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Introduction

Definition

Generally, a Compiler (编译器) is: "A program that takes a source-code program and translates it into an equivalent program in 
target language".

String, Language & Grammar

A String  is a sequence of characters.

e.g. abc+efg-hi ; 010100010

A Language  is a set of Strings over a fixed Alphabet , constructed using a specific Grammar.



Notation Meaning Notes

Empty Language

Union of  and 

Intersection of  and 

Set of all possible concatenation results

Zero or more self-concatenations : One or more

e.g. 

Not all Strings of chars in the Alphabet is in the certain Language, only those who satisfy the Grammar rules.

Alphabet  and using Grammar rule RE , we can specify the above example Language
String  is then not in it

A Grammar  is the description of method (rules) of how to construct a certain Language over a certain Alphabet.

Type 0: Turing Machine  Recursive Enumerable Grammar
Type 1: Context-sensitive Grammar (CSG)
Type 2: Context-free Grammar (CFG, 上下文无关文法), mostly recursive
Type 3: Right-linear Grammar  Regular Expressions (RE, 正则表达式), non-recursive

Expressiveness: Type 0  Type 1  Type 2  Type 3.

Phases

A specific Phase of a compiler handles a certain task in compiling (like a module).

Lexical Analysis (词法分析) recognizes Words from source program.

Works on Strings  Produces Tokens
Lexical Analyzer  Lexer / Scanner

Syntax Analysis (语法分析) recognizes abstract Sentences of Tokens.

Works on Tokens  Produces a Syntax-Tree
Syntax Analyzer  Parser

Semantic Analysis (语义分析) checks semantic errors, and generates IR.

Works on a Syntax-Tree  Produces IR

Code Generation (代码生成) generates codes in target language.

Works on IR  Produces target program

Front-end & Back-end

The Front-end of a compiler handles analysis phases.

Lexer + Parser + Semantic Analyzer (+ IR Generator)
From Source Program  Intermediate Representation

The Back-end of a compiler handles synthesis phases.

(IR Optimizer +) Code Generator
From Intermediate Representation  Target Language

Lexical Analysis

Token Abstraction

A Token (词法单元) defines a category of lexemes, which play similar roles in the source program.



Notation Meaning Describes Language ...

Put an empty String here

Put a character a  here

Either what  or  generates can appear here

What  generates concatenates with 's

Kleen Closure of what  generates

Notation Meaning Notes

Anyone in range  or 

Positive Closure of what  generates

What  generates appear once or not

What  generates appear  times ,  times

Any single char in the whole Alphabet  

e.g. INT, IDENTIFIER, WHILE, 
Each Token is a Language over the source program Alphabet, described by a certain RE
The 1st layer of abstraction, which extracts the information of word elements

A Lexeme (词素) is an instance of a Token, along with its unique attributes

e.g. 17

Might be an instance of an INT Token
Has attribute "value " maybe

Regular Expressions

A Regular Expression (RE, 正则表达式) is a Type-3 Grammar rule.

e.g. ; 
Has enough expressiveness to specify the composition of Tokens, thus
We use REs for Lexical Analysis, to judge whether an input Word is a valid Token, and which kind of Token it belongs 
to

The following are Extended Regular Expression notations (ERE, equally expressive as RE; only some shorthands).

A further shorthand notation is Regular Definition, which gives names to common sub-RE expressions.

e.g. For describing integers:

Digit 
Integer  Digit Digit 

Finite Automata

A Finite Automaton (p.l. -ta, 有限自动机) is a model that decides whether to accept a String as a specific kind of Token or 
reject it, given the RE rules.

Can be represented as:

Transition Diagram (TD): 

Start Arrow: an arrow marked with "start", pointing to initial state
State: a circle with an identifier



Notations Meaning

A State

Finite set of States

Start (Initial) State

Set of all Accepting States

move (S, c) Function returning set of all possible States that  can goto with input c

eps-closure (S) Function returning the -Closure of set 

Notations Meaning

move (s, c) Function returning the next state that  goes to with input c

Transition Edge: from the previous state, given the next input char, will go to the next state
Accepting State: marked with concentric circles; when ends at such state, we accept
Death State: the error state trap; all undefined transitions point to this state by default

Transition Table: 

NFA

A Non-deterministic Finite Automaton (NFA) can have more than one alternative actions for the same input Symbol at 
the same State, and can have -Transitions (without consuming any input).

Accepts  iff: there exist AT LEAST one path from Start State  an Accepting State that spells out 
May have different behaviors for the same input stream

The -Closure of All States that can go to without consuming any input .

DFA

A Deterministic Finite Automaton (DFA) does not allow -Transitions, and for every , there is ONLY ONE decision 
for every input Symbol.

Accepts  iff: there exists ONE AND ONLY ONE path from the Start State  an Accepting State that spells out 

No -Closure concept for DFAs.

Implementation of Lexers

Each Token (described by a unique RE ) requires a unique Recognizer.

1. [WAY 1]: RE   NFA  Recognizer
2. [WAY 2]: RE   NFA  DFA  Recognizer
3. [WAY 3]: RE   DFA  Recognizer
4. [WAY 4]: RE   DFA  Minimized DFA  Recognizer

The Lexical Analyzer is then built from a bunch of Recognizers: 



Each Recognizer works for one Token
Try in listed order, therefore ordering of Recognizers matters

From RE  NFA

Algorithm is called Thompson's Construction.

1. For  / each : 

2. For : 

3. For : 

4. For : 

There are some requirements on such construction:

 and  CANNOT have any intersections
REMEMBER to assign unique names to all states

Properties of the resulting NFA:

Exactly 1 Start State & 1 Accepting State
# of States in NFA  (# of Symbols + # of Operators) in 
States do not have multiple outgoing edges with the same input symbol
States have at most 2 outgoing  edges

From RE  DFA Directly

[Step 1]: We make Augmented RE: concatenate with symbol # (meaning "finish").

e.g.  #
Ensures at least one  operator in the RE

[Step 2]: Build syntax tree for this Augmented RE: 

.

, # and all  are at leaves
All other operators are inner nodes
Non-  leaves get its position number, increasing from left  right

[Step 3]: Compute nullable() , firstpos()  & lastpos()  for ALL nodes.

