
 Computer Architecture
Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS552

Teachers: Karu Sankaralingam

Figures included in this note are from Prof. Sinclair's and Prof. Lipasti's slides.

 Computer Architecture
Great Idea: Abstraction

Instruction Set Architecture (ISA)
Hardware Description Languages (HDL)

Performance Metrics
Response Time vs. Throughput
Iron Law
MIPS & MFLOPS
Benchmarking
Amdahl's Law

ISA Concepts - MIPS
Registers & Alignment
Core Instructions
Pseudo-Instructions
Procedure Calling Convention

Arithmetic & Logic
Adder & Subtractor
Bitwise Boolean Logic
2-to-1 MUX
Shift & Rotation
The ALU
Carry Lookahead

Processor Datapath & Control
Fully Synchronous Design (FSD) Clocking
MIPS 5-Stage Datapath
Global Control PLA
Ideal Pipelining
Pipeline Hazards
Instruction-Level Parallelism (ILP)

Cache Architecture
Memory Hierarchy
Address Mapping & Associativity
Replacement Policy
Write-Allocation Policy
Cache + Pipeline Integration
Cache Performance

Other Topics

Great Idea: Abstraction
The scope of this course:

http://pages.cs.wisc.edu/~karu/wiki/
http://pages.cs.wisc.edu/~sinclair/courses/cs552/spring2020/includes/schedule.html
https://ece552.ece.wisc.edu/video2.shtml#lec07

One of the greatest ideas of computer architecture is layers of abstraction. An abstraction is a name and an interface we
use to describe a component to hide implementation details of this component.

Interface: What something does? E.g., 2:1 MUX, use select bit S to switch output F between inputs X and Y
Implementation: How it does so? E.g., logic gates, pass transistors, registers, ...

Instruction Set Architecture (ISA)

Instruction Set Architecture (ISA) is a perfect example of abstraction which hides details of underlying hardware and
provides an interface for software.

The vocabulary that a processor understands
Defines the interface - a set of assembly instructions - to the processor
Implementations (hardware realization) of an ISA do vary. e.g., different Intel processors on x86

Different types of ISAs exist:

Reduced Instruction Set Computing (RISC): MIPS, RISC-V
Complex Instruction Set Computing (CISC): Intel x86 IA-32, amd64, ARM
IBM PowerPC, Sun SPARC, ...

Hardware Description Languages (HDL)

Designing hardware by bottom-up modules is another sign of abstraction in this field. We will use this idea a lot when we
design hardware blocks in Verilog to achieve a complex functionality. When we feel that a certain small functionality
should be put in a separate module for easier reuse, we put them in a separate module. A complex module can
instantiate sub-modules which may again reference smaller modules.

A hardware description language (HDL) is a high-level language that describes:

What the hardware looks like
What are its components
How components are wired together
...

HDLs are NOT "programming languages"! It gets generated (compiled, mapped, synthesized) to a hardware chip, not to
commands for processors to execute.

We will be using the Verilog HDL to design hardware blocks that achieves certain functionality. As a hardware
programmer, when programing Verilog, keep the following in mind:

1. We are describing hardware:

Describing what the components are and how they are wired together

Hardware is all active at once
A simple incrementer can introduce a lot of hardware - program carefully

NOT programing a time-sequenced procedure like software programming

2. Think in divide-and-conquer way:

When you feel like a certain piece of logic should be put into a separate module for easier reuse and cleaner
code, do that

Verilog itself has advanced features, enabling hardware programing in advanced models:

Structural model
Register Translation Language (RTL) Dataflow model
Behavioral model

Some resources to reference for using Verilog in this course:

Verilog tutorial slides
Karu's Verilog cheatsheet

Performance Metrics
It is not so simple to answer the question: "How fast/good is a computer?" There are many factors that can influence the
answer:

Workload we are targeting at

Integer, FP, ...
Database - memory, storage & I/O

Correct measurement and analysis

Response time (Latency)
Throughput

Cost, ...

