,u)$

Procedure

- 1. Initialize source node s. d = 0
- 2. Initialize all other nodes $v.\,d=\infty$
- 3. *Vset* is initially *V*
- 4. Repeat:
 - 1. Extract vertex v with minimum d from Vset
 - 2. Mark v as **VISITED**
 - 3. For every neighbour $u \ {\rm of} \ v \ {\rm that} \ {\rm is} \ {\rm not} \ {\rm visited}$:
 - If u. d > v. d + w(u, v):
 - 1. $u.d \leftarrow v.d + w(u,v)$
 - 2. Set u's parent to v
- 5. Until Vset is empty

Performance

• Time: $O(|E|\ln|V|)$

Cannot apply to Negative-weighted Edges: 2

Bellman-Ford Algorithm

Single Source Shortest Path (SSSP), can detect Negative Loops.

Procedure

- 1. Initialize source node s.d=0
- 2. Initialize all other nodes $v.\,d=\infty$
- 3. Repeat |V| 1 times:
 - For every directed edge $(v, u) \in E$:
 - If u. d > v. d + w(u, v):
 - 1. $u.d \leftarrow v.d + w(u,v)$
 - 2. Set u's parent to v
- 4. If there is an edge (v, u) where u. d > v. d + w(u, v):
 - The graph has negative loop

Performance

• Time: O(|V||E|)

Floyd-Warshall Algorithm

All Pairs Shortest Paths (APSP).

Procedure

- 1. Let $D^{(0)}$ be the Adjacency Matrix
- 2. Let Next be an Matrix with $Next_{ij} = j$ if there's an edge (i, j)
- 3. For k from 1 to $n{:}$
 - For i from 1 to n:
 - For *j* from 1 to *n*:

• If
$$D_{ij}^{(k-1)} > D_{ik}^{(k-1)} + D_{kj}^{(k-1)}$$
:
1. $Next_{ij} = Next_{ik}$
2. $D_{i}^{k} = D_{i}^{(k-1)} + D_{i}^{(k-1)}$

- Else $D_{ij}^k = D_{ik}^{(k-1)}$
- 4. $D^{(|V|)}$ is the all pairs shortest paths matrix

Go through *Next* Matrix to acquire the shortest path.

Performance

• Time: $O(|V|^3)$

Modify for finding Connectiveness: $T_{ij}^{(k)} = T_{ij}^{(k-1)} \mid\mid (T_{ik}^{(k-1)} \&\& T_{kj}^{(k-1)}).$

A^* Search

Source-to-Destination Shortest Path.

Prerequisites

Heuristic Function *H*:

- G(x) = The minimum cost of moving from known paths to x, i.e. d in Dijkstra
- H(x) = Heuristic Function: Estimated cost of moving from x to destination
 - Admissible Heuristics: Ensuring $H(x) \leq \delta(x, dest)$

- Only when using Admissible Heuristics can ensure finding optimal Shortest Path
- F(x) = G(x) + H(x)

Procedure

- 1. Initialize source node to have G-score of 0
- 2. Initialize all other nodes to have G-score of ∞
- 3. Vset is initially V
- 4. Repeat:
 - 1. Extract node v with smallest F-score in Vset
 - 2. If v is the destination:
 - Path found, END the procedure
 - 3. Mark v as **VISITED**
 - 4. For every neighbour $u \ {\rm of} \ v \ {\rm that} \ {\rm is} \ {\rm NOT} \ {\rm VISITED}$
 - If G(u) > G(v) + d(v, u):

1.
$$G(u) \leftarrow G(v) + d(v, u)$$

- 2. Set u. parent to be v
- 5. Until Vset is empty

6. Assert no path exists

Performance

- Time: Depends a lot on H(x)
- Degrades to Dijkstra's Alg when H(x) = C for all nodes other than destination (*Discrete Distance*)

Sorting

Taking a list of objects which could be stored in a linear order, returning a reordering s.t. they are in order.

Notations

- In-place / not
 - **In-place**: with the allocation of O(1) memory, \checkmark
 - Not In-place: requires at least $\Theta(n)$ memory
- Run-time
 - **Worst-case** run time: Based on **comparisons**, CANNOT be faster than $\Theta(n \ln n)$
 - Average-case run time: Expected
 - Lower-bound (Best-case) run time: Must examine each entry at least once, so $\Omega(n)$

- Any comparison-based sorting can be represented by a comparison tree
 - For any array instance, the Sorting procedure is passing through a path from root to a certain leaf
 - # of leaves = n!
 - Therefore height $= \ln n! = \Theta(n \ln n)$
 - Insertion
 - Exchange ...
- 5 Sorting Techniques Selection ...
 - Merging
- Inversions: # if pairs that is not in order, j < k but $a_j > a_k$
 - # of inversions =
 - Expectedly, half of all pairs are inversions: $\frac{1}{2} \frac{n(n-1)}{2} = \frac{n(n-1)}{4} = O(n^2)$

Denoted as d

Stupid Sorting Algorithms

- Bogo Sort: Randomly order the objects, check if sorted. If not, repeat.
 - In average $\Theta(n \cdot n!)$
- Bozo Sort: Check if sorted. If not, randomly swap two entries, and repeat.
 - In average $\Theta(n!)$

Insertion Sort

Given a sorted list of length k - 1, insert the k-th element into it.