1. firstpos(n) : Function returning the set of positions where the first Symbol can be at, in the sub-RE rooted at n
2. lastpos(n) : Function returning the set of Positions where the last Symbol can be at, in the sub-RE rooted at n
3. nullable(n) : Function judging whether the sub-RE rooted at n  can generate 



n nullable(n) firstpos(n) lastpos(n)

-leaf True

leaf at
Position False

nullable(c1) ||

nullable(c2)
firstpos(c1)   firstpos(c2) lastpos(c1)   lastpos(c2)

nullable(c1) &&

nullable(c2)

nullable(c1)  ? firstpos(c1)  
firstpos(c2)  : firstpos(c1)

nullable(c2)  ? lastpos(c1)  
lastpos(c2)  : lastpos(c2)

True firstpos(c) lastpos(c)

[Step 4]: Compute followpos()  for Leaf positions.

followpos(i) : Function returning the set of positions which can follow position i  in the generated String

Conduct a Post-order Depth First Traversal on the syntax tree, and do the following oprations when leaving  /  nodes:

: For all  lastpos(c1) , followpos(i)  = followpos(i)   firstpos(c2)
: For all  lastpos(c) , followpos(i)  = followpos(i)   firstpos(c)

[Step 5]: Construct the DFA.

A State  in resulting DFA is an Accepting State iff # node 
Start State of the resulting DFA is 

Calculate -Closure

Similar problem as graph traversal.

void construct() {

    S0 = firstpos(root);

    DStates = {(S0, unmarked)};

    while (DStates has an unmarked State U) {

        Mark State U;

        for (each possible input char c) {

            V = {};

            for (each position p in U whose symbol is c)

                V = Union of V and followpos(p);

            if (V is not empty) {

                if (V is not in DStates)

                    Include V in DStates, unmarked;

                Add the Transition U--c->V;

            }

        }

    }

}

set epsClosure(set S) {

    for (each State s in S)

        Push s onto stack;

    closure = S;

    while (stack is not empty) {

        Pop State u;

        for (each State v that u -> v is an epsilon Transition) {

            if (v is not in closure) {

                Include v in closure;

                Push v onto stack;

            }

        }

    }

    return closure;

}



Implement NFA as Recognizer

Performance of NFA-type Recognizers: Space - ; Time - 

Implement DFA as Recognizer

Performance of DFA-type Recognizers: Space - ; Time - 

Convert NFA  DFA

Algorithm is called Subset Construction, since we make subset of States in original NFA into a single State in resulting 
DFA.

A State  in resulting DFA is an Accepting State iff  is an Accepting State in original NFA
Start State of the resulting DFA is 

DFA Minimization

Every DFA has a minimal DFA (ignoring different naming), which contains the smallest number of states.

Bipartite the original DFA states as two groups:  - all Accepting States;  - others

bool recognizer() {

    S = epsClosure(s0);

    while ((c = getchar()) != EOF)

        S = epsClosure(move(S, c));

    if (S and F has intersections)

        return ACCEPT;

    return REJECT;

}

bool recognizer() {

    s = s_0;

    while ((c = getchar()) != EOF)

        s = move(s, c);

    if (s is in F)

        return ACCEPT;

    return REJECT;

}

void subsetConstruction() {

    S0 = epsClosure({s0});

    DStates = {(S0, unmarked)};

    while (DStates has any unmarked State U) {

        Mark State U;

        for (each possible input char c) {

            V = epsClosure(move(U, c));

            if (V is not empty) {

                if (V is not in DStates)

                    Include V in DStates, unmarked;

                Add the Transition U--c->V;

            }

        }

    }

}

void minimize() {

    PI = {G_a, G_n};

    do {

        for (every group G in PI) {

            for (every pair of States (s, t) in G) {

                if (for every possible input char c, transition s--c-> and t--c->

                    go to states in the same group)

                    s, t are in the same subgroup;

                else

                    s, t should split into different subgroups;



A State  in the minimal DFA is an Accepting State iff  is an Accepting State in original DFA
Start State of the minimal DFA is the one containing original Starting State

Number of minimal DFAs for a Regular Language  , where  means Equivalent Class

Distinguishing Extension for  is  that EXACTLY one of 
 (Equivalent) means no Distinguishing Extensions for 

Other Issues for Lexers

Look-ahead

For vague Languages, may need to look ahead more than one characters to determine whether to take a transition step.

, where  in the FA
After determination, move lexemeBegin  pointer to position of  (instead of position of forward )

Comment Skipping

Comments are simply ignored. They do not interfere with the following phases.

Symbol Table

We may need a Symbol Table to hold information about Lexemes.

Hash Table is suitable for this task
Lexeme's position in source file (e.g. line number) is an important information for error handling

Syntax Analysis

Parse Tree Abstraction

A Parse Tree / Symtax Tree (语法树) is a graphical representation of the structure of a program, where leaf nodes are 
Tokens.

e.g. 

A Parse Tree can be viewed as a Language over Tokens' Alphabet, described by a certain CFG
The 2nd layer of abstraction, which extracts the information of sentence structures

Context-free Grammars

A Context-free Grammar (CFG) is a Type-2 Grammar rule, which serves the construction of a Parse Tree from a stream 
of Tokens. We use a set of Production Rules to characterize a CFG.

            }

            Split G according to the above information;

        }

    } while (PI changed in this iteration);

    Every Group in PI is a state in the minimal DFA;

}



Notation Meaning Notes

 can be replaced with  in a step Called a Production Rule

Merges two rules starting from the same Non-terminal  

From Start Symbol , by a Production Rule, we can derive Called a Derivation Step

From Start Symbol , after Zero or more steps, can reach  means One or more

A Terminal (终结符号) is a Token; A Non-terminal (非终结符号) is a syntactic variable.

The Start Symbol is the first one of Non-terminals; Usually represents the whole program
A Sentence  is a string of Terminals such that Start Symbol 

A Production Rule (生成规则) is a law of production, from a Non-terminal to a sequence of Terminals & Non-terminals.

e.g. , where  is a Non-terminal and  are Terminals
May be recursive
The procedure of applying these rules to get a sentence of Terminals is called Sentential Form / Derivation

 Context-free Languages  Regular Languages , e.g. .

Derivation Directions & Ambiguity

Left-most Derivation ( ) means to replace the leftmost Non-terminal at each step.

If , then NO Non-terminals in 
Corresponds to Top Down Parsing

Right-most Derivation ( ) means Replace the rightmost Non-terminal at each step.

