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Abstract—This report is a brief summary of the paper “Archi-
tecture of the IBM System/360” [1], which presents the ground-
breaking contributions in general-purpose utility and inter-model
compatibility of the IBM S/360∗ system.

I. INTRODUCTION

Computer systems are designed to serve dedicated applica-
tions upon specific hardware models in 1950s. [2] As a big
step of innovation, the birth of the IBM System/360 in 1964
marks the first appearance of a truly general-purpose computer
system and the creation of computer family concept. The
architectural structure of the IBM S/360 system is proposed
in accordance with two major criteria:

• It must be general-purpose. It should be able to serve dif-
ferent scientific, real-time and commercial applications.

• It must achieve compatibility among the six sub-models
with different scales in the same S/360 family.

Section below summarizes the key objectives of S/360
guided by the above two criteria. Detailed design principles
and corresponding trade-offs encountered during its develop-
ment are covered in the next section.

II. KEY OBJECTIVES

This section extracts four key objectives of the IBM S/360
system, which lead the overall design and implementation of
the system.

1) The system must be a versatile platform for users, in
order to support different types of applications.

2) The system must separate its logical structure with
the physical machine resources to achieve compatibility
among machine models of different sizes.

3) The system should be designed as an open-ended frame-
work, which allows future integration with new software
and hardware technologies.

4) When the above three requirements are all satisfied, the
most efficient design (“efficient” means higher perfor-
mance with the same cost) should be adopted.

A visualization of conceptual structure of the IBM S/360
is given in figure 1, emphasizing its generalization both on
application software interface and hardware model interface.

∗S/360 is used here, and in following paragraphs, as an abbreviation for
System/360.

Fig. 1. Conceptual structure of the IBM System/360

III. DETAILED DESIGN

Detailed design principles of the IBM S/360 are summa-
rized in this section. Each principle is followed by the most
important decisions made when encountering corresponding
trade-offs.

First of all, special facilities such as floating-point arithmetic
are supported, though they are needed only in several specific
applications. They are offered as options, but still integrated
within the whole conceptual structure. Thus, the system is
no longer optimized for certain usage, but obtains the ability
to support multiple kinds of applications. Related decisions
include using addressed registers instead of pushdown stacks,
and supporting variable-length decimal fields.

Secondly, data format and granularity should be as flexible
as possible both for user application and underlying machine
instruction set architecture (ISA). As a result, it is possible
to support different data formats and manipulations required
by different applications, as well as being compatible among
different machine models. Hence, they choose to adopt 4/8
character size, 32/64 floating point word length, and both
ASCII and BCD codes as character code.

Thirdly, physical resources, such as registers, storage, and
I/O devices, are virtualized as abstract components. Therefore
a uniform logical structure of the system can be established,
allowing the same program to execute on machines of dif-
ferent scales. This is called strict program compatibility. For



example, they decide to build channels that present a standard
interface for the processor to communicate with various I/O
devices.

Last but not least, special attention is paid towards the
future trends that storage capacity is growing larger, and new
I/O devices and CPU function schemes are emerging (which
will possibly introduce brand-new instructions). With such
anticipation, spare resources are reserved at all levels, such as
spare bits in instructions, unused operation codes, and forward-
looking support of larger memory space. [3] By this approach,
S/360 makes it feasible to accept new devices, adopt new CPU
instructions, and handle a bigger storage.∗

IV. CONCLUSION

This report gives a brief summary of the key objectives
and innovative design philosophies of the IBM System/360.
The system is designed to offer general-purpose support for
scientific, real-time and commercial applications. It provides
a compatible logical structure for the six sub-models with
different scales. Flexibility ranging from large-capacity storage
support to instruction bits are also achieved. The IBM S/360
is a pioneer of applying abstraction in computer architectures,
and significantly influences future computer systems design.

REFERENCES

[1] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks Jr., “Architecture of the
ibm system/360,” IBM Journal, 1964.

[2] F. P. Brooks Jr., “Recent developments in computer organization,” Ad-
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structure of os/360,” Pioneers and Their Contributions to Software
Engineering, 2001.

∗Decisions which are discussed in the original paper but are left un-
mentioned in this section, are mainly the ones where both choices offer
generalization and compatibility, but differs only in efficiency according to
test statistics.
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Abstract—This report is a brief summary of the article “The
Future of Microprocessors” [1], which predicts that an inevitable
paradigm shift towards Chip Multiprocessors (CMP) will be the
future of microprocessors development∗.

I. INTRODUCTION

Since 1970s, the actual performance of microprocessors
has increased tremendously, even faster than the prediction
of Moore’s law. [1] Such performance gain is achieved by
applying user-transparent technologies. On the memory side,
a larger cache hierarchy is introduced. On the processor side,
longer pipelines and superscalar processors were developed,
resulting in more powerful single processors.

Unfortunately, due to the limitations described in Section
II, the attempt of enhancing individual processor performance
has met a hard bottleneck. Chip Multiprocessor (CMP)
architecture, which integrates multiple processor cores onto
a single chip, will be the future direction instead.

II. PROBLEM BACKGROUND

Two traditional ways of enhancing the speed of processors,
pipelining and superscalar technologies, both exploit Instruc-
tion Level Parallelism (ILP). Recently, the performance gain
from ILP on a single processor is approaching its own limit.
This bottleneck exists because of the following three reasons:

1) Degree of parallelism among instructions is typically
no more than four, as observed in most application
instruction streams. [2] Meanwhile, developing super-
scalar processors that can issue more instructions is
extremely expensive. Thus, the superscalar technique
can no longer bring obvious speedup.

2) Larger number of pipeline stages will make each sep-
arate stage too short to handle a reasonable task, and
will bring huge complexity and overhead to the circuit.
Thus, finer-grained pipelining is also not able to further
increase single processor performance.

3) Pratical cooling systems will have difficulty serving even
higher power consumption.

As a result, a higher level of parallelism should be intro-
duced, which is Thread Level Parallelism (TLP) brought by
the CMP architecture.

∗Since this article is written in the year 2005, “future” here represents
the trend after that timepoint.

III. KEY IDEA OF CMP
The key idea of CMP is to gather multiple CPU cores

onto one single chip. According to different caching and
multithreading policies, CMP architecture can be roughly
divided into the following three categories, as shown in b),
c), and d), Figure 4 of the article. [1]

• Simple chip multiprocessor, where each core is single-
threaded, and diffrent cores do not share on-chip cache.

• Shared-cache (often called multicore processor these
days), where the cores share an on-chip L2 cache.