Response Time vs. Throughput

Response time (Latency) measures elapsed time for program to complete

 CPU time + I/O wait

Throughput measures completion rate

 delivery / sec

Throughput 1 / avg. response time only if jobs do not overlap. Otherwise, throughput will be larger than that. To
improve performance:

Build faster CPU core - helps both response time and throughput
Add more cores (more parallelism) - helps throughput
Do staged pipelining - helps throughput

Iron Law

The Iron Law is the formal way of comparing processor performance.

 Compilers, determined by algorithm, compiler, & ISA

 (CPI) Processor design, determined by ISA & CPU datapath

 Chip realization, determined by circuit design and manufacturing

Terms are inter-related. Do NOT only optimize for an isolate term (e.g., changing ISA to decrease instruction count)
because that usually leads to a related term getting worse (e.g., making CPU datapath slower from this change). We
should optimize for the overall performance.

http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020//handouts/verilog_tutorial/Verilog-tuto-slides_Guanzhou.pdf
http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020//handouts/misc/Verilog_cheat.pdf

We say machine A is 20% faster then machine B when .

MIPS & MFLOPS

MIPS (million instructions per second)

Has serious shortcomings. See slide #2, page 16-17
It is OK to use only when comparing processor implementations with the same compiled program and the same ISA

MFLOPS (million floating-point operations per second)

Assuming FP ops are independent of compiler and ISA, then safe for numeric codes

Beware when reading documents, especially if details are omitted. Beware of the language of "peak performance".

Benchmarking

What program should we use to (somewhat) fairly compare processor performance? We use a set of standard programs
called as benchmarks. How to average the performance on multiple different programs?

Use weighted arithmetic mean (AM) of times to get average time

If programs run equally often, may use unweighted arithmetic mean
Use harmonic mean (HM) of rates to get average rate

Use geometric mean (GM) of relative ratios

Do NOT use arithmetic mean on relative ratios of machines! - Simple fact in math
GM of ratios ignores total time. It bias a machine if it has an advantage on programs with shorter execution time

A CPU benchmark like SPEC2000 is meaningful only when your workload is NOT I/O bound.

Amdahl's Law

Modern processors all exploit parallelism. Amdahl's Law gives a simple theoretical bound on possible speedup brought
by parallelization.

 is the fraction of your program that can be parallelized
 is the number of cores

Insight: If is small (your workload is inherently not parallelizable), then the maximum possible speedup is very limited
even when you have infinitely many cores.

ISA Concepts - MIPS
An ISA defines a set of assembly instructions with the general forms:

Opcode is the name (mnemonic) we give to specify an operation
Operand is a Register or an "Immediate" number

An ISA assumes a Von Neumann machine model:

 opcode operand(s)

MIPS is a RISC ISA which composes of only very simple instructions. Check the attached MIPS data sheet for technical
details. You may also find the WikiBook page and this page useful.

Registers & Alignment

MIPS has 32 exposed registers $0 - $31 residing in the processor, each 32-bit (word) long. Some of them have an alias
name, e.g., $zero for $0 , $ra (return address) for $31 .

Some of these registers are reserved for the assembler to use as temporary values. Some are reserved by the Application
Binary Interface (ABI) and the calling convention. It is VERY dangerous if we arbitrarily use registers without paying attention
to the context!

$0 cannot be written and is always a 32-bit zero
$at is reserved for the assembler only, users should NEVER code it explicitly
$t0 - $t7 registers are NOT preserved across a function call: The callee can use them without saving; After the
call returns, words previously in them may change
$s0 - $s7 registers SHOULD be preserved across a function call: The callee, by design, SHOULD save them if it
uses them; After the call returns, the caller is safe to assume that words in them remain the same

Data alignment lengths are named as:

64-bit: double word
32-bit: word, w
16-bit: halfword, h
8-bit: byte, b

Endianness refers to how bytes are addressed within a multi-byte datatype.

Little endian: LSB in lowest address
Big endian: MSB in lowest address

MIPS is endian-mode selectable.