If , then NO Non-terminals in 
Corresponds to Bottom Up Parsing, in reversed manner

A CFG is Ambiguous when it produces more than one Parse Tree for the same sentence. Must remove Ambiguity for a 
practical CFG, by:

1. Enforce Precedence (优先级) and Associativity (结合律)

e.g. , then  gets expanded first
2. Grammar Rewritten

Implementation of Top-Down Parsers

Top-Down Parsing (Left-to-right Leftmost-derivation Parsing, LL Parsing) is a general, theoretical model for a parser.

1. [WAY 1]: Eliminate Left Recursion  Recursive-descent Parsing
2. [WAY 2]: Eliminate Left Recursion  Left Factoring  Recursive Predictive Parsing
3. [WAY 3]: Eliminate Left Recursion  Left Factoring  Construct Parsing Table  Non-recursive Predictive Parsing

Left Recursion Elimination

Having Left Recursion (左递归) means that  a Derivation possibility where .

Top Down Parsing CANNOT handle Left-recursive Grammars
Can be eliminated by rewriting

For Immediate Left Recursions (Left Recursion that may appear in a single step), eliminate by:



For Indirect Left Recursions (Left Recursion that may appear through several Derivations), eliminate by:

Implementing Recursive-descent Parsing

The most simple and general way of parsing. Needs Backtracking (回溯) every time a choice is wrong.

Left Factoring: Produce  Grammar

 means Only 1 Token Look-ahead ensures which Pruduction Rule to expand now.

To convert to a  CFG, for each Non-terminal :

 CFG , so not all Grammar can be converted to .

Such Grammar will have an entry with multiple Production Rules to use in the Parsing Table, thus
Will be inappropriate for Predictive Parsing

Implementing Recursive Predictive Parsing

No need for Backtracking since MUST be  Grammar already, but still using recursions.

/* Non-terminals arranged in order: A1, A2, ... An. */

void eliminate() {

    for (i from 1 to n) {

        for (j from 1 to i - 1)

            Replace Aj with its products in every Prodcution Rule Ai -> Aj ...;

        Eliminate Immediate Left Recursions Ai -> Ai ...;

    }

}

/*  Example:

 *    E -> T | T + E

 *    T -> int | int * T | ( E )

 */

bool term(TOKEN tok)  { return *ptr++ == tok; }

bool E1()             { return T(); }

bool E2()             { return T() && term(PLUS) && E(); }

bool E() {

    TOKEN *save = ptr;

    return (ptr = save, E1()) || (ptr = save, E2());

}

bool T1()             { return term(INT); }

bool T2()             { return term(INT) && term(TIMES) && T(); }

bool T3()             { return term (OPEN) && E() && term(CLOSE); }

bool T() {

    TOKEN *save = ptr;

    return (ptr = save, T1()) || (ptr = save, T2()) || (ptr = save, T3());

}

/*  Example:

 *    A -> a B e | c B d | C

 *    B -> b B | 'epsilon'

 *    C -> f

 */

void A() {

    switch (current Token) {

        case 'a': match current Token with 'a', move to next Token;



Parsing Table Construction

A Parsing Table records which Production Rule to use now, when the stack top is Non-terminal , and current input 
Token is Terminal . With table + stack combination, we will be able to do non-recursive parsing.

e.g. 

[Step 1]: Compute FIRST()  for every Terminal and Non-terminal.

                  B();

                  match current Token with 'e', move to next Token;

                  break;

        case 'c': match current Token with 'c', move to next Token;

                  B();

                  match current Token with 'd', move to next Token;

                  break;

        case 'f': C();              /* Since 'f' in FIRST(C). */

                  break;

        default:  raise ERROR;

    }

}

void B() {

    switch (current Token) {

        case 'b': match current Token with 'b', move to next Token;

                  B();

                  break;

        case 'e': 

        case 'd': nothing;          /* Since 'e'/'d' in FOLLOW(B). */

                  break;

        default:  raise ERROR;

    }

}

void C() {

    switch (current Token) {

        case 'f': match current Token with 'b', move to next Token;

                  break;

        default:  raise ERROR;

    }

}

void computeFirst() {

    Initialize all FIRST() to be an empty set;

    for (every Terminal t)

        FIRST(t) is assigned to {t};

    do {

        for (every Production Rule r: X -> ...) {

            if (r is X -> epsilon)

                Add 'eps' into FIRST(X);

            else {

                /* Suppose r is X -> Y1 Y2 ... Yk. */

                for (i from 1 to k) {

                    FIRST(X) = Union of FIRST(X) and FIRST(Yi);

                    if (epsilon is not in FIRST(Yi))

                        break;

                }

            }

        }

    } while (there are updates in this iteration);



Checking "  ?" is equivalent to Checking "  FIRST(X)  ?"

FIRST(X1, X2, ..., Xk)  represents FIRST()  for the stream X1 X2 ... Xk

e.g. If X1  and X2  may be , but X3  cannot, then
FIRST(X1, X2, ..., Xk)   FIRST(X1)   FIRST (X2)   FIRST (X3)

[Step 2]: Compute FOLLOW ()  for every Non-terminal.

[Step 3]: Build the Parsing Table.

All empty entries are ERRORs
If any entry contains multiple Production Rules, then the Grammar is not 

Example of a non-  Grammar:

Implementing  Parsing

Non-recursive Parsing /  Parsing uses a stack instead of recursions, which is more efficient, but needs a correct 
Parsing Table (Table-driven).

}

void computeFollow() {

    Initialize all FOLLOW() to be an empty set;

    Add "$" into FOLLOW(Start Symbol S);

    do {

        for (every Production Rule r: X -> Y1 Y2 ... Yk) {

            for (i from 1 to k) {

                if (Yi is a Non-terminal) {

                    FOLLOW(Yi) = Union of FOLLOW(Yi) and (FIRST(Yi+1, Yi+2, ... Yk) - {epsilon});

                    if (i == k || epsilon is in FIRST(Yj+1, Yj+2, ... Yk))

                        FOLLOW(Yi) = Union of FOLLOW(Yi) and FOLLOW(X);

                }

            }

        }

    } while (there are updates in this iteration);

}

void buildParsingTable() {

    for (every Production Rule r: X -> Y1 Y2 ... Yk) {

        for (every possible Terminal t) {

            if (t is in FIRST(Y1, Y2, ..., Yk))

                Add r into Table[X, t];

        }

        if (epsilon is in FIRST(Y1, Y2, ..., Yk)) {

            for (each terminal b in FOLLOW(X))  /* "$" is also considered here. */

                Add r into Table[X, b];

        }

    }

}

bool LL1Parser(TokenStream ts) {

    TOKEN *ip = pointer to first Token in ts;

    stack.push($);

    stack.push(Start Symbol S);

    while (true) {

        X = stack.top();

        t = *ip;

        if (X == "$") {                     /* Met terminator. */

            if (t == "$") return ACCEPT;

            else raise ERROR;

        } else if (X is a terminal) {       /* Met a Terminal. */



Example procedure of  Parsing: 

Implementation of Bottom-Up Parsers

Bottom-Up Parsing (Left-to-right Rightmost-derivation Parsing, LR Parsing) is a more practical way for implementing a 
parser.