Procedure

```
void insertionSort(Type *array, int const n) {
    for (int k = 1; k < n; ++k) {
        for (int j = k; j > 0; --j) {
            if (array[j - 1] > array[j])
                swap(array[j - 1], array[j]);
            else
                break;
        }
    }
}
```

With every swap, removes an inversion.

Performance

- Space: In-place
- Time
 - Worst-case: $O(n^2)$
 - Average-case: $\Theta(n+d)$

Bubble Sort

"Bubble up" the remaining smallest entry every time.

Procedure

```
void bubbleSort(Type *array, int const n) {
    for (int i = 0; i < n - 1; ++i) {
        for (int j = n - 1; j > i; --j ) {
            if (array[j] < array[j - 1])
                swap(array[j], array[j - 1]);
            }
        }
    }
}</pre>
```

Performance

- Space: In-place
- Time: In all cases $\Theta(n^2)$

Possible improvements

- Store the remaining smallest, avoid so many swaps
- Use bool flag to check if no swaps occurred, then already sorted
- Alternate between "Bubbling" and "Sinking"

Heap Sort

Build a max heap on array \rightarrow Repeatedly extract the root and put it at back.

Procedure

```
void heapSort(Type *array, int const n) {
    max_heap = buildMaxHeapFloyd(array);
    for (int i = n - 1; i > 0; --i)
        array[i] = extractRoot(max_heap);
}
```

Performance

- Space
 - $\circ~$ Originally: $\Theta(n)$ for the heap
 - In-place implementation: $\Theta(1)$

705263463283417 705263463283417

- Time
 - Worst-case / Averagely: $O(n \ln n)$
 - Best (Most entries are same): $\Theta(n)$

Merge Sort

 $\textbf{Divide-and-Conquer}: \textit{Recursively Divide} \rightarrow \textit{Merge}.$

Procedure

Use insertionSort for small subarrays (size <= N).

Performance

- Space: $\Theta(n)$ for extra array
- Time: In all cases $\Theta(n \ln n)$
 - Recursion Tree

Quick Sort

Divide-and-Conquer: Recursively Partition.

Procedure

- Partition Operation: 38 10 26 12 43 3 44 80 95 84 66 79 87 96 81
 - Analysis - Space: In-place
 - Time: $\Theta(n)$

```
void quicksort(Type *array, int first, int last) {
    if (last - first <= N)
        insertion_sort( array, first, last );</pre>
```

```
else {
    Type pivot = array[last]
    int i = first - 1;
    for (int j = first; j < last; ++j) {
        if (array[j] < pivot) {
            ++i;
            swap(array[i], array[j]);
        }
    }
    swap(array[i+1], array[last]);
    quickSort(array, first, i);
    quickSort(array, i+2, last);
    }
}</pre>
```

Use insertionSort for small subarrays (size <= N).

Performance

- Space: In-place, BUT
 - Worst-case: $\Theta(n)$ for function call stacks
 - Average-case: $\Theta(\ln n)$ for function call stacks
- Time
 - Worst-case (pivot is always extreme): $O(n^2)$
 - $\circ~$ Average-case (<code>pivot</code> is well chosen every time): $\Theta(n\ln n)$
 - Use Median-of-three: Choose pivot as median of first, middle and last element

Possible improvements

Modify the Partition procedure to be:

1. Choose pivot using Median-of-three

- If first is pivot, swap with middle
- If last is pivot, swap with middle
- 2. Use two pointers, low at 1, high at n-2
- 3. Repeat:
 - 1. Increment low Until array[low] > pivot
 - 2. Decrement high Until array[high] < pivot
 - 3. Swap array[low] with array[high]
- 4. Until low > high
- 5. Put pivot at low, Put array[low] at n-1

Bucket Sort

Prerequisites

- Numbers must be in certain range O(m)!!
- Not based on comparisons.

Procedure

Throw numbers into m buckets ightarrow Sort inside the buckets ightarrow Sequentially get numbers from buckets.

Counting Sort: count how many times an "1" occurs...

Performance

- Space: $\Theta(m)$
- Time: $\Theta(n+m)$

Radix Sort

Prerequisites

- Numbers must be digit numbers on certain **base** *b* (Not necessarily 10)
- Numbers must be finitely long, i.e. in certain range O(m)!!

• Not based on comparisons.

Procedure

For certain digit numbers, apply Bucket Sort on the last digit, then..., finally the first digit.

Use Queues for a Bucket.

Performance

- Space: $\Theta(n)$ (# of buckets = b)
- Time: In all cases $\Theta(n \log_b m)$