Core Instructions

Core instructions are those enabling the full functionality of MIPS. They generally take one of the following forms:

file:///D:/Dropbox/UW-Madison/Computer-Sciences/CS552-CA/Notes/computer-architecture-wisc.html
https://en.wikibooks.org/wiki/MIPS_Assembly
http://www.cs.jhu.edu/~cs333/reference.html

Type Format Instruction & Example

0.
opcode
int

1. [R]
opcode $rs
jr addr

2. [J]
opcode Label
j/jal addr

3. [R]
opcode $rd, $rs, $rt
add dst src1 src2

4. [R]
opcode $rd, $rt, Shamt
sll dst src shift

5. [R]
opcode $rt, $rs
div deno nom

6. [I]

opcode $rt, $rs, Imm/Label
addi dst src1 src2
beq cmp1 cmp2 ofs

7. [I]
opcode $rt, Imm
lui dst const

8. [I]
opcode $rt, Imm($rs)
lw/sw data ofs addr

Basic arithmetics

Opcode:

add , addiu , and , andi , sll , slt , ...
mult & div give wider result and save results to fixed hi & lo registers

Operand:

32-bit registers
16-bit immediate constant
Shifts use a 5-bit "Shamt" immediate

Computation is done in the Arithmetic Logic Unit (ALU) for these basic integer arithmetics

Memory operations: 32 words are certainly not enough of storage - we need to load from / store to memory

Opcode:

lw $rt, Imm($rs) for load word
sw $rt, Imm($rs) for store word

Operand:

A register for holding the word
A register holding the memory address
An immediate of address offset

Register is 32-bits long meaning that MIPS, by default, can address up to 4GB memory space

Branches & Jumps: control flow instructions

Opcode:

beq , bne
jr , j , jal , ...

Operand:

Two registers for branch condition
A register, immediate, or label specifying the branch/jump distance/target
A label is coded as a name but translated to a PC-relative offset later

Floating-Point instructions and miscellaneous instructions omitted here

A core instruction, according to its format, gets encoded into a 32-bit binary by the assembler:

Some R-format instructions share the same opcode and have different "Funct" codes.

Pseudo-Instructions

Though core instructions are already functionally complete, we sometimes want an alias instruction to save the effort
writing frequently-used snippets which may be too tedious in core instructions. MIPS thus includes a bunch of pseudo-
instructions which get assembled into a snippet of core instructions in the first pass of assembling.

Commonly used pseudo-instructions:

blt $rs, $rt, Label ("branch if larger than") =

1. slt $1, $rs, $rt
2. bne $1, $0, Label

li $rd, Imm ("load immediate") =

1. lui $at, UpperOfImm
2. ori $rd, $at, LowerOfImm

move $rd, $rs =

1. add $rd, $rs, $0

Procedure Calling Convention

Invoking a function means doing a procedure call. The calling convention is part of ABI and is what we should pay
attention to when coding assembly.

Caller:

1. Save registers that the caller is responsible to save in current context
2. Set up function arguments
3. Jump to the procedure
4. Callee does its work
5. Get the results
6. Restore context registers

Callee:

1. Save some more registers that the callee is responsible to save
2. Do some work
3. Set up the results where the caller knows to get from
4. Restore registers
5. Return

In MIPS ISA, stack grows from higher address to lower address. Memory layout and stack frame layout:

Stack pointer $sp points to last word on stack 0($sp)
Frame pointer $fp points the first word of current function frame (callee's frame), and this first word SHOULD be the
upper frame (caller's frame) frame pointer value

First 4 word-long function arguments SHOULD be passed in registers $a0 - $a3
More arguments SHOULD be ready in the caller's frame right above $fp

Example procedure which swaps the k -th and (k+1) -th elements in an array:

May compile to the following program in MIPS:

Arithmetic & Logic
The ALU is responsible for carrying out integer arithmetic and logic calculations.

