
 Computer Graphics
Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS559

Teacher: Prof. Michael Gleicher

Figures included in this note are from Prof. Gleicher's slides unless otherwise stated.

 Computer Graphics
Introduction

Basic Ideas in Graphics
Web Browser APIs

2D Transformations
Common 2D Transformations
Hierarchical Modeling
Transformations as Matrices
Homogeneous Coordinates
Matrix for Common Transformations

2D Curves
Parameterization
Connectivity, Continuity, & Tangents
Polynomial Pieces
Hermite Forms
Cardinal Splines
Bézier Curves
B-Splines
Arc-Length Parameterization

3D Transformations
3D Drawing Elements
Barycentric Coordinates
3D Rotations
Projections

3D Drawing Concepts
Geometry & Meshes
Lighting & Material
Texturing
Occlusion & Visibility

Web APIs Potpourri
Javascript
Canvas
SVG
THREE.js

Graphics Hardware & Shaders
Graphics Pipeline
Shader Programs
Random Noise
Advanced Texture Mapping
Shadows & Real-Time Rendering
Advanced Rendering
Rasterization

Introduction
In general, computer graphics (CG) is the study of how computers create visual things we see. CS559 is, in particular,
about how to program computers to draw & animate.

It is NOT about answering these questions:

What pictures to make
How to use the tools & APIs
Any specific application

https://pages.cs.wisc.edu/~gleicher/

CS559 uses the web programming set of APIs (with JavaScript ES6+) to introduce computer graphics. Check out the MDN
web doc for references. There have several advantages for beginners:

Modern browsers are powerful and provide a full set of JS environment out-of-the-box
They are portable, uniform, and less machine-dependent
Web programming is relatively fun & satisfying to learn
There are interesting CG frameworks for modern JS, even having direct hardware access support

Remember that, no matter how the APIs change, the core ideas of CG remain the same. High-performant game engines
will prefer lower-level C++ frameworks with various optimization techniques, yet JS frameworks are better for beginners to
play with.

Basic Ideas in Graphics

Modern displays typically use the RGB value (tuple of three values from 0~255, representing the concentration of
red/green/blue) to compose a visible color on the wavelength spectrum. Sometimes it comes with an A (alpha) component
which stands for the opacity.

Photons travel in straight lines. The way our eyes work leads to the fact that we can be easily faked out on depth and
distance. To be more precise, we sense 2D and we infer 3D.

There are two ways to create images that describe what we see:

Physically-based: simulate photons
Primitive-based: simulate painting

Most computer graphics use the painting approach. In this approach, there are two ways of representing (both 2D and
3D) images:

Geometric (Primitives; Objects, 对象): represent lines & shapes in objects, described mainly by coordinates & vectors

Sampled (采样; Raster, 栅格): use a grid of color points/pixels

Image representation needs to be carried out on physical media, called displays, to let us see. Accordingly, there are two
types of display devices:

Geometric (Primitives): pen plotters, laser light shows, CRT vector scanners, ...
Sampled (Raster): LCD, LED, laser/inkjet printers, most 3D printers, projectors, film, ...

Most modern displays are sampled, even if programmers draw in a vectorized language since it is more human-
understandable. The automated process of converting a geometric image into a sampled image ready for display is called
rendering (渲染).

In displays, several techniques are used to let us see more comfortably. Displays have buffers (frame buffer, color buffer,
...) to hold the data describing the image. They flicker/strobe, i.e. redraw at a frequency high enough, e.g. 30 Hz, to cheat
our eyes to believe that we are seeing a continuous movement. This is called the flicker fusion. The shown image for a
given interval is called a frame (帧) and the flickering rate is called the frame rate (帧率).

A flicker-based display need to satisfy the following two properties to make us feel comfortable:

1. The frame rate needs to be high enough, and,
2. The frame rate needs to be consistent: our eyes can sense changes if the frame rate is not stable.

Another term, persistence of vision, describes a different thing that a single flash of an image may last in our mind for
more time than it actually stayed.

https://developer.mozilla.org/en-US/docs/Web/Reference

Display synchronization (Buffering) describes the action of a computer graphics hardware putting data into a buffer and
showing the buffer at proper times. We often do double buffering (双重缓冲), where we have two buffers and we
alternate between them. It has several advantages:

1. We clear & draw on buf2 behind the scene when the system is showing buf1. It helps with frame rate constancy, as
long as buf2 has done processing before the start of the next frame.

2. Even if we couldn't finish drawing buf2 in time, the system can choose to just redisplay buf1 for the next frame,
without showing a partially corrupted image.

Nowadays, we even have triple or higher buffering.