2 important facts:

1. Suppose  at some step, and the next reduction will use , then  is a string of Terminals
2. Suppose  is reached after some step, then the next reduction will not occur at left side of 

Also called Shift-Reduce Parsing

Shift: push next symbol onto stack top
Reduce: pop several symbols, replace with a Non-terminal, and Push back onto stack top

1. [WAY 1]:  Automata   Action & Goto Table  Parser
2. [WAY 2]:  Automata   Action & Goto Table  Parser
3. [WAY 3]:  Automata   Action & Goto Table  Parser
4. [WAY 4]:  Automata   Action & Goto Table  Parser

            if (X == t) {

                stack.pop();

                ++ip;

            } else raise ERROR;

        } else {                            /* Met a Non-terminal. */

            if (Table[X, t] is not empty) {

                /* Suppose Table[X, t] is X -> Y1 Y2 ... Yk. */

                stack.pop();

                for (i from k downto 1)     /* Notice order. */

                    stack.push(Yi);

                Output Production Rule used: X -> Y1 Y2 ... Yk;

            } else raise ERROR;

        }

    }

}



Build  Automata

The procedure of shifting the next Token and reducing at certain points is exactly like going through an Automata. 
Therefore we can build a  Automata to do the Bottom-Up Parsing.

A Handle is a pair , where  is a Production Rule , and  is the position of  when  is used in the Derivation 
step.

Unambiguous Grammar has exactly one set of handles for a Right-most Derivation

A Viable Prefix is a sequence that can be the stack content, which CANNOT extend past the right end of a Handle.

Production Rule  is Valid for Viable Prefix  iff 

If , should Reduce
If , should Shift

An  Item  means that:

Production Rule  is Valid for current Viable Prefix
We have shifted things in  onto stack, but things in  not met yet
No information about next Tokens, i.e. no Look-aheads

[Step 1]: Define CLOSURE()  to decide States.

[Step 2]: Define GOTO()  to decide Transitions.

[Step 3]: Build  Automata. Augment the Grammar by add dummy Production Rule  first, then:

Start State of the  Automata is 

set computeClosure(set I) {

    closure = I;

    do {

        for (every Item m in I) {

            /* Suppose m is A -> a.Bb here. */

            for (every Production Rule r: B -> c)

                Add B -> .c into closure;

        }

    } while (there are updates in this iteration);

    return closure;

}

set computeGoto(set I, Symbol X) {

    result = {};

    for (every Item m in I) {

        /* Suppose m is A -> a.Xb here. */

        result = Union of result and CLOSURE({A -> aX.b});

    }

    return result;

}

void buildLR0Automata() {

    I0 = CLOSURE({S' -> .S});

    DStates = {I0};

    do {

        for (each Item set I in DStates) {

            for (each Grammar Symbol X) {

                J = GOTO(I, X);

                if (J is not empty) {

                    if (J is not in DStates)

                        Add J into DStates;

                    Add the Transition I--X->J;

                }

            }

        }

    } while (there are updates in this iteration);

}



For  State  containing , GOTO(I, $) = ACCEPT
Example of a  Automata: 

Conflicts may happen in Bottom-Up parsing, which indicates that current limitation on Look-aheads is too strict for this 
Grammar; We will need more Look-aheads to conduct Bottom-Up Parsing on such Grammar, and that may introduce 
more complexity to the Automata.

1. Shift / Reduce Conflict: both Shift and Reduce is possible for a State
2. Reduce / Reduce Conflict: two or more possible Reductions for a State

Implementing  Parsing

The idea of  Parsing is (Assume current State , next input symbol ):

If , Reduce by 
If , Shift with 
Considers no Token Look-aheads, so called 

A Configuration is $ , where:

 is current Stack content, bottom to top

$ is the rest of the input Token stream

Represents:

A snapshot at some time in the Parsing process
A Right-most Derivation $

We construct Action & Goto Table from  Automata, and the Parser is then straight-forward:

/* Create Action Table. */

void createActionTable() {

    for (every State Ii in Automata) {

        for (every input Terminal a) {

            for (each Item r in Ii) {

                if (r is A -> B.aC)

                    Add "shift GOTO(i, a)" in Action[i, a];

                else if (r is A -> D.)

                    Add "reduce A -> D" in Action[i, a];

                else if (r is S' -> S.)

                    Add "ACCEPT" in Action[i, "$"];

            }

        }

    }

}

/* Create Goto Table. */

Goto Table is simply the GOTO function.



All empty entries are ERRORs

Conflict  Multiple Actions in 1 Action Table entry; If no Conflicts happen, then  is a  Grammar

Example of an Action & Goto Table:  

s2  - Shift to State 
r3  - Reduce by Production Rule #3

Example procedure of  Parsing: 

Implementing  Parsing

 Parsing means "Simple" , which considers 1 Token Look-ahead on Reductions (Reduce only in 
FOLLOW(current Token) ). Needs a slightly different Action Table.

Notice that FOLLOW (S')  initially contains $
May still leave Conflicts; If no Conflicts happen, then  is a  Grammar

Build  Automaton

An  Item  is an extension of  Item, where the next allowed Token  is considered.

 is a  Item

/* Create Action Table. */

void createActionTable() {

    for (every State Ii in Automata) {

        for (every input Terminal a) {

            for (each Item r in Ii) {

                if (r is A -> B.aC)

                    Add "shift GOTO(i, a)" in Action[i, a];

                else if (r is A -> D. && a is in FOLLOW(A))

                    Add "reduce A -> D" in Action[i, a];

                else if (r is S' -> S.)