A 32-bit binary can represent different things, depending on how we view it:

Unsigned integer

Signed integer: 2's complement

Unique zero: 0 ... 000
To get , revert every bit of , then
2's complement makes hardware simpler than sign-magnitude

Single-precision floating-point: IEEE 754

A MIPS instruction

We use these logic gate symbols:

void swap(int arr[], int k) {

 int temp = v[k];

 v[k] = v[k+1];

 v[k+1] = temp;

}

 ...

 move $a0, <arr>

 li $a1, <k>

 jal swap

 ...

swap:

 # Prologue

 addi $sp, $sp, -4

 sw $fp, 0($sp)

 addi $fp, $sp, 0

 # $t1 = arr + 4*k = &arr[k]

 sll $t1, $a1, 2

 add $t1, $a0, $t1

 # $t0 = arr[k]; $t2 = arr[k+1]

 lw $t0, 0($t1)

 lw $t2, 4($t1)

 # arr[k] = $t2; arr[k+1] = $t1

 sw $t2, 0($t1)

 sw $t0, 4($t1)

 # Epilogue & Return

 lw $fp, 0($sp)

 addi $sp, $sp, 4

 jr $ra

Adder & Subtractor

A full adder is an adder adding two bits which takes care of carry-in & carry-out: . The boolean table of
a full adder is:

Concatenating 32 full adders gives us a ripple-carry adder. Since subtracting is equivalent to adding , a ripple-carry
subtractor is a ripple-carry adder with all bits negated and setting to 1. A combined ripple-carry adder/subtractor:

An XOR gate can be used as a "conditional" negation gate.

In MIPS, the only difference between add and addu is that add causes overflow detection while addu does not.
Overflowing can be detected by:

Signed add: into MSB out of MSB
Unsigned add:

Bitwise Boolean Logic

Doing 32-bit bitwise AND, OR, XOR, NAND, NORs are simple - just implement with 32 gates in parallel.

2-to-1 MUX

A MUX is a selector: using a select bit to switch the output between inputs. A 2-to-1 MUX can be implemented as:

A 4-to-1 MUX can be implemented with three 2-to-1 MUXs.

Shift & Rotation

A shifter shifts bits of a number to the left/right. A rotator wraps around those bits shifted out. An 8-bit shifter can be
implemented using three layers of MUXs:

To rotate, just wrap-around instead of putting 0 s in missing inputs.

In MIPS, the only difference between srl and sra is that srl does logical shift (injecting 0 s to missing inputs)
while sra does arithmetic shift (injecting the number's old MSBs).

The ALU

The ALU itself is a combination of arithmetic components listed above, plus a MUX selecting which output we are using. A
simple 2-input ALU with addition/subtraction/bitwise boolean support looks like:

To do an NOR(a, b) for example, set Ainvert = 1 , Binvert = 1 , and Operation = 0 .

Carry Lookahead

The ripple-carry adder we mentioned above is very non-performant: it cascades 32 full-adders. A higher-bit adder needs
to wait for the lower-bit to finish. A high-performance substitute is the carry-lookahead adder.

Looking at the two numbers we are adding, for each bit:

Need both 1 s to generate carry:
Need one or both 1 s to propagate carry:

Therefore, carry-in . Expanding this up to 4 bits, we get a 4-bit carry-lookahead adder:

The carry-lookahead block is still doing cascading job. To amortize the workload and squeeze parallelism out of this, we
build a tree-structured 16-bit carry-lookahead adder out of four 4-bit ones:

 of a 4-bit group

Processor Datapath & Control
Recall sequential logic using D flip-flops (to build registers D -> Q) + a clock signal C :

D latch: Master/Slave D Flip-Flop:

A latch is transparent during the whole period when clock is high
A flip-flop, instead, ONLY propagates the value of D to Q at rising edge, and is opaque at any other time

Therefore, we use flip-flops to build registers for sequential logic to avoid combinational loops.