Web Browser APIs

Web browsers have several kinds of graphics APIs:

Canvas: an HTML-5 built-in 2D canvas API

It is immediate: draws whatever we tell it to and does not keep a reference to what it has done
SVG (scalable vector graphics)

Keeps a display list of graphic objects we created, could be stored as .svg files
Objects are DOM elements, so can be manipulated with JS

WebGL: a JS version of OpenGL ES

Has direct access to graphics hardware
Gives programmers more low-level control, however we must learn to program the hardware

Some higher-layer libraries are built upon these APIs:

Three.js: a display list API built on top of WebGL
D3: a tool to help manipulate DOM elements, very useful for SVG

2D Transformations
One essential technique in CG is transformation. We draw objects according the the local coordinate system, and when
we want to move the object around without changing the drawing code and without breaking its shape, we just move the
coordinate system.

Common 2D Transformations

There are several basic 2D transformation operations. Note that they are all centered at the origin point of the current
coordinate system and are applied to the coordinate system (not the objects):

1. Translation: shifting the coordinate system - translate(tx, ty) := f(x, y) => (x+tx, y+ty)

2. Scaling: stretching/shrinking the coordinate system - scale(sx, sy) := f(x, y) => (sx*x, sy*y)

If sx == sy , we call it a uniform scaling; otherwise, it is non-uniform

To scale about an object at its center (40, 40), the snippet:

Using a negative scaling factor can result in flipping

3. Rotation: spinning the object around the center of the current coordinate system

Rotation & Translation are called rigid transformations as they do not scale

To rotate an object around its center (40, 40), the snippet:

The "handedness" of a coordinate system is defined by whether going from positive x-axis to positive y-axis is
clockwise (right-handed) or counter-clockwise (left-handed)

context.translate(40, 40);

context.scale(sc, sc);

context.translate(-40, -40);

context.fillRect(...);

context.translate(40, 40);

context.rotate(spin);

context.translate(-40, -40);

context.fillRect(...);

Point thumb into the screen, see which way the other fingers go
Rotation does not change handedness
Reflection (scaling where only one scale factor is negative) changes handedness

4. Shear (Skew): incline the shape - shear(kx, ky) := f(x, y) => (x+kx*y, y+ky*x)

Notes:

Transformations affect drawings afterwards, but do not affect things that have been drawn
Transformations take effect relative to the latest coordinate system, so multiple transformations will stack up if we
apply them repeatedly to the same context

Transformation operations take effect sequentially. This procedure can be thought of as mathematical function
compositions: . But be aware of the order here: earliest transformations on the coordinate
system will affect all the following transformation on the changed coordinate system - hence, the earliest transformation
in code appears as the outer-most function. Example:

To avoid transformations to pollute future drawings, it is a good practice to save & restore the context:

Hierarchical Modeling

To draw a complex picture, we often represent objects as a scene graph, i.e., a direct acyclic graph (DAG) or tree of
objects. Every object lives in its own local coordinate system, which in turn is computed relative to its parent's coordinate
system. They form rooted articulated chains.

We save & restore contexts as a stack. When drawing object A, the stack should consist of A's context at stack top followed
by parents' contexts until the root. Since transformations of coordinate systems are often represented as matrices, this
stack of contexts is often called a matrix stack.

Transformations as Matrices

We represent a point as a tuple of coordinate numbers. For example, a 2D point .

Scaling, rotation, and shearing transformations are all linear transformations. They can be represented as a matrix:

Linear transformations have the following nice properties:

Zero is preserved - vector zero turns out as zero, origin turns out as origin
Composition of transformations is composition of matrices:
Matrix multiplication associates, you can multiply the matrices first:

context.scale(3,2);

context.translate(40, 30);

context.fillRect(...);

// This maps to s(t(x, y)) => (3*(x+40), 2*(y+30))

context.save();

context.translate(20, 30);

context.fillRect(...);

context.restore();

Transformation Code Matrix

Translation translate(tx, ty)

Scaling scale(sx, sy)

Shearing shear(kx, ky)

Rotation rotate(r) clockwise where y+ goes down

The set of linear transformations is closed - any sequence of linear transformations corresponds to some single linear
transformation that has the same result
Matrix multiplication does NOT commute, so the order of application matters

You may have noticed that translations are not linear transformations because they at least move the origin. The
combination of a linear transformation with a translation forms an affine transformation (仿射变换). Affine
transformations are what we will mostly focus on in this course.

Homogeneous Coordinates

Several transformations we often use in 2D, such as translations , are not linear and are tedious to write in math. To use
linear transformations to represent affine transformations, we use the trick that embeds 2D points into the 3D space
do linear transformations in 3D space interpret the points back to 2D. This trick of using an dimensional space
to represent dimensional points is known as homogeneous coordinates (齐次坐标).

We will focus on the basic version where we just fix the third dimension as 1:

Homogenous space treats all points along lines through the origin as equivalent. Our 2D space is the plane of
the 3D space. A point in 3D is equivalent to the intersection - the point , hence the point
in our 2D space.