                    Add "ACCEPT" in Action[i, "$"];

            }

        }

    }

}



 is an input Terminal, allowing Reduction using  when input is 

[Step 1]: Define CLOSURE()  to decide States.

[Step 2]: Define GOTO ()  to decide Transitions.

[Step 3]: Build  Automaton. The dummy item here is , $.

Shorthand for  is 
A State will contain , where  FOLLOW (A)

Implementing  Parsing

By constructing  Action & Goto Table, we can achieve  Bottom-Up Parsing similarly.

May still leave Conflicts; If no Conflicts happen, then  is a  Grammar

Build  Automata

A Core is the set of all  Items in a  State, ignoring the following Terminal symbol.

 merges all the  states with the same Core.

Is a Trade-off between Grammar range ( ) v.s. Efficiency ( )

Number of States in  Automata  Number of States in  Automata
Will only introduce Reduce / Reduce Conflicts into original  Parser; If no Conflicts happen, then  is a 

 Grammar
Used in "YACC/Bison"

Other Issues for Parsers

set computeClosure(set I) {

    closure = I;

    do {

        for (every Item m in I) {

            /* Suppose m is A -> a.Bb, x here. */

            for (every Production Rule r: B -> c)

                for (every Terminal t in FIRST(b, x))   /* Including $ symbol. */

                    Add B -> .c, t into closure;

        }

    } while (there are updates in this iteration);

}

set computeGoto(set I, Symbol X) {

    result = {};

    for (every Item m in I) {

        /* Suppose m is A -> a.Xb, x here. */

        result = Union of result and CLOSURE({A -> aX.b, x});

    }

}

/* Create Action Table. */

void createActionTable() {

    for (every State Ii in Automata) {

        for (every input Terminal a) {

            for (each Item r in Ii) {

                if (r is A -> B.aC, x)      /* Shift is not effected. */

                    Add "shift GOTO(i, a)" in Action[i, a];

                else if (r is A -> D., a)   /* Reduce only when match. */

                    Add "reduce A -> D" in Action[i, a];

                else if (r is S' -> S., "$")

                    Add "ACCEPT" in Action[i, "$"];

            }

        }

    }

}



Error Type Example Detector

Lexical x # y = 1 Lexer

Syntax x = 1 y = 2 Parser

Semantic int x; y = x(1) Type Checker

Correctness Can compile, but wrong output User / Static Analysis / Model Checker / 

Conflict Resolution

Conflicts cannot be 100% removed in  Parsing; Also, Ambiguous Grammars are sometimes more human-readable. The 
possible solutions are:

1. Use context informations from Symbol Table

2. Always in favor of Shift

3. Use Precedence & Associativity, e.g.

, met , do Reduce since  is left-associative
, met , do Shift since  has higher precedence

, met , do Reduce since  has higher precedence
, met , do Reduce since  is left-associative

4. Grammar Rewriting

Context-sensitive v.s. Context-free

NOT Context-free Language  CANNOT write a CFG for this Language.

e.g. 

CFG is not closed under all Language operations. Closed under , , but NOT closed under .

Expressiveness Range

The expressiveness range of CFGs follow the relation: 

Error Handling

Types of Errors

Error Processing Rules

1. Detect Errors
2. Find the positions where they occur
3. Accurately present them to users
4. Recover / Pass over to continue to find later errors
5. Do NOT impact compilation of correct part of the program

Syntax Error Recovery Strategies

Panic Mode

Discard wrong input Tokens until an expected Token is met.

e.g. (1 + + 2) * 3   skip +



For LL Parsing:

Synchronizing Token: Terminals in FOLLOW(stack_top)
Skipping input symbols until a Synchronizing Token is found

For LR Parsing:

1. Skipping input symbols
2. Popping stack items

Phrase Level

Local (Intra-sentence) correction on the input.

e.g. x = 1 y = 2   insert ;

For LL Parsing:

Each empty entry in Parsing Table is a pointer to specific error routine
Can design whether to insert / delete /  symbols

For LR Parsing:

Each empty entry in Action Table is a pointer to specific error routine

Error Productions

Add Production Rules specially for typical Errors.

e.g. Add  in Grammar for C
Used in "GCC"

Global Correction

Globally analyze and find the Errors. Too ideal and hard to design.

Intermediate Representations

Definitions & Types

An Intermediate Representation (IR) is an intermediate (neither source nor target) form of a program. There are various 
types of IRs:

Structural

Abstract Syntax Trees (AST)
Directed Acyclic Graphs (DAG)
Control Flow Graphs (CFG)
Data Dependence Graphs (DDG)

Linear

Static Single Assignment Form (SSA)
3-address Code
Stack Code

There will be hybrid combinations, and which to choose strongly depends on the design goals of the compiler system.

Abstract Syntax Tree

AST is a simplified Parse Tree.

Example: 

Advantages

Close to source code
Suitable for source-source translation



Disadvantages

Traversal & Transformations are expensive
Pointer-intensive
Memory-allocation-intensive

Directed Acyclic Graph

DAG is an optimized AST, with identical nodes shared.

Example: 

Advantages

Explicit sharing
Exposes redundancy, more efficient

Disadvantage

Difficult to transform
Analysis usage  Practical usage

Control Flow Graph

CFG is a flow chart of program execution. Is a conservative approximation of the Control Flow, because only one branch 
will be actually executed.

A Basic Block is a consecutive sequence of Statements , where flow must enter this block only at , AND if 
 is executed, then  are executed strictly in that order, unless one Statement causes halting.

The Leader is the first Statement of a Basic Block
A Maximal Basic Block is a maximal-length Basic Block

Nodes of a CFG are Maximal Basic Blocks, and Edges of a CFG represent control flows

 edge  iff control may transfer from the last Statement of  to the first Statement of 

Example: 

Single Static Assignment

SSA means every variable will only be assigned value ONCE (therefore single). Useful for various kinds of optimizations.

Example: 

A -function generates an extra assignment to "choose" from Branches or Loops. If Basic Block  has Predecessors 
, then  assigns  if control enters  from .



e.g.

1. 2-way Branch: 

2. While Loop: 

 is not an executable operation

Number of  arguments  Number of incoming edges

Where to place a  ?

If Basic Block  contains an assignment to variable , then a  MUST be inserted before each Basic Block  that:

1.  non-empty path 
2.  path from ENTRY to  which does not go through 
3.  is the FIRST node that satisfies i. and ii.