• Multithreaded, shared-cache, where each core is fur-
therly hyperthreaded.

IV. BENEFITS OF CMP
By integrating multiple cores onto one chip instead of barely

putting several individual processors together, CMPs have the
potential to make improvements for either throughput-sensitive
or latency-sensitive conditions.

For throughput-sensitive workloads like web servers, tasks
are relatively independent and possibly I/O-bound, and latency
is not as critical. CMPs can bring significantly lower power
consumption and better performance for such workloads.
Firstly, for each core in the CMP, clock rate and superscalar
level can be lowered, while the overall throughput is not
influenced. This decreases the required voltage supply. Since

P ∝ V 2,

where P is consumed power and V is supplied voltage,
theoretically a processor only require 1

k of the original power
to produce the same throughput, when k cores are integrated.
Secondly, inter-processor communication will be much more
efficient because of reduced distance and increased bandwidth
between cores.

For latency-sensitive workloads like desktop applications,
CMP is still the best goal to head for. Latency L can be
modeled as:

L =
cycles

r × s× p
,

where “cycles” is the fixed total number of clock cycles needed
to complete the task, r is clock rate, s is superscalar level, and
p is degree of multiprogramming. As r and s have both been
pushed to the limit, multiprogramming (which increases p to
more than 1) becomes the only solution. Compared to coding
parallel programs across separate processors, multiprogram-
ming on CMPs are much easier because on-chip cores share



the same memory. [3] Since that parallel programming is a
necessary route, shifting to CMP architecture will reduce the
cost and difficulty for users to handle it.

Apart from software’s perspective, CMPs have advantages
even for hardware developers. Without the need of frequently
adjusting clock rates, they require less engineering effort
during version updates. Similarly, the underlying system board
does not require major modifications caused by core logic re-
design.

V. CONCLUSION

In summary, future microprocessors will shift to Chip Multi-
processor architecture to overcome the performance bottleneck
of single processors. CMPs can produce the same throughput
with significantly lower power consumption. They can make
multiprogramming much easier on shared memory, when user-
defined parallelization is an inevitable trend. They can also
simplify hardware updates between generations.

Such paradigm shift is a huge step in the history of
microprocessors development, also a necessary one. Regarding
software programmers, they also have to embrace multipro-
cessor programming techniques to get synchronized with this
architectural transform, pushing code performance to a brand-
new level.

VI. MY REFLECTION

Looking back from 2019, this prediction made by Prof.
Olukotun and Dr. Hammond at 2005 is quite forward-looking
and accurate. Though such architectural design scheme is
seldom mentioned as Chip Multiprocessor in recent years
(instead, called multicore processor & hyperthreading), this
paradigm actually gets widely accepted and implemented.
Almost all modern processors are built upon this pattern.

However, fact is that we cannot keep plugging in more and
more cores into a single chip, not to mention that the physical
size of computer chips has been squeezed to quite a small
level these days. Such fact indicates that performance gain
achieved by CMPs is once again reaching a limitation. It is
probably the time when we need new innovations in the field
of processors, memory architecture, and I/O management, for
example in-memory / on-disk data pre-processing, to fight for
a higher peak of computation performance.

REFERENCES
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parallel hardware and software,” IEEE Micro, 2004.
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Abstract—This report is a brief summary of the article
“An Overview of the Scala Programming Language”. [1] Scala
integrates object-oriented model with functional programming,
and makes a step forward to building true component software
systems.

I. INTRODUCTION

One of the key points to industrialize software development
is to provide a true component system, so that larger prod-
ucts can be easily assembled from pre-written libraries. This
idea has been well established in hardware industry. On the
contrary, a big proportion of software applications are written
from scratch, partially due to lack of component abstraction
in common programming languages.

The work of Scala aims at providing a scalable program-
ming language which better supports component abstraction.
This goal is achieved through two approaches:

• Integrate object-oriented model (OOP) and functional
programming (FP).

• Provide composition and decomposition mechanisms,
thus further supports implicit parameter inference.

The rest of this report will cover details of Scala’s im-
plementation platform and compatibility (see Section II), its
multi-view abstraction design combining OOP and FP (see
Section III), and its rich type system supporting component
composition and decomposition (see Section IV).

II. COMPATIBILITY WITH JAVA

A pragmatic programming language should be easily ap-
plied to and vastly tested in real application development
scenarios. In order to ease adoption by users, Scala is designed
to execute upon Java Virtual Machine (JVM), thus has a great
compatibility with Java and C#. However, Scala is not a super-
set of Java. It reinterprets Java’s object hierarchy and type
system, and adds in another view of functional programming
abstraction.

III. MULTI-VIEW ABSTRACTIONS

Designed as a statically typed language, Scala is the first
one which integrates object-oriented programming and func-
tional programming. Such integration brings two different
perspectives of abstraction. First, OOP ensures “everything
are objects”, thus unifies numerical types, reference types,
and user-defined types. Second, FP ensures “all operations are
normal values”, which brings great flexibility.

A. Object-oriented Abstraction
To follow the philosophy of object-oriented programming,

Scala purifies Java’s original object model. Every value, no
matter it is a numerical value or a reference value (such as
sequences), is an instance of an object. Consequently, every
operation becomes a method call, even for variable access (for
example, x = e is interpreted as x_=(e)). Users can take
advantage of this design in two ways. Firstly, all user-defined
classes have uniform formats and interfaces with embedded
classes. Secondly, users can freely overload embedded opera-
tions to build fancy interfaces and implement class properties.

B. Functional Programming Abstraction
Guided by the idea of functional programming, every op-

eration (function) is also a value, which can appear in formal
parameters and wherever else a normal value variable can be.
Furthermore, since every value is unified as an object through
OOP abstraction, every function is then an object of certain
type. This innovative design differentiates Scala with other
programming languages. Functions can now have sub-classes
extending their current abilities. Generics can be implemented
in a consistent way with abstract classes.

A visual demonstration of objected-oriented and functional
programming coupling is shown in Figure 1 below.

Fig. 1. Objected-oriented and Functional Programming Coupling

IV. SCALA TYPE SYSTEM

Based on the powerful abstractions, Scala provides a com-
prehensive type system that supports class composition and
decomposition.