To read the matrix above, a convenient way is:

The 1st column tells us the new direction and scale of the new x-axis
The 2nd column tells us the new direction and scale of the new y-axis
The 3rd column tells us the new position of the origin
The last row is always for affine transformations

Matrix for Common Transformations

For common transformations:

Some notes on rotation:

Rotation transformation preserves: distance, angle, & handedness

Hence, the matrix must be:

Each row/col being unit length:

Rows/cols are orthogonal: dot product
The determinant
Its inverse is the transpose

Cannot preserve linear interpolation

The current transformation context is a matrix - the result of a multiplication of transformation matrices. The following
code:

, corresponds to the following transformation context for the drawing on line 4:

You can think about this composition in two ways, forward or backward:

1. The point goes from its local coordinate to the global (canvas) coordinate by left-multiplying matrices from right to
left;

2. In actual program execution, it's the coordinate system that composes the transformation context by right-
multiplying matrices from left to right. (Originally the context is the identity matrix .)

2D Curves
We will go over the formal definition and the practical solutions for drawing curves.

Parameterization

There are two ways to mathematically define a curve:

Implicit: use a "test function" that takes a point and produces a number. If the result is zero, it's on the curve

Example: a circle
This definition is handy in doing mathematics, but hard to compute for computer programs

Parameterized (参数化): take a "free parameter" some range. Define , or more explicitly for 2D,
that takes in the parameter and produces a point position

Think of the free parameter as the "time" of drawing, and the result as the current position of the tip of the pen
on a 2D paper
Example: a circle , ,
We often use to denote a unit free parameter of range , WLOG

We use curve to define the final shape on paper, and use parameterization to define the mapping from free parameter
to pen tip position. Note that different parameterizations may produce the same curve: you can have your pen move at
different "speed"/"direction" at different times but still draw the same shape.

Take a line segment from to as an example, the parameterization maps to the curve.

Connectivity, Continuity, & Tangents

A curve can be disconnected but still being one curve. It's just the pen jumps at the point of disconnection.

Connectivity is actually a special case of continuity. We say a curve is continuous (to be more precise, -continuous) at
a parameter value if . In other words, the curve is continuous here in its zeroth derivative. More
generally, if the curve is continuous in its -th derivative, we say that the curve has continuity.

 continuity means the curve is connected
 means the curve has no "corners", i.e., is continuous; A V-shape is -continuous but not
 means the curve looks very smooth, i.e., is continuous; Two connected quarter-circles switching direction

is -continuous but not

Note that a pen may draw in different speeds but still producing the same curve. In the above definition of continuity, if a
pen draws a line segment slowly at the beginning but suddenly speeds up, we will say the line segment is not .
However, we generally do not care about that speed change. We denote geometric continuity as - the -th
derivative of the parameterization have no discontinuity in their direction. This ignores the "scale" of the derivative.

context.scale(3,2);

context.translate(1, 4);

context.rotate(Math.PI/6);

context.fillRect(...);

Polynomial Pieces

A complex curve can be made from multiple small polynomial pieces. A polynomial of degree :

In 2D, each of these is a 2D vector. We say the the curve interpolates at the site , etc.

In CG, we often use cubic polynomial pieces, i.e., of degree 3.

If we only use linear segments, we can at best have ; quadratic polynomials are not good enough
Higher degree polynomials are typically not necessary and are harder to compute

We compose the parameterization of a complex shape by defining the function on multiple cases of unit ranges:

Now, if we want continuity, i.e., connectivity, we make sure that every . If we want continuity,
we make sure that every , etc.

Hermite Forms

A cubic polynomial has a degree of freedom of 4, as it has 4 tunable coefficients; We often use the positions and derivatives
of the beginning and the end point to specify a certain cubic segment - this is called the Hermite form of specifying
polynomial segments (more precisely, a 3rd degree Hermite form curve).

Given the four control points , we can derive the four coefficients:

1.
2.
3.
4.

In matrix form:

We could multiply the 's with the middle matrix first. This gives us a notation in basis functions:

An important reason why we choose Hermite forms to do the interpolation, instead of using many other options (e.g.,
specifying 4 derivatives at the beginning, etc.), is that Hermite forms let us use the position and 1st-derivatives at the
beginning and the end, so that we can easily achieve continuity when connecting cubic pieces together.

Cardinal Splines

To actually connect multiple pieces of cubic polynomials together to form a complex shape, we often use a interpolation
technique called cardinal spline.

We first specify a sequence of intermediate points. We then draw a cubic segment between each pair, where the derivate
at a point (used as a beginning or as an end) is computed as:

, where is often chosen as , i.e., , the tension, is 0. If so, this is called a "Catmull-Rom" spline.

Bézier Curves

A problem with cardinal spline is that we have to interpolate through all the intermediate points. We often do not want to
go through all the points, to make the result look "smoother". Non-interpolating curves are called approximating curves.
One such technique is the Bezier curve.