Fully Synchronous Design (FSD) Clocking

In this course, we will use fully synchronous design (FSD) clocking methodology:

Only use flip-flops (FFs) in between logic pieces
All with the same clock signal and all acting on the same edge, e.g., rising
All logic pieces finish in one cycle

This simplifies our design and enables us to design the full datapath without worrying about clocks.

FFs have setup time & hold time requirements to function properly.

We further denote that clock cycle length is , and the combinational logic delay following the FF is . FSD clocking
rule states that:

1.
2.

The combinational logic block having is called the critical path. It decides the upper-bound of clock
frequency.

MIPS 5-Stage Datapath

A classic 5-staged MIPS processor datapath design is:

It can be divided into 5 stages (for future pipelining optimization):

1. Instruction Fetch (IF, F)
2. Instruction Decode (ID, D)
3. ALU Operations/Execution (EX, X)
4. Memory Accessing (MEM, M)
5. Register Write (WB, W)

I draw instruction memory separately from data memory, meaning that this is a Harvard architecture. (On a Von Neumann
architecture, code shares the same physical memory with data.) The block in the middle is a register file, i.e., the collection
of on-chip registers.

Signals marked red are constants decoded from the instruction, and those marked blue are global control signals, which
we need to compute in the global control unit from the opcode & funct fields decoded from the instruction (not shown in
the figure).

Global Control PLA

Those global control signals have to be computed from the opcode & funct fields. A common solution is to use a PLA
unit:

, where each input is an opcode / funct bit, each AND product term represents whether this is a certain type of
instruction, and the OR gates combine this information to compute all global control signals.

One design goal of an ISA (e.g., MIPS) is to carefully design the opcodes and control signals to minimize the combination
logic need in this PLA.

Ideal Pipelining

The problem of a single-cycle CPU design is that it delivers very poor throughput. Consider the lw instruction. It needs to
go through all five stages (F + D + X + M + W) to complete. Though other instruction might need fewer stages, the global
clock frequency is bounded by the critical path instruction.

Recall that we measure time for a program as:

CPI = 1
Time per cycle is large

Modern processors use multi-cycle design with pipelining. Pipelining can be applied when:

Each task uses multiple resources (here, different combinational blocks on chip) in an order of stages
When the previous task reaches stage 2, the next task can begin processing its stage 1; they are multiplexing different
parts of one datapath
Will improve total throughput (by #stages maximum, if all stages are even); will not improve latency of a single
instruction (will actually slightly worsen that because of extra registers)

In an ideal 5-staged pipeline:

CPI may seem to be 5, but after the pipeline has been "filled", CPI actually = 1 (have 1 instruction complete per cycle)
Time per cycle is plus some overhead

We add stage registers in between stages; we pass down any info needed by a later stage through these registers,
including data & control signals

Putting them together, a pipelined datapath + control looks like:

Pipeline Hazards

The 5 stages, however, are not completely independent. Sometimes, program instructions have dependences:

True dependence (read after write, RAW)
Anti-dependence (write after read, WAR)
Output dependence (write after write, WAW)

In these situations, a later instruction cannot proceed until a previous instruction has finished its certain stage. These are
called pipeline hazards:

1. Structural hazard: busy resources shared among stages

E.g., register file is accessed by many stages

Can always be solved by splitting/adding hardware:

Splitting instruction/data memory
Register file access halves to read + write in one clock cycle

2. Data hazard: data flow backwards, written reg used right after

E.g., an instruction following an lw uses the loaded word immediately

Can be solved by inserting a nop "bubble" to stall after the load

Can reorder code and put an unrelated instruction right after that load to avoid wasting that slot
Can be solved by explicitly forwarding the memory input to ALU input and add a mux to control which ALU input
to use - this can handle most data hazards that are not memory loads

3. Control hazard: branch/jump must execute to determine which instruction to fetch next

Can be solved by inserting a nop "bubble" to stall after branch/jump

Can also reorder code and put an unrelated instruction there
Can predict which way we go and "flush" the pipeline when we know we were wrong (called speculative
execution)

A pipelined datapath must also handle exceptions in each stage (e.g., illegal instruction, ALU overflow, invalid memory
address, ...). A common design is to include exceptions in stage registers and commit only at M stage.