For class composition, Scala includes not only class inher-
itance, but also traits, method shadowing, membership, and
super calls. The combination of these techniques is called
Mixin-class Composition. With the help of mixin composition,
Scala programmers can now do things like defining a base
iterator class BaseIter, extending it to a generic GenIter
and a specific StrIter, then combining their functionalities
into class Iter by:

class Iter extends StrIter(args(0))
with GenIter[char];

For class decomposition, Scala allows a pattern matching
way of sub-typing. Instead of traditional object-oriented de-
composition, where each sub-type must arrange their common
methods in the same way as their parent, pattern matching
decomposition uses a match-case expression on the input
and maps different sub-types onto different implementations.
This brand-new approach of decomposition is far less error-
prone.

With the help of the above mechanisms, Scala successfully
implements the implicit expression that automatically in-
fers argument types.

V. CONCLUSION

To summarize, Scala is an innovative JVM programming
language with multiple view of abstractions and a rich type
system. Scala combines object-oriented programming model
with functional programming, thus provides a highly uniform
object model. Its type system provides comprehensive tech-
niques for class composition and decomposition, therefore
further supports implicit parameter inference. These charac-
teristics of Scala make it possible to build true component
systems.

Though Scala is a lab-born language, it has been put into
practice in various projects, such as Facebook and Twitter. Its
complicated characteristics put down more responsibility on
library developers, meanwhile promote the idea of component
abstraction and code reuse greatly.

REFERENCES

[1] M. Odersky, P. Altherr, V. Cremet, and etc., “An overview of the scala
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Abstract—This report is a brief summary of the article “Opti-
mizing for Parallelism and Data Locality” [1], which presents
a simple but accurate loop optimization algorithm to take
advantage of both locality and parallelism at the same time.

I. INTRODUCTION

Parallelism and Data Locality are the two major driving
forces of compile-time loop optimization. Previous research
used to exploit parallelism and data locality separately∗. In
contrast, this paper makes an effort to create a straight-forward
loop optimization model which takes advantage of locality and
parallelism simultaneously.

The rest of this report will cover the following aspects of
the model:

• An overview of the optimization model (see Section II).
• Details about data locality optimization on the inner-most

loop (see Section III).
• Details about parallelism scheduling on the outer-most

loop (see Section IV).
Section V will summarize the experiment results and Sec-

tion VI will conclude.

II. MODEL OVERVIEW

For simplicity, the model is designed to rearrange and
adjust nested loops on shared-memory architecture for bet-
ter performance. The model pursues two main objectives in
concert. First, cache line reuse should be exploited efficiently.
Second, parallelism should be introduced in large granularity,
while not significantly lowering the degree of locality (for
example, causing false sharing). Based on this guideline, the
optimization algorithm is divided into two sequential phases,
as demonstrated in Figure 1.

Fig. 1. Overall Algorithm Phases

∗“Previous research” here refer to those before 1992.

Notice that parallelism is introduced and scheduled af-
ter inner loop locality optimization. This order is important
when combining cache optimization with parallelization. If
parallelism granularity and parallel loop order are fixed in
the first stage, then we can hardly improve cache line reuse
afterwards, since it mostly requires significant adjustment in
loop permutation. On the opposite, introducing parallelism
after locality optimization only requires slight modifications
when the outer-most loop is non-parallelizable.

III. DATA LOCALITY OPTIMIZATION

The first phase of the algorithm aims at optimizing data
locality by improving the cache line reuse rate. Based on the
observation that the inner-most loop often contains sufficient
number of memory accesses which will completely flush the
cache, the paper focuses on giving the lowest cost for the
inner-most loop. This goal is achieved through the procedure
shown in Figure 2.

Fig. 2. Data Locality Optimization Phase Algorithm

For every loop l, all references to the same memory location
captured when l is the innermost loop are grouped using



RefGroup. The groups are categorized into three different
access patterns: loop invariant, unit stride, and no reuse, each
contributing to a different amount of cost. After summing
up the total cost for every possible inner-most loop, they are
permuted in an order such that the inner loops cost less.

The permutation calculated above may not be legal. Under
such circumstances, a nearby approximation needs to be
generated.

IV. PARALLELISM SCHEDULING

The second phase of the algorithm evaluates the benefit of
introducing parallelism on the outer-most loop, and schedules
the parallelization while making as little effect as possible on
the inner loop data locality. The algorithm logic is shown in
Figure 3.

Fig. 3. Parallelization Phase Algorithm

One major innovation of this model is the Training Set Esti-
mator. Whether or not to parallelize a certain loop significantly
depends on the underlying machine hardware architecture.
Thus, a set of sample training loops, whose performance has
been pre-analyzed, will be executed on the target machine.
Results will be used to estimate whether the current machine is
profitable to parallelize the specific nested loops. The machine-
independent estimator brings much better scalability to the
model than other loop optimization algorithms. [2]

For loops that should benefit from parallelism, the model
first checks if the outer-most loop is parallelizable. If not, a
Loop Shifting will be conducted, moving a relatively inner loop
to the surface. Afterwards, it Strip Mines the parallel loop
to reduce the memory access range of each processor, thus
making it more likely that the data accessed by one processor
can wholy fit in its own cache.

V. EXPERIMENT RESULTS

The model has been tested with matrix multiplication,
dmxpy (a Linpack subroutine), and Erlebacher tri-diagonal
solver applications. Under almost all these workloads, the loop
permutation phase gives the desired permutations ranking.
After the parallization phase, they all achieve a sub-linear
speedup with the number of processors.

VI. CONCLUSION

The presented loop optimization model innovatively com-
bines the strength of data locality and parallelism on shared
memory multiprocessors. It improves cache line reuse on inner
loops, and provides a high granularity of parallelism on outer
loops. The model makes it possible to exploit data locality
and parallelism at the same time, and illuminates the path that
these two compile-time loop optimization technologies can be
combined together to give existing code a higher performance.

REFERENCES

[1] K. Kennedy and K. S. McKinley, “Optimizing for parallelism and data
locality,” in In Proceedings of the 1992 ACM International Conference
on Supercomputing, 1992, pp. 323–334.

[2] K. Kennedy, N. McIntosh, and K. S. McKinley, “Static performance esti-
mation in a parallelizing compiler,” Technical Report, Dept. of Computer
Science, Rice University, pp. 91–174, 1991.
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Abstract—This report is a brief summary of the article “GPFS:
A Shared-Disk File System for Large Computing Clusters” [1],
which describes the main features of GPFS, a massively scalable
parallel cluster file system developed by IBM.

I. INTRODUCTION

As modern computer clusters becoming larger and larger, a
traditional file system can no longer manage the complicated
storage issues effectively. Distributed local file systems can
hardly cooperate with each other, while simple parallel file
systems are not scalable enough.