Bezier curve interpolate their first & last points

We add arbitrary number of control points to influence what happens between them
Bezier curves are polynomials of degree
Bezier curves do not have locality - the curve depends on all of its control points

Bezier curve stays within the "convex hull" of control points

The tangent at the beginning point
Then, the curve does not make more than changes in its direction

Bezier curves are symmetric: going forward gives the same result as going backward

Bezier curves are variation diminishing: if you draw any straight line, the curve crosses that line at most times

Bezier curves are affine invariant: performing an affine transformation on the control points of a Bezier curve gives a
Bezier curve

Examples:

Bezier curves are constructed through a recursive process called the DeCastlejau Construction:

1. Between any consecutive pair of points, linearly interpolate along the way - this results in points
2. For the new points, if there is more than 1 point left, repeat the process with the new set of points
3. Repeat until we have one final point - its trajectory with going from 0 to 1 is the Bezier curve

By writing out the interpolations, they form a nice set of basis functions as well. In practice, we often just use the -th
degree basis functions to compute Bezier curves efficiently. This approach is called the Bernstein basis polynomials.

A Bezier curve can be split up at the point of by drawing out the DeCastlejau construction at :

This gives a split of curve into two curves and .

Cubic Bezier curves are the most commonly used ones in CG. For them, we can have a similar API of "control points" like
Hermite forms for cubic polynomials:

, where the math is:

Bezier curves have the following disadvantages, where we may prefer other options:

For getting and higher continuity and making the curve really smooth, we way want to use B-Splines
Beziers are affine invariant but not projective invariant: dividing it by another polynomial (the projection target
curve/plane) does not guarantee to produce a polynomial; We may want to use rational curves

B-Splines

A geometric subdivision approach to B-splines is the Chakin corner cutting algorithm:

1. Take the control points, connect together
2. Subdivide each line segment at and , then cut the corners, only connect all the middle pieces
3. Go indefinitely to the limit, converges to B-spline

Algebraically, uniform B-spline basis functions are:

In a B-spline of degree , a control point is active in at most phases; This means at any given parameter value,
 control points are active, each in a different phase

The whole curve meets continuity
B-spline of degree is just a linear chain of control points

The curve is non-interpolating for - it doesn't go through the control points

Arc-Length Parameterization

If we simply connect pieces of different lengths together where each piece has a parameter going from 0 to 1, we would
have the pen moving at different speeds when drawing the whole shape. This can also happen on the parameterization
for a curve, e.g., for a parabola. This is called a non-arc-length parameterization.

In contrast, if the pen moves at a constant speed, it is called an arc-length parameterization. This is useful when we want
to animate something that moves along a complex shape at constant speed. We could map a non-arc-length
parameterization to an arc-length parameterization by sampling:

Make a table of several samples of total distance along the curve, e.g.,

The finer-grained sampling, the better speed constancy
Distance is hard to get analytically for high-degree curves; Typically we break into small linear segments per
parameter value progress and add up the lengths of the linear segments

We progress the distance at constant speed, use the distance to reverse-lookup which region we are in and
approximately which value we should be at

3D Transformations
We assume using a scene-graph API like THREE.js when working with 3D graphics.

3D Drawing Elements

To draw a 3D picture, these are the basic elements we need:

A 3D world, i.e., the scene: the scene graph, which is a tree of objects

A renderer: the space we draw into, also refers to the procedure of converting a 3D scene-graph (object tree) into a
proper 2D picture

A camera: the viewing transformation from the 3D world to the 2D canvas we draw into, think of it as a projection from
the 3D world into a 2D camera lens (with something more)

Camera is typically also considered a "zero-volume" object in the world, looking at its negative z-axis
Its field of view (FOV) defines how wide-angle the lens is
Anything too close to its near distance or too far away from its far distance will be ignored

Every object is:

Has its geometry: a collection of triangles, composing the shape of the object
Has its material: the appearance of the object, color, and how it interacts with lighting; can also have global
effects which takes other objects into consideration, e.g., shadows

THREE calls the combination of an object's geometry and material as a mesh, while in theory, mesh refers to only
the geometry

Some lighting, otherwise the image would be completely dark

Ambient lighting (环境光): unreal, uniform lighting coming from all directions
Point lighting (and spotlight): lighting that has its source and goes to a cone of directions; typically also considered
"zero-volume" objects in the world
Directional lighting: parallel rays of light like the sunlight; considered "zero-thickness" planes in the world

An example of a perspective camera on a world with a few objects and a point lighting:

Barycentric Coordinates

A barycentric coordinate is defined by a simplex. Say we have a triangle of points , then a point can be
represented as:

We call the Barycentric coordinate of in the coordinate system of this triangle.

 is on the plane of this triangle
If all 's are positive, then is inside this triangle

With a simplex of vertices, the Barycentric coordinate has numbers.

Vectors normal is the cross product of vectors:

It points to the direction determined by the right-hand rule, so order matters in the cross product
For a triangle , its normal direction can be specified as right-hand rule A-B-C, where does the thumb point
to

Mathematically, it is

3D Rotations

3D rotations obey the same rules & properties as in 2D.

Notice the different between rotation and orientation:

Rotation is a relative transformation, an action, think of as a translation vector
Orientation is the current direction in world axis the object is now facing at, think of as the current position

The Euler's Theorem states that any rotation can be represent as a single rotation about some axis; Any rotation in 3D
can be represented as a sequence of three rotations about some fixed axis. Say - we denote this as
Euler Angle (XYZ).