Stack Machine Code

Stack Code is used for stack architectures / Bytecodes.

Example: 

Advantages

Compact Form
Names are implicit, therefore no need for temporary variables
Simple to generate and execute

Disadvantages

Does not match current architectures
Difficult to reorder
Cannot reuse expression values, slow & hard to optimize

3-address Code

3-address Code takes 1 Operator + at most 3 Operands for each Statement (therefore 3-address).

Example: 



Quadruples (四元组): 

Uses explicit names to store results
Easy to reorder, but needs more fields

Triples (三元组): 

Table indices used as implicit names
Harder to reorder, but needs less fields

IR Choosing Strategies

1. High-level Models

Retain high-level data types (e.g. Classes)
Retain high-level control infos
Operate directly on program variables (NOT registers)

2. Mid-level Models

Retain part of high-level data types (e.g. Arrays)
Linear Code + CFG
Uses virtual registers

3. Low-level Models

Linear memory model, no high-level data types
Explicit addressing
Exposes physical registers

Semantic Analysis

Attributes

To add semantic informations beyond the Sentence structure, we need to attach Attributes to Parse Tree nodes. 
Attributes can reveal additional informations about that node's type (most important semantic info), value (not always 
needed), an so on. 

Synthesized Attributes like  are synthesized using s' (children's) Attributes

e.g. , 
's Attribute  is synthesized from children's s

Inherited Attributes like  are inherited (passed down) from 's (parent's) Attributes

e.g. , 
's Attribute  is inherited from 's 

Syntax-Directed Definitions

In Syntax-Directed (语法制导) Definitions, a Production Rule  is related to a set of Semantic Rules, which give 
relations of Attributes of nodes on that Production Rule.

e.g. ; 

They are just related informations, but do not carry any hints for evaluation.

If there is a Semantic Rule , then  is dependent on .

This Semantic Rule must be evaluated AFTER Rules for 

Dependency can be represented by a directed Dependency Graph

1. Mark the AST with Semantic Rules



2. Each Semantic Rule gets an id
3. Draw dependency relations between Rules
4. Verify that it is Acyclic

e.g.  

S-Attributed Definitions only use Synthesized Attributes.

L-Attributed Definitions require that in each Production Rule  with Semantic Rule :

 is a Synthesized Attribute of , OR
 is an Inherited Attribute of , which depends no more than Attributes of 

Evaluation of Semantic Rules

Parse-tree Method (General):

1. Build the AST by Parsing
2. Build the Dependency Graph from AST, verify it is a DAG
3. Obtain a workable evaluation order by Topological Sort
4. Conduct the Rules in that order

Predetermined Evaluation (Bottom-Up Evaluation):

Require strictly restricted S-Attributed Definitions, but can be done along with Parsing

Uses an additional Value Stack

Push in its  when shifting by a valued Token (e.g. int, 3 )
Push in a _   (占位符) when shifting by a unvalued Token (e.g. + )
Pop out values and Push in the result when reducing

Translation Schemes (i.e. Syntax-directed Translation):

Less restricted, using L-Attributed Definitions, while also can be done along with Parsing
Every time the Parser meets a Semantic Action, evaluate it

Syntax-directed Translation

In Syntax-directed Translation (语法制导翻译), Semantic Rules are enclosed between  and inserted within Production 
Rules.

Semantic Rules enclosed between  are called Semantic Actions
Position of a Semantic Action indicates when it is evaluated

Translation Schemes Design

With the property of L-Attributed Definitions, we can organize the positions of Semantic Actions as:

For a Synthesized Attribute, put the action in at the end
For an Inherited Attribute of , put the action just before 
e.g. 

Left Recursion Elimination



When there are Left Recursions in the decorated Production Rules, and we want to conduct Top-Down Parsing, we will 
need to correctly eliminate them by:

 {A.a = g(A1.a, Y.y)}
 {A.a = f(X.x)}

 {A'.in = f(X.x)}   {A.a = A'.syn}
 {A1'.in = g(A'.in, Y.y)}   {A'.syn = A1'.syn}

 {A'.syn = A'.in}

Scoping

Scoping refers to the issue of matching identifier Declarations with its Uses. The Scope of an identifier is the portion of a 
program where it is accessible.

Same identifier may refer to different things in different portions
Different scopes for same identifier name DO NOT overlap
Usually, search for local definitions first, and if not found, goto its parent Scope

Static Scoping v.s. Dynamic Scoping

On Static Scoping, depends only on text, not runtime behavior.

May obey Closest Enclosing Definition

Can be nested
Refer to closest parent definition

May obey Globally Visible Definition

CANNOT be nested
Can be used before defined

On Dynamic Scoping, may depend on the closest binding during execution.

Symbol Tables

We have a separate Symbol Table for each Scope ,where:

Child Scope points to its Parent Scope
May need multiple passes to generate (to serve Globally Visible Definitions)
e.g. 

Type Systems

The Type System of a Language specifies:

Type Checking: which operations are valid for which types
Type Inference: infer the implicit type informations, i.e. decorate the Parse Tree with full type informations

Type System are based on Rules of Inference, and may not be perfectly correct. We call it:

Sound: means no False Positive
Complete: means no False Negative

Language Typing Categories

Different Languages have different strategy for Typing:



In Statically Typed Languages, type checking is done as part of compilation (e.g. C, Java, Rust, COOL).
In Dynamically Typed Languages, type checking is done as part of program execution (e.g. Python, Scheme).
In Untyped Languages, there lies NO types (e.g. Machine Codes).

Rules of Inference

We Use Rules of Inference like  to represent , 

when each Hypothesis  and the Conclusion are in the form .

To achieve effective inferences for Languages like COOL, we must introduce the following Contexts:

Type Environment : a function giving types for Free Variables

e.g. 

Variable x  is Free if it is not defined within current expression

 means to update  by adding information 

Needed for let  / case  Expressions, since they introduce new variable names in a new sub-scope
Method Environment : needed for method dispatches

e.g. 
Means that in class , method  takes parameters of type , and returns type 

Self-class Environment : current SELF_TYPE  class, needed for handling SELF_TYPE s

Means we are inside Class  now

Properties:

SELF_TYPE

SELF_TYPE  if 
SELF_TYPE

Several additional rules are introduced to serve Inheritance:

Subtyping:  means Type  can be used when Type  is expected

Properties:

 if  inherits 
 if  AND 

Soundness Theorem: , where:

Dynamic Type is the run-time evaluated type of an Expression
Static Type captures all possible Dynamic Types

Least Upper Bounds:  means the smallest parent class of all 

Needed for case  branches

Static Type Checking Strategy

COOL Type Checking can be done along with a tree traversal over AST (suppose we already have the global inheritance 
informations).