GPFS (General Parallel File System) is a scalable parallel
file system designed by IBM to serve large-scale shared-
disk clusters. The rest of this report will cover the following
essential features of GPFS:
• An overview of shared-disk architecture (see Section II).
• Exploiting parallelism in multi-aspects (see Section III).
• Details of synchronization strategies (see Section IV).
• Fault tolerance and recovery techniques (see Section V).
Then Section VI will conclude.

II. SHARED-DISK ARCHITECTURE

GPFS relies on shared-disk computer clusters. A typical
shared-disk system deploying GPFS is shown in Figure 1.

Fig. 1. Example of a Shared-Disk Architecture Deploying GPFS

The shared-disk approach brings two major advantages.
First, GPFS can retain most of POSIX semantics and behave
like a single node file system to users. Second, GPFS can
achieve extreme scalability since all nodes have equal access
to all disks.

III. MULTI-ASPECT PARALLELISM

GPFS exploits the power of I/O parallelism on large-scale
clusters in the following four different aspects.

A. Strided Data Access

Data of a large file is stripped into equal sized strides
and stored across multiple disks. Consequently, access to a
single file can trigger simultaneous I/O pre-fetch on multiple
back-end disks. Dirty buffers are also written back to disks
in parallel. As long as the storage network bandwidth is
sufficient, I/O throughput can be significantly improved.

B. Shared Write on Metadata

Concurrent accesses to a file can cause congestion on
metadata modification. GPFS allows multiple nodes to write
to its local cached copy of the file metadata. Updates are then
forwarded to the dynamically chosen metanode, and merged
into only one single modification which is actually written
through to the disks.

C. Allocation Map Regions

Similarly, on file creation and deletion, the allocation map
will become a conflicting resource. To optimize for this
situation, the map is divided into k regions, each containing
1/k of the blocks on every disk. Regions are managed by
an allocation manager node, who offers a non-locked region,
instead of the entire map, to another node on request. This
technology introduces parallelism into the allocation operation.

D. Parallel System Utilities

System-level utilities, such as disk reorganization and fsck
consistency check, should also be scalable. For these tasks,
GPFS assigns one of the nodes as file system manager who
hands out tasks to other nodes on request, thus all nodes can
work on subsets of files in parallel.

Some additional features, like extensible hashing directory
entries and online disk reorganization, are also implemented
in GPFS to support the large capacity and heavy workload
brought by parallelism.

IV. SYNCHRONIZATION STRATEGIES

Synchronization issues are handled in GPFS by combining
two approaches together: distributed locking and centralized
management.



A. Distributed Locking

File data access in GPFS is fundamentally based on byte-
ranged distributed locking (in fact block-ranged in order to be
compatible with allocations discussed in Section III-C). Each
file is associated with a specific node m called global lock
manager, who is responsible for handing out lock tokens to
other nodes on request. A granted token represents the right of
node n to read and modify a range of file blocks [bstart, bend],
originally covering the whole file. If node n′ requests a write to
the locked region, meanwhile their destinations actually do not
overlap, then the token splits into two, and the corresponding
half is given to n′.

This locking scheme is called “distributed” since the locks
are eventually held by each node distributively. Communica-
tion between the requester n′ and the lock manager m will
only involve one query and one lock information update per
request. The actual token splitting task is done by the holder
n. Thus, the global lock manager can afford a high degree of
scalability and will not become a serious bottleneck when the
system scales.

For small but frequently accessed files, such locking scheme
can still result in catastrophic performance downgrade. Data
shipping is used under these circumstances as a compensation.

B. Centralized Management

Since GPFS innovatively parallelizes metadata operations
and disk block allocations, they also require proper syn-
chronization. As stated in Section III-B and III-C, they are
synchronized in a more centralized manner, using a metanode
and an allocation manager. The reason is that these operations
are small, frequent, and fragmented, so that distributed locking
will cause many lock conflicts. A centralized manager, in
contrast, will be able to schedule resources, avoid most of
the conflicts, and gather and reduce individual results.

V. FAULT TOLERANCE

In large-scale computer clusters, failures can happen fre-
quently. For node failures, GPFS adopts write-ahead logs,
which are widely used in journaling file systems like ext
[2], to ensure the file system consistency. File operations from
a node must first append a corresponding transaction in its log
before the actual execution. Since disks are shared, a survival
node can recover the log transactions on behalf of the failed
node. Special roles played by the failed node, such as a lock
manager, will also be taken over. For communication failures,
the majority group will continue to function as a cluster, while
the rest of the nodes wait until communication recovery. For
disk failures, GPFS mainly utilizes RAID for error recovery.
Manual replication is also supported but rarely enabled.

VI. CONCLUSION

GPFS is a collection of many brilliant ideas in file system
design. It exploits parallelism not only in data accesses,
but also in metadata operations, disk block allocations, and
administrative utilities. It takes advantage of both distributed

locking and centralized management to maintain synchroniza-
tion correctness. It also adopts write-ahead logs to achieve
fault tolerance.

GPFS has been installed and tested on the largest super
computers in the world∗. It makes a big step forward in parallel
file system scalability and stability. Up to now (the year 2019),
GPFS and its evolutionary version IBM Specturm Scale are
still widely installed on high performance computer clusters.

REFERENCES

[1] F. B. Schmuck and R. L. Haskin, “Gpfs: A shared-disk file system for
large computing clusters,” in FAST, 2002.

[2] Wikipedia, “Journaling file system — Wikipedia, the free ency-
clopedia,” http://en.wikipedia.org/w/index.php?title=Journaling\%20file\
%20system&oldid=869377481, 2019, [Online; accessed 21-March-2019].

∗In the year 2002 when this paper is published, the largest cluster
deploying GPFS refers to IBM ASCI White [1].
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Abstract—This report is a brief summary of the article “24/7
Characterization of Petascale IO Workloads” [1]. It presents a
scalable I/O profiling tool, Darshan, which captures application-
level I/O patterns meanwhile introducing negligible overhead to
the system.

I. INTRODUCTION

Existing I/O profiling tools go into two extreme categories.
The first category logs every individual I/O operation and
does not provide postprocessing. They introduce considerable
overhead, thus are not scalable enough. The second category
adopts sampling techniques to avoid huge overhead, however
sacrifices the ability to capture user access patterns. With the
scale of computation growing rapidly nowadays, an I/O char-
acterization tool which combines application-level reflection
with scalability is in need.

The paper presents a new I/O profiling tool, Darshan, which
possesses the following three advantages. Firstly, it captures
user-level file access patterns. Secondly, it is transparent to
users, leaving no need for application API modifications.
Thirdly, it achieves peta-scale scalability, making it possible
to deploy Darshan on the world’s largest HPC systems.