Order matters: (XYZ) (ZYX) (ZXY)

The one closest to object (right-most) is purely around object's local axis

The one closest to world (left-most) is purely around world axis

Say in (XYZ), if Z is zero, then Y is around object y-axis, but if Z is non-zero, Y is not around object y-axis; if X is
zero, then Y is around world axis, but if X is non-zero, Y is not around world axis

In other words, rotation matrices around different axes are NOT commutable:

Not necessarily three orthogonal axes XYZ; can even repeat, e.g., ZXZ

In THREE.js, the .rotation field of an object is an Euler Angle in the order XYZ, with the world axis being its parent's
coordinate system (due to the hierarchical modeling tree):

The Euler Angle approach has several problems:

Gimbal lock: say in XYZ, if Y = 90 degrees clockwise, then it always aligns object-local z-axis with the world x-axis, which
means that then no matter what X & Z are, the object y-axis always stays on the world plane

Tweaking X & Z can only give us rotations around the world x-axis (which is now also the object-local z-axis)
We lost a degree of freedom (d.o.f.)!

Cannot linearly interpolate: two different sets of Euler angles may produce the same rotation transformation (e.g., X
90 then Y 90 == Y 90 then Z 90), but any linear interpolation of the two does not!

A different approach which might be more intuitive is called the Axis Angle. It represents rotation as a single rotation
around some world axis of some angle: , where is the angle and is the axis.

Simple progression on an Axis Angle does NOT map to simple progression on the Euler Angle representation
Problem: Hard to compose two Axis Angles with different axes

Computation on the Axis Angle representation is typically done through conversion to quaternions: .

This is a unit quaternion: has magnitude of 1 (given that is already a unit vector)
A bunch of good properties: can be multiplied and composed, can do spherical linear interpolation ("slerp")
THREE stores Axis Angles internally as quaternions
Euler Angle (XYZ) can be converted to quaternion by making a quaternion for each and multiply together

Projections

There are three types of projection transformations (投影):

Orthographic: not realistic
Isometric: not realistic
Perspective (透视): realistic

Perspective projection camera is basically:

obj.rotation.set(Rx, Ry, Rz); // Object rotation transformation R = Rx Ry Rz

// API #1: directly setting value will directly modify the matrix in place

obj.rotation.y = Ry2; // R = Rx Ry2 Rz

 |________________^

// API #2: relative method adds on to the current state

// it takes in how much you wanna rotate around the parent coordinate system

// and THREE automatically updates the Euler Angles for you

obj.rotateX(Rx2); // R = Rx' Ry' Rz' -- computed automatically

The black point is called the focal point (焦点)
The length is called the focal length (焦距):
Often we clip things that are too close or too far. We call the distance range (from focal) in which we capture world
points the frustum (视锥) = ; it gets mapped to in computation
If the film is put behind our focal point, then it is often called a pinhole camera

In homogeneous coordinate matrix, the projection matrix looks like:

Overall, the transformation matrices that will be applied to an object in tree looks like:

First part is the viewing transformation, composed of:

 is the projection matrix
 is the camera transformation placing the camera in the world and twisting it "up", so take its inverse

Second part is the parents composed transformations (hierarchical modeling)

Third part is the object's local transformation, in the order of:

 is the translation
 is the rotation

 is the scaling
 is the object's local coordinates value

3D Drawing Concepts

Geometry & Meshes

Meshes are collections on triangles that form (or approximate) 3D shapes. It is a combination of geometry (the shape) and
material (color, lighting properties). We use triangles because they are efficient, flexible, and maps well to hardware.

Meshes have vertices, connected together forming faces (triangles) We use the index-set representation to represent faces.
The order of the three vertices of a face matters because that determines the direction of the normal of the face.

Good meshes should have:

Consistent handedness
Avoid crackings
Avoid T-junctions

A mesh has:

Vertex properties, combines over the mesh using the Barycentric coordinate interpolation

E.g., interpolated color of vertices for any position on face: , where
 is the Barycentric coordinate of the point

Many other properties can be interpolated as well
Face properties, constant over a face

E.g., a constant color of a face

To store the geometry topology, we could use different techniques:

Polygon group

Vertex sharing (index-set representation)

Uniform patterns when appropriate:

Grids
Strips (edge connected triangles) / Fans (triangles sharing one same central vertex)

The normal direction of a face determines which way is facing "outwards".

THREE uses backface culling by default - if the normal is facing away from the eye, you cannot see the face
Use THREE.DoubleSide to be able to see things facing backwards

Geometry can be built in a more general way by using shape of revolution: we define a function that describe a curve, then
define shapes along the curve and interpolate to get a geometry. This gives us tubes, sweeps, lathe cones, ... Like the
Chakin corner-cutting algorithm for 2D curves, we have schemes for dividing triangles to get smooth 3D geometries
(Slides #26):

Butterfly scheme:
Loop scheme (like B-spline in 3D)
Catmull-Clark scheme of quads

Lighting & Material

Lighting implies the physical process of how lights take effect (though not necessarily need to simulate the real-world
process to compute the effects). Another term, shading, is a more general term of computing the color of a pixel.