Revisit Amdahl's Law. If a pipeline has fraction of time fully filled and fraction of time not fully filled (stalled), then
even if we have infinite number of stages, a slightly below 100% will significantly limit the upper bound of performance.
Stalls must be minimized as much as possible.

Instruction-Level Parallelism (ILP)

With the emerging idea of multi-core processors, people start to utilize fine-grained instruction-level parallelism (ILP).

In the 1980's, pipelining brought CPI from
In the 1990's, superscalar brought CPI from in best case

The idea of superscalar means to dispatch multiple instructions per cycle to achieve IPC > 1. It exploits instruction-level
parallelism (ILP) and is done dynamically by the processor. Very Long Instruction Word (VLIW) relies on data parallelism
and is done at compile time.

A classification of ILP machines by Jouppi & DECWRL can be found in Slide 11, page 20 -25:

1. Pipelined scalar processor (baseline)
2. Superpipelined: exploits parallelism further in time
3. Superscalar: exploits parallelism in space
4. VLIW: exploits static data parallelism in space
5. Superpipelined-superscalar: exploits both temporal & spatial parallelism!

Advantages of using superscalar pipelines:

Paralleled pipelines theoretically allow CPI to go below 1
Specialized pipelines solves the inefficiency of one single unified pipeline
Enables out-of-order execution and speculative execution, improves the rigid stall policy

A dynamic superscalar processor architecture looks like:

Upper section is instruction flow

Branch prediction
Fetch alignment
Instruction cache (I-cache) misses

Middle section is out-of-order execution and involves register data flow

Register renaming to solve all RAW/WAR/WAW conflicts
Bottom section is memory data flow

In-order stores for WAR/WAW
Store queue for RAW
Data cache (D-cache) misses

Cache Architecture
Off-chip DRAM accesses are very slow compared to on-chip SRAM or even registers. With each single memory access in a
cycle going to an off-chip DRAM, our process will yield very poor performance. A table briefly comparing different types of
storage from the perspective of the processor:

Memory Hierarchy

Good news is, memory accesses tend to have locality:

Temporal locality: the recently accessed bytes are likely to be repeatedly accessed in a short period of time; E.g., a
counter for a loop
Spacial locality: Bytes near the recently accessed ones are likely to be accessed shortly; E.g., an array being looped

By building up a memory hierarchy, we cache recently accessed data in much smaller, much faster upper-level memory to
boost up performance. The typical memory hierarchy looks like:

Some key issues we must solve when introducing caching:

Hardware technology: how bits are stored in each layer?
Placement: where are the bits stored and how to address them?
Identification: how to maintain the upper-to-lower mapping?
Replacement (Eviction) policy: what to evict for new entries if cache is full?
Write-allocation policy: how to handle writes which will update the bits?

Address Mapping & Associativity

Consider an on-chip SRAM as a cache for an off-chip DRAM. The DRAM address space is much larger than the cache, so we
need a way to hash (map) a DRAM physical address to some place on cache. Multiple DRAM addresses will map to the
same cache address: they will then evict each other if necessary.

There are three types of cache address mapping:

1. Direct-Mapping: one extreme - a fixed region of physical address used as cache index

Physical address decomposition:

Cache layout:

Properties:

Block size defines #bits for offset , e.g., 4 bytes blocks 2-bits offset

Blocks in cache defines #bits for index , e.g., 256 blocks 8-bits index

All addresses with the same index field will be mapped to the same cache line:

 fastest translation
 evictions will be common

2. Fully-Associative: the other extreme - a block can be mapped to any cache line

Physical address decomposition:

Cache layout:

Properties:

Aligned physical blocks can be mapped to any cache line, identified by its tag

 the full cache space can be utilized, new entry can get in any empty slot
 looking up & locating a block needs a linear-time tag comparison
 extra space for storing long tags

3. Multi-Way Set-Associative: a hybrid solution

Physical address decomposition:

Cache layout:

Properties:

Blocks are first mapped by its index , and then each index on cache can hold multiple physical blocks,
differentiated by the tag

Columns (how many cache lines for the same index) is called the number of ways

Rows (how many different indexes on the cache) is called the number of sets

Now, evictions are more flexible than direct-mapping, while tag comparison much faster (in-parallel) than
fully-associative cache

Ways = 1 & #Sets = #cache-lines means direct-mapping
Sets = 1 & #Ways = #cache-lines means fully-associative

Some simple calculations:

Length of offset

Length of index
Length of tag

Replacement Policy

Cache replacement (eviction) policies are slightly out-of-scope of this course. They are researched in much more fancty
details in lower-level caching (e.g., for disks), where caches are mostly fully-associative.

For high-speed processor caches, #ways are mostly small and we do not want to introduce large overheads for doing
eviction caculations. So, only several choices are available:

FIFO: simplest, does not always work well
LRU: cheap and easy for fewer ways, works well in most cases
NMRU (not most recently used): approximates LRU
Pseudo-random: works pretty good for high-level caches, because locality does not always perfectly exist!

Write-Allocation Policy

This is again slightly out-of-scope of this course. Details can be found in OS materials & this blog post.

For high-level high-speed processor cache, we usually do write-back since its the fastest and we do not care about
consistency / losing data - the DRAM itself is volatile anyway.

On multi-core processors or I/O devices with direct memory access (DMA), write-back policy will introduce the cache
coherence problem - multiple cores access the same physical block when it has been cached dirty in one of the core's
cache. We will get to that later.

Cache + Pipeline Integration

To integrate caches into the processor datapath pipeline, we often assume that a cache hit finishes within the cycle.
However, when we have a cache miss, we have to stall the pipeline and wait for the slow off-chip DRAM access to fetch the
instruction / data we want.

Instruction cache (I-cache): read-only; stalls on a miss

Data cache (D-cache):

Much more complicated - wires are too slow for sending a global stall from MEM stage back to IF stage; instead,
we have to cancel/flush the pipeline on a miss

For cache writes, even more complicated:

Write-through + no write-allocation:

DRAM write proceeds in parallel with tag check
Invalidate an entry on write miss
Simplest implementation but bad performance

Using a store buffer (SB):

Store only performs a tag check in MEM stage, then <val, addr, way-id> placed in SB
When the next store comes to MEM stage, we write SB to data cache in the background
Loads now MUST first check SB; load misses should also flush SB first

https://www.josehu.com/technical/2020/08/07/cache-eviction-algorithms.html

The cache control state machine FSM looks like:

Cache Performance

Latency performance of processor cache can be calculated as:

 is the cache hit latency

Determined by the cache layout
Typically 1~3 cycles

 is the ratio of cache hits over all memory accesses

Determined by the workload
Affected by cache layout, eviction policy, and write policy as well
We expect hit rate to be high enough for the cache to actually bring benefit; Improving hit rate is a continuing
topic in the computer science field

 is the miss penalty, which is very high

Composed of + detect miss overhead + eviction overhead + ...
On multi-level hierarchy, can be in a similar form - this is a recursive calculation; Hence, the sum in the
second formula
Can be 6 cycles to 100 secs

Cache misses 3-C's classification:

1. Compulsory: First-ever reference to a block
2. Capacity: Working set exceeds cache capacity, kicking off useful entry out
3. Conflict: (Capacity within set) On non-fully-associative caches, useful block kicked out by one with the same index

Other Topics
Some topics not included in this note:

Virtual memory - shouuld be elaborated extensively in OS classes
Error-correcting code (ECC) - see this note
Multicore & shared memory - should be elaborated extensively in parallel computing classes
Advanced hardware arithmetics - see this slide

http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020//handouts/lecnotes/ecc1.pdf
http://pages.cs.wisc.edu/~karu/courses/cs552/fall2020//handouts/lecnotes/21_advancedarithmetic.pdf