The rest of this report will cover:
• An overview of Darshan tool (see Section II).
• Implementation details of Darshan (see Section III).
• Test results on real machines (see Section IV).
Section V concludes, and Section VI contains my own

reflection on this paper.

II. OVERVIEW OF DARSHAN

Darshan is implemented as a set of user space libraries. It
currently supports capturing MPI-IO routines and POSIX rou-
tines. MPI-IO routines are supervised through PMPI interface,
while POSIX routines are traced by wrapping over original
system call functions.

Upon successful linking, user space library organization
ensures Darshan’s user transparency. The logging is conducted
by each process individually when it issues an I/O operation.
Results will be gathered, reduced, and written to disk in a
specified format at process termination.

III. IMPLEMENTATION DETAILS

For every process, Darshan records the captured I/O infor-
mation into file record structures, which reside in the process
memory space. Each file record corresponds to one physical

file that the process interacts with, and can be indexed through
file name, file descriptor, or MPI file handle hashing.

Inside the file record, an array of counters are maintained.
Users can specify what information should be tracked as coun-
ters, for example number of POSIX operations and total bytes
written. Additionally, access sizes and stride sizes∗ are kept
in two red-black trees respectively for pattern characterization
analysis. A demonstration of Darshan file record organization
is given in Figure 1.

Fig. 1. Darshan File Record Organization

To achieve higher scalability, file records are not collected
until process termination. Thus, extra I/O communications
only occur when a process finishes, introducing much less
overhead throughout most of the execution time. Reduction
on shared file records across MPI processes, and output data
compression, will both be conducted to minimize the write
size. Furthermore, users are allowed to set the limit of number
of files to trace by each process, and what counters to keep
track of in a file record, to tune a better performance for user-
specific workloads.

IV. REAL MACHINE TESTING

Darshan has been deployed on LANL IBM BlueGene/P
supercomputing system, and tested on four different user

∗Stride used here to indicate an interval between accesses. This is a totally
independent concept with respect to data striding.



benchmarks or applications: MADBench2, Combo I/O, S3D-
IO, and HOMME. Test results reveal that Darshan introduces
little runtime overhead in either function wrapping execution
time (< 0.52%) and memory occupation (< 0.2%). Also, log
output optimizations suppress extra write-back time below 7
seconds for various job sizes. These advantages make Darshan
capable of handling peta-scale workloads of over 65,536
processes.

V. CONCLUSION

In summary, Darshan is a highly scalable I/O character-
ization tool which tracks user application I/O access pat-
terns, meanwhile introducing little overhead into the system.
Darshan makes it possible to contiguously trace user-level
I/O operations on large-scale supercomputing systems. These
large-scale comprehensive traces will promote the storage
community’s understanding of how modern computational
science applications interact with storage, therefore illuminates
the future path of high-performance storage techniques.

VI. MY REFLECTIONS

Though this paper asserts that Darshan is scalable towards
peta-scale supercomputing clusters, the test result it provides
is significantly insufficient. The four case studies conducted on
IBM BG/P system only proved its availability and correctness,
but did not give evidence of memory and latency overhead.
The only scalability test is conducted with a specific 65,536
processes workload of MADBench2, which is not sufficient for
inferring its capability of handling peta-scale supercomputing
workloads. Making it worse, even this single test result (shown
in Figure 2) is a bit suspicious.

Fig. 2. Scalability Test Result from Philip H. Carns et al. [1]

The figure above shows that Darshan processing time is
even shorter than the default program with 65,536 processes,
with no reasonable explanation in the paper. I doubt the true
scalability of Darshan tool, and hope for more detailed and
comprehensive test results on various large-scale workloads.
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Abstract—This report is a brief summary of the article
“Adaptable, Metadata Rich IO Methods for Portable High
Performance IO” [1]. It presents an adaptable high-performance
I/O framework called ADIOS, which provides a portable and
efficient interface between scientific computing applications and
low-level I/O libraries.

I. INTRODUCTION

Various I/O libraries, such as HDF5 and NetCDF, have
been developed to serve high-performance scientific comput-
ing. However, for different applications running on different
hardware platforms, different I/O libraries show different
performance. With the variety of HPC hardware resources
increasing, an abstract layer that wraps over low-level I/O
methods is in need.

This paper presents ADIOS (ADaptive I/O System), an I/O
method abstraction layer developed by Oak Ridge National
Lab that provides portable switching among I/O libraries
and significantly improves the I/O performance of scientific
computing applications. The rest of this report will cover the
following aspects of ADIOS:

• An overview of ADIOS architecture (see Section II).
• Intermediate BP format representation (see Section III).
• Run-time selection of I/O methods (see Section IV).
• Data characteristics collection (see Section V).
Section VI will then conclude.

II. OVERVIEW OF ADIOS

ADIOS is designed as a high-level I/O library that redefines
all the file interfaces between user applications and lower-
level I/O libraries. Demonstration of ADIOS architecture is
given in Figure 1 below.

Fig. 1. Demonstration of ADIOS Architecture

Though such design makes ADIOS intransparent to users,
it minimizes user code modifications by combining simple I/O
methods API with an external XML configuration file. After
specifying the grouping of data and which I/O approach to use
for each group, users only need to invoke extremely simple
methods for file operations. Actual I/O methods are generated
automatically based on pre-defined configuration.

For a running application, all I/O operations are directly
interfering with an intermediate BP-format file. With the
help of carefully-designed BP format (discussed in details in
Section III), ADIOS gets rid of redundant consistency checks
and achieves seamless switching among backend I/O libraries.

III. BP-FORMAT REPRESENTATION

The BP intermediate representation format is organized as
Figure 2. BP files act as a middle layer between user I/O
operations and the actual files with chosen low-level format.
Such organization brings three major advantages:

1) High degree of parallelism. All processes write to
totally independent regions, therefore introduce no over-
head for synchronizations.

2) Convertible. BP files can be easily converted to low-
level formats such as .nc (of NetCDF).

3) Avoids redundant consistency checks. Original im-
plementation of I/O libraries like HDF5 normally re-
quires consistency checks on every write operation. By
plugging in the BP intermediate layer, only a single
consistency check is needed at file conversion. This
feature significantly improves the I/O performance.

Fig. 2. BP Format Given by the Paper [1]

This BP format organization is a major evolution from
previous releases of ADIOS. [2] [3]

IV. RUN-TIME SELECTION OF I/O METHODS

With the help of BP convertibility, run-time selection among
different low-level I/O libraries becomes possible. Only a sim-
ple modification in the configuration file is need for changing
the I/O methods used for a certain group of data. Thus, on
HPC platforms with different hardware architectures, users can
easily tune the I/O performance without touching application
source code.