Light starts at a source, interacts with an object, and arrives at our eye.

A simple local model of how photons go when hitting an object:

It could be absorbed, perfect mirror bounced, or affected by the micro-geometry
Depends on the material of object and the direction of the incoming light
Formally, we use Bi-Directional Reflectance Distribution Functions (BRDF): given an incoming direction and an out-
going direction, what is the probability (amount of light) that happens

Global lighting considers interactions among objects (the entire scene), e.g., occlusions, shadows, reflections,
spill/bleed

Local lighting largely depends on the object's material properties. We consider the lighting model:

Emission: things give off light
Ambient: lights from everywhere
Specular: direct reflection
Diffuse: rough reflections

Lambertian materials scatter light into all directions:

Doesn't matter where you look from

Direction of light coming in does matter: the more "direct" the point is facing the light, the stronger diffusion

, where is the normal of object surface at the point and is the light direction
, where is the color/intensity of light and is the color of the material

Shiny materials are specular:

An ideal specular material is a perfect mirror

In reality, gradually falls off as we get away from the optimal direction

, where is the eye vector, is the reflection vector, and is the shininess factor
, where is the normal of object surface at the point and is the half-way vector between

eye vector and the incoming light vector

The Phong material lighting model in one formula looks like:

Metalness: more specular or not
Roughness: amount of specularity

Different strategies for computing the color for an object in scene:

Flat shading: once per triangle
Gouraud shading: once per vertex and interpolate colors
Interpolate normals: once per pixel (used today)

Texturing

Textures (纹理) help us have more information in a triangle (other than just three points + a face). The basic texture
mapping takes the coordinate of a point on the triangle, uses an image (color map) to lookup the coordinate to color, and
use that color as the color for that point.

We typically use UV coordinates on the triangle: specify a pair value for each vertex, then the UV value of a point is
the Barycentric interpolation of vertices UVs.

Left is the UV plane, both going from 0 to 1

Mesh with multiple triangles (next to each other) can map nicely onto the UV plane texture image

What if a point maps to UV outside of ?

Clamp wrapping: just chop off and map to min/max value
Repeat wrapping: round over from other side
Mirror repeat wrapping: mirror the texture map

Loading and storing textures is expensive, so we want to use fewer texture maps and map as many triangles as we
can to one texture map.

The final color of a point is the composition of {texture, material, lighting}.

Since the UV map is continuous but pixels are discrete, it can be very tricky when we try to map a continuous thing to
discrete canvas image (magnification & minification). Instead of thinking of pixels just as squares, better solutions are:

On magnification:

Nearest neighbor: think of colors living on grid points. each pixel takes the nearest neighbor color
Bi-Linear interpolation: combine the 4 neighboring colors
(Using shader anti-aliasing, e.g., smoothstep with fwidth)

On minification:

Filtering: averaging the colors a pixel covers

Summed Area Table

Mip-Maps: approximate filter as a square - precompute multiple sizes of squares - pick the two correct sized
squares and interpolate at runtime

Considering anisotropy (各向异性), if the triangle is mapped to a really stretched region on UV map, using a
square approximation might be way too big; In this case, we may want to use areas that are more
appropriate; THREE supports anisotropic filtering by breaking into smaller squares - better look, but more
lookups
Tri-linear interpolation: use images of smaller and smaller size, lookup in-between two images (one just little
bit too big and one just little bit too small), each using bi-linear, and combine (in total 8 lookups)

Occlusion & Visibility

Nearer objects cover farther objects from the camera's perspective. To figure out what color should eventually appear on
each pixel on screen:

Painter's algorithm:

Inefficient - need to sort
Inefficient - no matter what, draws all the pixels in all the triangles (figuring out the coloring, lighting, shading...);
but for many pixels, only the nearest triangle covering that pixel will eventually win

Z-buffer algorithm:

Z-fighting - if two triangles have very close camera Z value or have ties, due to numerical errors they may fight on
the test; In this case, the ordering of triangles matters
Semi-transparent objects - ordering also matters; need transparent objects last
Aliasing decision - if two triangles both cover only part of a single pixel, need a way to decide

Web APIs Potpourri

Javascript

See Javascript document here: the MDB JavaScript doc.

One thing that is most useful for making little animations in the web browser is to use the requestAnimationFrame
feature:

Canvas

HTML Canvas Doc: the MDN Canvas API doc.