1. Type Environments  are passed down the AST

2. Type Derivations are conducted bottom up the AST towards root

e.g.  

For detailed COOL Typing Rules, refer to COOLAid Manual, section 12.

Code Generation



Operational Semantics

Formal Semantics are unambiguous abstractions of how the program is executed on a machine. They guide the 
implementation of Code Generators.

One kind of Formal Semantics is Operational Semantics (操作语义), where we use Operational Rules to demonstrate 
the effect of every possible operation. Similar to Type Systems, these rules are in the form of Rules of Inference, but 
different Contexts are needed, and the thing we infer is Value  instead of Type , along with a new Store.

Environment :  tells the address (location) in memory where 's value is stored

e.g. 
Will never change after an operation

Store :  tells the value stored in location 

e.g. 

 means to update  by adding information 

Needed for let  / case  expressions, since they introduce new variables in new sub-scopes
A Rule may have side effects: change the Store

Self-object : current self  object, needed for inferring self

Will never change after an operation

Specially for COOL, where everything are Objects, we denote a value as .

 is the Dynamic Type of value 

 is the th Attribute, where the location of 's value is 

Special notations for basic classes:

1. : integer value 5
2. : boolean value true
3.  "Cool" : string "Cool"  with length 4
4. : special instance of all types, only effective for isvoid

Several additional rules are introduced for new objects and method dispatches:

 means allocate a new, free location  in memory

Needed for let  / case  / new  expressions, since they ask for new objects
Hides some details like the size and strategy of allocation

 means the default value object of Type 

 illustrates the composition of Type 

Needed for new  expressions
 illustrates the composition of Method 

Needed for method dispatches

For detailed COOL Operational Semantics, refer to COOLAid Manual, section 13.

There are other kinds of more theoretical and abstract Formal Semantics, e.g.

Denotational Semantics (标记语义)
Axiomatic Semantics (公理语义)

Runtime System

The Runtime System (Environment) defines the way of managing run-time resources. It depends largely on the machine 
architecture and OS.

Memory Layout and Usage:

Allocation and Layout of objects
Function call strategies
Garbage collection or not, and how

Convention of using Registers

Runtime Error handling API



To generate workable code, we MUST obey uniform routines with the Runtime System definitions when implementing the 
Code Generator. Thus, Code Generator design MUST consider the run-time requirements of the target machine and OS.

For the detailed COOL Runtime System Conventions, refer to COOL Runtime System, section 2-5.

In object layouts, subclasses arrange its attributes from the oldest ancestor's (i.e. Object ) downto its private ones
In dispatch tables, subclasses arrange its methods similarly, but whenever a method is shadowed, will dispatch 
on the one of the closest parent's (may be himself)

Activations

An Activation is an invocation of a procedure / function. Its lifetime lasts until the last step of execution of that procedure.

For two different activations , their lifetimes are either Non-overlapping or Nested

An Activation is a particular instance of the function's invocation

Sequence of function calls represented as an Activation Tree

e.g. 

Earlier Activation goes on the left

A Stack can be used to track current Activations, which is a common practice in modern Languages. On each invocation, 
an Activation Record is pushed onto the stack. It is popped out when the procedure ends.

The design of Activation Records is an important part of the Runtime System, e.g. 

What needs to be inside an Activation Record
Their exact layouts
Caller / Callee is responsible for which part

Runtime Errors

The Code Generator usually assumes that the input IR is correct, since it has passed lexical, syntax & semantic error 
checkings. Therefore the generator will not check any errors. However, even those type-safe programs can fail to execute, 
due to Runtime Errors:

Dispatch on : design of Type System has flaws
Division on zero (除零错误): we can hardly know what is the exact dynamic value of a denominator at compile-time
Case match failed on all branches

We should generate codes which will make correct judgments and invoke corresponding run-time exception routines 
wherever there might be a Runtime Error.

cgen  For Pure Stack Machine

The cgen  Function is an abstraction of how a recursive Code Generator is implemented. cgen(e1, n)  means emitting 
code for expression e1 , when the current available temporary offset is n . Offsets only serve let  / case  expressions 
because they introduce new temporary variables.



Expression Implementation Expression Implementation

Integer i e1 + e2

if e1 = e2 then

e3 else e4

while e1 = e2 loop e3

pool

def f(x1, ...,

xn) {e}
f(e1, ..., en)

let x : T <- e1

in e2

Temporary var x  (whose
offset is at ofs )

Here we consider the generation of MIPS assembly code from AST structures. Each type of nodes on the input AST must 
have a corresponding implementation of cgen . We use a pure Stack Machine scheme to simplify the ideas, where:

Only assuming 1 preserved Register - the Accumulator $a0 . to store:

Result of each operation (including function return value)
Self object pointer on method dispatch

Invariants: The stack after each cgen  will be exactly the same as at the point of entrance

The stack is globally preserved, so usually using the memory as stack, and $sp  for the stack pointer

Use $fp  for the frame pointer, the boundary of caller's and callee's responsibility

The following is a summary of implementations of recursive cgen  function (without considering OOP):

The offset  passed down the cgen  Function is used at let  / case  expressions, since they introduce new variables, 
and we need to save their values in inner scopes.

Register Allocation

Pure Stack Machines are simple but very inefficient. The most direct optimization is to use as much preserved registers 
( $s0 - $s6  for MIPS) instead of always pushing onto stack. We need the following concepts for analyzing register 
allocation:

Next-Use tells when will the value of  assigned at  be next used.

 if the next closest usage is at  op .
 is Live at some location when:

1. It has been assigned a value previously
2. It will be used after
3. NO interleaving assignment to  between current location and the next usage

Determine Liveness

To determine the Liveness of variables in every location inside a Basic Block:



To determine the Liveness of variables through out the Data Flow (i.e. across Basic Blocks), we should apply Dataflow 
Analysis framework, which will be covered in the last chapter.