V. DATA CHARACTERISTICS

ADIOS also provides an additional functionality that col-
lects data characteristics statistics, for example number of total
variables or the maximum element in an array. Characteristics
are maintained within the BP file at both process data segment
and index segment, in order to ensure file consistency, and to
ease metadata generation. Theses characteristics can simplify
subsequent data analysis tasks.

VI. CONCLUSION

In summary, ADIOS is an adaptive high-level I/O frame-
work that serves I/O method tuning for scientific computing
applications. It wraps over common low-level I/O libraries and
provides a brand-new unified interface for users. It introduces
a BP file intermediate layer to parallelize I/O operations and
avoid redundant consistency checks. Through simple mod-
ifications of the configuration file, users can easily switch
among different I/O methods for better performance. Extra
data characteristics can also be recorded for later analysis.

Tests on Chimera supernova and GTS fusion applica-
tions show surprising write performance gain (maximum over
1400/120) achieved by ADIOS. [1] The future releases of
ADIOS will focus on read optimizations, a better BP format,
and support for more low-level I/O libraries.
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Abstract—This report is a brief summary of the article
“Parallel netCDF: A High-Performance Scientific I/O Interface”
[1], which presents a set of parallel I/O interfaces for netCDF
scientific data library, called PnetCDF.

I. INTRODUCTION

Portable I/O libraries, such as HDF and netCDF, have
been widely used in modern scientific computing applica-
tions. Though HDF5 has already adopted parallel I/O access,
netCDF is still stuck in serial I/O methods∗, which becomes a
bottleneck for large-scale datasets. Considering that netCDF
is popular in the field of earth modeling and simulation,
developing a parallel I/O interface for netCDF format is in
urgence.

The paper presents PnetCDF, a set of parallel netCDF I/O
interfaces built upon MPI-IO methods. It exploits paralleliza-
tion in netCDF file operations, while only introducing minor
modifications in user API. It brings tremendous performance
gain for netCDF applications. The rest of this report will cover:

• Original netCDF design (see Section II).
• Overview of PnetCDF structure (see Section III).
• Implementation of PnetCDF (see section IV).
• Advantages and performance evaluation (see Section V).
Section VI will then conclude, and my own reflections will

be given.

II. ORIGINAL NETCDF

NetCDF is a widely-used I/O utility for self-describing,
structured, array-based datasets. It is originally developed
by Unidata community of National Center for Atmospheric
Research (NCAR), and now becomes the most popular I/O
library for earth and atmospheric science applications. [2]
NetCDF consists of a portable data file format (.nc) and a
set of programming APIs for corresponding file interactions.

Data is arranged as variables in pre-defined dimensions
in netCDF. PnetCDF is based on netCDF-3 format (classic
netCDF). File header contains file metadata, dimension dec-
larations, and their attributes. Following are fixed-dimension
variables, each occupying a determined amount of space. Vari-
ables with the same free (unlimited) dimension are appended
to the end of file. No more free dimensions are allowed. Figure
1 gives a demonstration of netCDF-3 file construction.

∗This comment is given from the perspective of year 2003, when the
paper is published.

Fig. 1. NetCDF File Construction [1]

Original netCDF I/O interface only supports serial accesses
through native I/O system calls. With data scale rapidly
increasing, potential parallelism should be exploited to im-
prove storage bandwidth and thus accelerate those scientific
computing tasks over netCDF.

III. PNETCDF STRUCTURE

PnetCDF retains netCDF-3 file format and redesigns
netCDF I/O interfaces on top of MPI-IO protocol. Such design
not only extends netCDF to support parallel I/O among user
processes, but also takes advantage of existing I/O optimiza-
tions from MPI-IO implementations. Parallel netCDF provides
a unified intermediate layer for all user processes running the
same application, as shown in Figure 2.

Fig. 2. Parallel NetCDF Architecture [1]



For netCDF file creation/open operations, the interface
accepts a MPI communicator group as an additional argument.
It specifies which processes are involved in interacting with
this file. Data access operations, such as reading and writing
a variable, are extended into two different sets of API. The
high-level API follows original netCDF functions to serve
easy accesses to contiguous regions, while the flexible API
provides low-level MPI-style functions to handle accesses to
non-contiguous regions.

IV. PARALLEL IMPLEMENTATION

On the top level, PnetCDF provides a new collection of
netCDF user I/O interfaces, where each function name is
prefixed with “ncmpi_”. Under the bottom level, PnetCDF
invokes the ROMIO implementation of MPI-IO. Features like
collective I/O (I/O forwarding) used in ROMIO can thus bring
further bandwidth improvement other than parallelization.

Every process maintains a cached copy of file header in
its local memory during the I/O procedure, therefore meta-
dataset operations no longer needs inter-process communi-
cation. Consistency is ensured by MPI convention that all
processes should always call a MPI function with exactly the
same arguments.

For actual data access, each process is assigned a different
MPI file view corresponding to a different segment of the file
body. Users can give extra MPI hints to guide the collective
I/O, when they are accessing non-contiguous variable records.

V. EVALUATION

PnetCDF offers the following two advantages compared to
serial netCDF and HDF5:

1) Due to the straight-forward format of netCDF files, ma-
ture MPI-IO methods are easily applied without adding
complicated transformation layers. Thus, only a minor
amount of overhead is introduced.

2) File header caching removes most of the need of meta-
data synchronization, therefore metadata updates are less
likely to be the I/O bottleneck.

Experiments have been conducted on IBM SP-2 machines.
Scalability tests over a synthetic three-dimensional dataset
show that PnetCDF significantly enlarges read/write band-
width. Even when there is only one process, write performance
is improved with the help of collective I/O. Comparison tests
over FLASH I/O benchmark also indicate that PnetCDF brings
less overhead than HDF5.

VI. CONCLUSION AND REFLECTIONS

In summary, PnetCDF provides a new set of parallel I/O
interfaces for the netCDF library. It perfectly couples netCDF
file format with underlying MPI-IO methods to achieve sig-
nificant performance optimizations. The successful implemen-
tation of PnetCDF makes netCDF a more powerful tool for
large-scale, structured data storage on modern machines.