Things to note about the HTML Canvas API:

Coordinates:

By default: x & y goes out from the top-left corner, relative only to the canvas element itself
Doing .fill() vs. .stroke()

sort triangles in camera Z order

for triangle from farthest to nearest:

 draw all pixels of the triangle

for pixel (x,y) in screen:

 for triangle in any order within [Z_near, Z_far]:

 pz = ZB(x,y)

 if Z_triangle < pz: # draw only if nearer than nearest seen

 draw the pixel

 ZB(x,y) = Z_triangle

function updateFrame(timestamp) {

 ...

 window.requestAnimationFrame(updateFrame);

}

window.requestAnimationFrame(updateFrame);

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API

Context .save() & restore() behave as a stack

Path sides when filling a non-simple path:

Even/Odd: pick any point, go any direction, and count the number of crossings of paths; even outside, odd
inside
Non-zero winding: count the "loops" around a point, +1 for clockwise, -1 for counter-clockwise; non-zero inside,
zero outside

SVG

SVG Doc: the MDB SVG API doc.

See a good set of SVG tutorials here: CS559 SP2021 SVG Tutorials.

THREE.js

THREE.js is a scene-graph API just like SVG, but is built for rendering 3D graphics and can manage the graphics hardware
from browser through backends like WebGL.

THREE Doc: the THREE.js official doc.

Things to note about the THREE.js API:

THREE renderer creates a 2D canvas element for us where the picture goes into, and we typically append that
element into the HTML DOM

Coordinates:

x goes right
y goes up
z follows the right-handed rule, so goes out of the screen

Animations with THREE:

Transformations (matrices), material properties, and lighting properties are easy to change
Changing mesh geometries, material types, and lighting types are hard - they require sending large data to the
hardware / recompiling the shader

State of vs. transformation on an object:

cube.position.x = 5 just sets the position forcefully

cube.position.x += 5 just changes the position relative to its only position in the world coordinate system, but
is not affected by its local context

cube.translateX(5) applies a transformation to the object, affected by its local context (where is its local x-
coordinate pointing to)

In summary:

1. State: matrix , position , scale , quaternion , rotation
2. Transformation: applyMatrix4 , translate , applyQuaternion , rotate
3. Special (setting an absolute orientation): lookAt , setFrom , VUp

Each object can have children; Hierarchical modeling should better use groups

Graphics Hardware & Shaders
Graphics chips (GPUs) exploit the following two features intensively to draw triangles fast:

Massive parallelism: triangles/vertices/pixels are mostly independent with each other, so in each processing stage,
parallel the processing of independent entities

Pipelining parallelism: well-designed and programmable (flexible) pipeline

https://developer.mozilla.org/en-US/docs/Web/SVG
https://graphics.cs.wisc.edu/Courses/559-sp2021/tutorials/svg/
https://threejs.org/docs/

Recall the entire rendering process for 3D drawing:

1. Modeling - put triangles in 3D world
2. Viewing - calculate position relative to the camera eye
3. Clipping - decide if triangle is not too far/near so it should appear on screen
4. Projection - transform to the 2D screen space
5. Visibility - decide how triangles occlude one another
6. Rasterization - convert triangles to pixels
7. Shading - color each pixel according to the triangle vertices' texturing and (local/global) lighting properties

Graphics Pipeline

Just like CPUs, GPUs do pipelining intensively, but in a more programmable and flexible way, controllable through small
programmable parts.

The two must-have programmable parts are:

Vertex shader (per object info + vertex with info vertex with more info & screen-space position)
Fragment (i.e., pixel) shader (per object info + fragment with interpolated info fragment with more info & color)

Shader Programs

Shaders are written in a special category of languages called shading languages. Examples include:

Pixar Reyes, RenderMan
GLSL for OpenGL
GLSL-ES for WebGL: Reference card

They include the actual shader program in the shading language and a host API, say from Javascript, to send the program
to the hardware. The shader program must appear as a pair of (vertex shader, fragment shader).

https://www.khronos.org/files/webgl20-reference-guide.pdf

In THREE, shaders are defined as part of a material. We can apply textures now in two ways:

Image based texture, like we have covered before
Procedural texture: make the (fragment) shader program compute the texture

Please find techniques, tricks, and suggestions on writing shader programs in workbook 11.

Random Noise

In CG, we typically do not want true randomness but just pseudo-randomness, so that we can reproduce the same image
every time. Methods for making noise include:

Simple ones: sin noise (fract(sin(u_sampled)*1000000.0) with anti-aliasing)
Combine multiple frequencies
Perlin noise
More complicated ones

Advanced Texture Mapping

Shaders enable us to apply several advanced texture mapping techniques:

Displacement map: change the geometry of the object according to the map, typically the height along normal

Can only happen in the vertex shader
Normal map: use RGB color as a 3-tuple to change the normal direction and magnitude on individual locations on
the mesh. This can give us fake shapes

E.g., interpolating the normal so that an imperfect cylinder (made up of 12 sides) looks like a circular cylinder
under lighting
Can happen in vertex shader, but typically done in fragment shader

Bump map: a simplified version of normal map, fakes the effect of each point on the surface moving towards/away
along the normal direction to make it look bumpy

Can happen in vertex shader, but typically done in fragment shader
Does not look good if we are close to the object and looking from the edge

We often use a big "box" with texture inside to surround the viewpoint to make the far-away background. Since they are
so far away, distance (position of the observer) does not matter too much, but orientation (normal vector) does matter.
This box is called a skybox:

Cube skybox (Cubemaps)
Sphere skybox (Equiectangular maps)
Cylinder skybox (Panoramic maps)

The skybox is often loaded as a static environment map of an object to help compute reflections.

// Vertex shader example:

uniform mat4 projectionMatrix; // constant object info, sent by THREE

uniform mat4 modelViewMatrix; // ..

attribute vec3 position; // per vertex attribute, sent by THREE

varying vec4 gl_Position; // output attribute

void main() {

 gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

}

// Fragment shader example:

uniform vec3 ourColor; // customized uniform, sent by us through JS

varying vec4 gl_Position; // per fragment property, interpolation of the vertex shader's output

void main() {

 gl_FragColor = vec4(ourColor, 1);

}

To get reflections about other objects, or if the mirror object is moving around, it requires dynamic environment maps. We
could do that by multi-pass rendering:

1. Draw once to get information about all the objects, use a cube camera to take a picture about other objects
2. Draw the second time to actually make the reflective object

Shadows & Real-Time Rendering

Multi-pass rendering is an example of real-time rendering:

1. In earlier phases, draw the objects and compute some dynamic texture maps (e.g., dynamic environment maps, or
shadow maps described below)

2. In the final phase, color the objects using the advanced dynamic maps computed

To get advanced, non-local lighting effects like shadows, we add yet some other layers of texture mappings:

Pre-computed ("baked") lighting: ambient occlusion map

Use the first pass of rendering to take a picture of which points can a light cast on, store this as the shadow map per
light source; In the second pass, for every point on the object, look up if this point appears in the shadow map or not,
if yes not shadowed, if no shadowed

The value stored in shadow maps are typically Z values: if the point's Z value the Z value in shadow map, it means
there is something blocking this lighting source.

Dynamic shadows maps in 3D scenarios is often referred to as the ray-tracing technology.

In THREE, to enable shadow maps:

Setup lights to cast shadows they will make shadow maps
Setup objects to cast shadows they will be rendered in all passes
Setup objects to receive shadows they will access all the shadow maps in the final pass
Setup render to do shadows there will be multiple passes

Advanced Rendering

Some advanced hacks & optimizations used in real-time rendering:

Hard shadows vs. Soft shadows from area light sources:

Hard to simulate with shadows maps, but a workaround might be to simulate the area light source as a collection of
point light sources - this is very inefficient

Filtering a range of the environment map in reflection:

As "shininess" goes down, size of filter area goes up

Deferred shading/rendering to avoid making the fragment shader stage of the pipeline too heavy and to avoid
shading unseen points:

1. Don't shade fragments when we draw them, just use Z-buffer for locations
2. Store information needed for shading/coloring in a geometry buffer (G-buffer)
3. In yet another stage, compute the colors; If multiple points from multiple objects appear in the same pixel on

screen, only the nearest one will be done shading computation (unless there is transparency)
4. If lights do not cover the entire screen, or if we only have limited memory, we can break the screen into smaller

tiles and do the shading computation tile-by-tile. This is called tile-based deferred rendering (TBDR)
Animation by deformation (transformations on a base mesh): when changing the geometry, we send
transformations to the GPU instead of the whole new geometry, so we reduce the data size we need to transfer from
main memory to GPU memory

Shape interpolation (Morphing): , send all meshes to hardware, each frame only
change the weights

Can be non-linear: twist, bend, lattice (grid), free-form (FFD), cages (build shapes inside cages using Harmonic
coordinates, then control the cages), skeletons, ...

Cages & Skeletons of rigid pieces are common in interactive graphics and games
Skinning is the process of covering the gaps at junctions to make it look more natural; Linear-blend (smooth)
skinning means assigning a vertex at junction to be position of bone1 + position of bone2

Rasterization

Rasterization (栅格化, mapping triangles to pixels) is actually a hard problem. The basic problem is deciding whether a
pixel needs to be colored for a triangle and what color it should be. Some of the topics have been covered in this section.

"A pixel is not a little square. It is a sample point." -- Prof. Michael Gleicher

Methods:

Cover sample point? -- handles edges consistently, but triangle could get lost between pixels

Scanline algorithm:

In today's graphics hardware: using Barycentric coordinate because this is massively parallel

Drawing lines with the Brezenham midpoint algorithm: pick closest pixel for each column

Rasterization also affects our general anti-aliasing (抗锯齿) effect. We prefer blurry things over sharp / jaggie edges, so we
do not want each pixel to be exactly the same color of the triangle, but instead some interpolation of closest triangles.

We do super-resolution: breaking each pixel into more smaller sample points (4x, 8x, 16x, ...), do sampling on each one
using the above methods, then average over them to produce the eventual color for that pixel.

for every row of pixels:

 find left and right boundary of triangle coverage

 fill those pixels in between

for each pixel:

 compute barycentric coordinate relative to triangle

 decide if in or not (having negative coord or not)