Looking back from 2019, there is a little pity that parallel
netCDF still only supports netCDF-3 (classic) format [3],
which is getting outdated. New netCDF-4 standard supports

multiple unlimited dimensions, which is much more flexible.
However, current netCDF-4 implementation is built upon a
HDF5 intermediate layer. Possibilities exist that PnetCDF
can be extended to support netCDF-4 to achieve both high
performance and high flexibility.
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Abstract—This report is a brief summary of the article “zFS:
A Scalable Distributed File System Using Object Disks” [1]. It
introduces an IBM research project called zFS, an object disk-
based file system that integrates a cooperative memory cache and
is highly scalable.∗

I. INTRODUCTION

With commodity Object Store Devices (OSDs) entering the
storage market, a reliable and scalable file system for object
disks is in need. To dig the potential of decentralization in
OSDs, zFS is proposed as a highly distributed file system for
off-the-shelf commodity OSDs.

zFS integrates all individual machines’ memory into a
global cache. It also applies distributed managers for data
and metadata accesses. The rest of this report covers the
following aspects of zFS:

• Overview of zFS architecture (see Section II).
• Cooperative Global Cache (see Section III).
• Distributed Management Schemes (see Section IV).
Then Section V will conclude.

II. ZFS ARCHITECTURE

zFS separates high-level file management apart from low-
level storage devices.

A. Low-level Disk Management

For every object disk in the storage system, zFS deploys a
local Object Store (OSD) to interact with the disk. File data
is indexed through (obs, oid) pairs, where obs is object
disk id, and oid is object id on the corresponding disk. OSDs
provide upper modules a uniform API to interact with file
objects.

B. High-level File Modules

The essential part of zFS lies in its dedicated high-level file
management modules. There are five main modules involved:

1) Front End (FE): An FE instance is running in every
client node kernel. It presents a standard POSIX API
for users to conduct I/O with zFS.

2) Lease Manager (LMGR): For every underlying OSD,
there exists a corresponding LMGR. Holder of an OSD
major lease acts as the LMGR for that disk, thus is
responsible for sending out and revoking object leases

∗Attention: This project is not related to ZFS (Zettabyte File System)
developed by Sun Microsystems.

regarding that disk. Leases (locks with certain expiration
period) are used here to accommodate resource failures.

3) File Manager (FMGR): Each opened file is linked with a
FMGR, held by the first machine to open the file. FMGRs
are responsible for listening to user requests from FE,
interact with corresponding LMGRs, and translate the
operations to OSDs.

4) Transaction Server (TSVR): A TSVR resides in every
client node, which listens to FE for directory operations
(i.e. metadata operations like rename()), and conduct
them as proper transactions.

5) Cooperative Cache (Cache): zFS innovatively com-
bines all client memory as a global cooperative cache.
Details are discussed in Section III.

Organization of zFS components and their intercommuni-
cations are demonstrated in Figure 1.

Fig. 1. zFS Architecture Design

III. COOPERATIVE CACHE

One major innovation of zFS project is the design of
cooperative cache. By integrating all individual machines’
memory into a global page cache, read() performance can
get improved. If one client is reading a file object that is
currently cached in another machine, it fetches data directly
from the remote memory over RDMA, instead of going all the
way through to disks.

However, since the paper does not include any test results,
scalability of such cooperative cache design should be ques-



tioned. As the cluster scale going up (towards several thousand
machines, which zFS claims to support), cache coherence
overhead will significantly increase. Locating which memory
does an object reside in, and dealing with write-backs at
file write(), will both degrade the performance. Further
explanation of the cooperative cache design is expected.

IV. DISTRIBUTED MANAGERS

Another main advantage of zFS is the pure distributed
management scheme for files and objects. Distributed file man-
agers, lease managers, and transaction servers make every I/O
operation in zFS a decentralized procedure. Under real-world
balanced workloads, such scheme can bring high performance
together with high scalability. IBM GPFS adopts a similar
design of distributed lock managers, but with the help of
OSDs, zFS extends it to an extreme.

V. CONCLUSION AND REFLECTIONS

To summarize, zFS is a distributed file system designed for
commodity object storage devices. It integrates client memory
as a global cooperative cache. It decentralizes data accesses,
metadata operations, and synchronizations by using distributed
file managers, transaction servers, and lease managers. zFS
opens the way of designing large-scale file systems for object
disks.

This paper focuses on theoretical design of zFS, instead of
actual implementation and tests. No experiments are conducted
to support the strength and robustness of zFS design, especially
for scalability of the cooperative cache system. Further test re-
sults are expected to prove the value of zFS and its advantages
over other existing file systems.
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Abstract—This report is a brief summary of the short paper
“Recent Progress in Tuning Performance of Large-scale I/O with
Parallel HDF5” [1], which summarizes current work on tuning
HDF5 performance for scientific computing applications MOAB
and VPIC.

I. INTRODUCTION

Large-scale scientific applications put tremendous pressure
on the underlying storage system. In simulation phases, mas-
sive amount of data needs to be stored in files. In analysis
phases, data files are read through different access patterns.
Parallel I/O optimizations thus become essential to modern
high-performance computing.

HDF5 is a widely-used I/O optimization library, which
supports mainstream programming languages and is portable
on various kinds of hardware platforms [2]. Parallel I/O in
HDF5 is achieved through collective MPI-IO. This short paper
presents recent progress on optimizing HDF5 performance for
two scientific computing applications:

• Mesh-Oriented DatABase (MOAB, see Section II).
• Vector Particle-In-Cell (VPIC, see Section III).

II. MOAB ON MIRA

Mesh-Oriented Database (MOAB) is package for operating
mesh data [3]. It originally uses HDF5 to store and represent
mesh data structures.

Problem. MOAB assigns each process to read from a
different coordinate in the mesh. This results in poor locality
in HDF5 file accesses, thus cannot benefit from collective I/O.

Tuning. In HDF5, subset of data is accessed through hyper-
slabs. An improved hyperslab selection algorithm that merges
multiple non-contiguous hyperslabs into a hyperslam can
significantly reduce the number of read calls. On Mira system
of Argonne National Lab (ANL), this approach achieves 10x
performance gain.

III. VPIC ON BLUE WATERS

Vector Particle-in-Cell (VPIC) is an application for simulat-
ing plasma physics phenomenon. Its VPIC-IO kernel is also
built upon HDF5.

Problem. As the number of processes increase, more parti-
cles are written simultaneously into the same HDF5 data file.
This introduces a potential I/O bottleneck.

Tuning. Two techniques are proposed to solve improve
VPIC-IO performance. Firstly, write load among processes and
among I/O servers are re-distributed. Secondly, a new feature

called multi-dataset writes is introduced into HDF5, so that
different datasets can be stored in one HDF5 file without
serial collective operations. On Blue Waters system of the
National Center for Supercomputing Applications (NCSA),
such approach achieves at least 2x speedup.

IV. CONCLUSION AND REFLECTIONS

Modern scientific computing applications are becoming
more complicated and more personalized. Though parallel I/O
libraries like HDF5 can provide a uniform storage optimization
scheme, we can never ignore the importance of tuning I/O
operations for individual applications. In order to push the
throughput of scientific computing to an extreme, user-specific
I/O pattern analysis and performance tuning should always
play an important role.
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Abstract—This report is a brief summary of the article
“Resilient Distributed Datasets: A Fault-Tolerant Abstraction for
In-Memory Cluster Computing” [1]. It presents a distributed
memory abstraction model called Resilient Distributed Datasets
(RDDs). It implements RDDs into a framework called Spark that
enables fault-tolerant, efficient in-memory cluster computing.

I. INTRODUCTION

Existing high-level cluster computing frameworks (like
Hadoop MapReduce [2]) are inefficient in reusing intermediate
results. At the end of a computation stage, all generated results
need to be written back to external stable storage such as
disks. To overcome this problem, many domain-specific in-
memory frameworks have been developed. They pursue high
performance by sacrificing generality.

This paper presents Resilient Distributed Datasets (RDDs)
that abstract distributed memory in a coarse-grained way.
RDDs allow lazy computation and efficient fault recovery
with the help of lineage logging. RDDs naturally improve the
performance of iterative algorithms over batch operations. The
rest of this report will cover:

• RDD model of data abstraction (see Section II).
• The Spark system that implements RDD with Scala

programming language (see Section III).
• Performance evaluation and results (see Section IV).
Section V will then conclude and contain my own reflec-

tions.

II. RDD ABSTRACTION

An RDD is a read-only, partitioned collection of data
records. Different partitions may reside in memory of different
nodes. RDDs only support the following two sets of coarse-
grained operations:

1) Transformation: generate a new RDD from a data file
in external storage, or from an existing RDD. Examples
include map, filter, and flatMap.

2) Action: reduce an RDD into a return value, or export it to
external storage. Examples include count, collect,
and save.

Its read-only and coarse-grained property ensures that any
algorithm based on RDD model should follow the pattern: 1.
create initial RDDs from existing data → 2. do a chain of
transformations to get a target RDD → 3. reduce/collect/save
the target RDD to get the result. A classic example is the

PageRank algorithm demonstrated in Figure 1. Every rectan-
gle represents a different RDD, and every edge indicates a
transformation.

Fig. 1. PageRank Algorithm using RDDs (from the paper [1])

Since RDDs are obtained from transformation chains, their
corresponding dependencies form a directed acylic graph
(DAG) as shown in Figure 1. This graph is called lineage
graph, and plays an important role in fault recovery which
will be discussed in Section III.

For algorithms based on bulk operations (applying the
same operation to every piece of data), RDDs can provide
a straightforward computation logic. However, RDDs are not
suitable for fine-grained algorithms, which frequently updates
small proportions of data.

III. SPARK FRAMEWORK IMPLEMENTATION

Based on the aforementioned RDD model, they imple-
mented an in-memory cluster computing framework called
Spark (open-sourced at [3]) using the Scala programming
language. Spark can be deployed on a distributed computer
cluster. Users issue a Spark program from a driver node. A
global scheduler arranges tasks into stages and is respon-
sible for data distribution across worker nodes. When the
computation finishes, distributed RDDs are reduced into a
return value/stored back to external storage. Spark runtime
architecture is shown in Figure 2.

Three aspects of the Spark system are worth discussing: job
scheduling, memory management, and fault tolerance.



Fig. 2. Spark Runtime Architecture (from the paper [1])

A. Job Scheduling

As mentioned in Section II, an RDD is partitioned across
nodes, and transformations result in lineage. We can classify
transformations into two categories according to how different
partitions of parent and child RDD interact with each other.
In narrow transformations, one parent partition is required by
only one child partition (for example map). In wide trans-
formations, one parent partition may be accessed by multiple
child partitions. Spark job scheduler divides a program into
stages based on theses two different kinds of dependencies.
Firstly, it groups as many narrow transformations as possible
into one stage, where different partitions can be pipelined
and processed efficiently. Secondly, wide transformations only
occur across stages.

Fig. 3. Spark Job Scheduling as Stages (from the paper [1])

B. Memory Management

Since memory size is limited, it is possible that we run
out of memory for large tasks. Spark adopts an LRU policy
on evicting partitions to external storage. Though evicting
part of the data out of memory will affect performance, it
is still no worse than traditional frameworks, as they store all
intermediate results in external storage.

C. Efficient Fault Tolerance

RDDs are computed lazily until users invoke actions. During
the computation, if a certain partition fails, we can simply
trace back through the lineage graph and recompute that failed

partition. Compared to traditional fault recovery mechanisms,
such as copying data replicas from other nodes, this approach
significantly lowers the overhead brought by fault recovery.
This property of RDD makes Spark an extremely robust cluster
computing system.

IV. PERFORMANCE EVALUATION

From the design of RDD model, we can see that it is
specifically optimized for iterative algorithms over distributed
memory clusters. Test results show that Spark outperforms
Hadoop MapReduce by 20x in iterative machine learning
algorithms and graph applications. Recovery of a node failure
in K-Means algorithm only introduces less than 25 seconds
of overhead in the failed iteration. They also integrated Spark
into the interactive Scala command line, and achieved only
5-7 seconds of latency to query a 1 TB dataset.

V. CONCLUSION & REFLECTIONS

This paper presents Resilient Distributed Datasets (RDDs),
a general-purpose distributed memory abstraction for cluster
computing. RDDs enable in-memory computation on bulks of
data by applying coarse-grained transformations. RDDs also
allow efficient fault recovery in the middle of a task. They
implemented RDDs in a system called Spark, and achieved
tremendous speedup in iterative big-data applications, com-
pared to traditional cluster computing frameworks like Hadoop
MapReduce.

The Spark framework is a remarkable milestone in the
field of distributed cluster computing. It is the first work
to address both in-memory cluster computing and generality.
Spark is now integrated into the Hadoop family, and widely
deployed by big companies due to its simplicity. However, it
also suffers from a major drawback that its memory occupation
is extremely high. With the size of data scaling up nowadays,
Spark can no longer satisfy cutting-edge requirements in big-
data analysis. Domain-specific systems are still the first choice
to achieve acceptable performance, meanwhile using a limited
amount of hardware resource.
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