Register Interference Graph

After determining Liveness of all variables, we can decide which register should be assigned to which variable. Basic idea 
is when two Temporaries  will live simultaneously at some point, called  interferes with , then they cannot share the 
same register.

A Register Interference Graph (RIG) is used to handle such a problem when we have in total  available registers, 
where:

e.g. 

Each node is a Temporary variable
Each edge means an interference between nodes, and that these two nodes cannot share the same register

Finding a solution is a Graph -Coloring problem, which is NP-Hard. We use the following heuristic algorithm to partially 
solve this problem:

For a victim x  spilled into memory, we need:

load  x  every time before using
store x  every time after assignment

Garbage Collection

An object instance  is Reachable on heap iff some variable (either in register or in memory) points to , or another 
Reachable object  contains a pointer to . Unreachable objects are called Garbage, and is desired to get recycled by 
automatic memory management.

The concept of Reachability is sound (safe) but not complete, since Unreachable objects are definitely useless, but not 
all Reachable objects will be used later.

void computeLiveness(set live_at_exit) {

    live_set = live_at_exit;

    for (each instruction i from end to start) {

        /* Suppose i is x <- y op z here. */

        live_set = live_set - {x};

        live_set = Union of live_set and {y, z};

        Liveness at location just before instruction i is live_set;

    }

}

dict assignRegister(Graph RIG, set regs) {

    while (RIG is not empty) {

        if (there is a node n with < k neighbors)

            Push n onto stack;

        else {      /* Run in short of registers. */

            Pick a victim node n;

            Spill n into memory;

        }

        Remove n from RIG;

    }

    for (each node n on stack) {

        Pick a reg $rx from regs, which cannot be already used by one of n's neighbors;

        Assign $rx to n;

    }

}



A example snapshot of the heap during execution can be:

e.g. 

Arrows indicate reference pointings
Roots include all references coming from outside the heap (in ACC  or on stack)

Various strategies of doing Garbage Collection (GC) exist. Three simple strategies are introduced below.

Mark & Sweep

When running out of memory conduct the following two stages:

1. Start from Roots, mark all Reachable objects
2. Erase all Unreachable objects, while leaving Reachable ones unmoved

Will fragment the memory, but no need to update pointers since unmoved.

Stop & Copy

Memory is partitioned into two equal areas , while  is the one under use currently. When  runs full, 
copy all Reachable objects to the beginning of , and the rest of the memory is then considered free.

e.g. 

Notice the order:

1. First copy a Root 
2. Follow its out-going reference to , copy 
3. Update the pointer in 
4. Repeat, starting from 
5. If a referenced child is already copied, simply update the pointer

Avoids fragmentations, but is time- and memory-expensive, since pointers need to be updated, and only half of memory 
is available.

Reference Counting

Reference Counting (RC) is a dynamic GC strategy. We denote  as the Reference Count of object , where:

1. A new  object  has 
2. After each assignment , , 
3. When a variable  (pointing to ) goes out out Scope, 
4. Free -referenced objects at certain times

Easy to implement, but very slow, and CANNOT handle circular references (where each , but the whole group is not 
Reachable).

Optimizations

Optimization Schemes

Optimizations (优化) are conducted on IR: 



There are three different Granularities of Optimizations, from less powerful (complex) to most powerful (complex):

1. Local Optimizations apply inside a Basic Block
2. Global (Intra-procedural) Optimizations apply to a CFG across Basic Blocks
3. Inter-procedural Optimizations (过程间优化) apply across method boundaries

Local Optimization Techniques

The following are 5 different Local Optimization techniques that can be applied to expressions inside a single Basic Block.

1. Algebraic Simplification: simplify obvious algebra calculations, e.g.

x := x + 0  / x := x * 1    Deleted 
x := x * 0   x := 0
x := x * 2   x := x + x  (Only on machines where +  is faster than * )
x := x ** 2   x := x * x
x := x * 8   x := x << 3  (Only on machines where <<  is faster than * )

2. Constant Folding: compute constant expressions at compile time, e.g.

x := 1 + 2   x := 3
if 2 < 0 jump Label   if false jump Label    Deleted 

3. Dead Code Elimination: remove codes that is meaningless, which

1. Will never get executed, or
2. Assigns to a Non-live Variable

4. Common Subexpression Elimination: replace common right-side expressions with previous assigned variable

e.g. b := a - d   c := a - d   b := a - d   c := b
MUST ensure that the assigned variable & everything in the expression is NOT changed between previous 
assignment and where replacement occurs
For SSA, the above property holds naturally

5. Copy Propagation: replace subsequent uses of copier variable with copiee

e.g. a := b   x := 2 * a   a := b   x := 2 * b
MUST ensure that the assigned variable & everything in the expression is NOT changed between previous 
assignment and where replacement occurs
For SSA, the above property holds naturally
NOT Optimization itself; only useful for triggering other Optimizations

To perform Local Optimizations, we combine the 5 techniques iteratively:

Global Optimizations

Similar to Local ones, there are several Global Optimization techniques which can be applied across basic blocks in a CFG.

1. Global Common Subexpression Elimination

2. Global Copy Propagation

CANNOT be simply applied to Array elements, because the Array might be modified somewhere else
3. Code Motion: move invariants outside of loop

4. Induction Variables & Reduction in Strength: simplify fixed patterns in loops, e.g.

j := j - 1   t4 := 4 * j   t4 := t4 - 4
Need to handle following usages of j  properly

Global Optimizations might trigger new possibilities of Local Optimizations, so we can iterate as follows:

void localOptimization() {

    do {

        Choose a technique and perform it;

    } while (still have possible Optimizations && iteration threshold not met);

}



Dataflow Analysis

Dataflow Analysis Abstraction

Global Optimizations and all the other analysis techniques which rely on the information across Basic Blocks require 
Dataflow Analysis. The main task is to collect needed information (e.g. Definitions) at certain point of the program 
Control Flow.

We use a mathematical framework called Dataflow Analysis Schema to handle such analysis. Suppose we have such a 
CFG:

 

For each Statement , define the following two Status of things we are interested in:

 describes the status before executing 
  describes the status after executing 

For each Statement , it also determines a Transfer Function , where

, i.e. describes the effect of executing 
Should be different for different sceneries

For each Basic Block , define the following two Status similarly:

 describes the status before entry of 
 describes the status after exit of 

For each Basic Block , it also determines a Transfer Function , where

, i.e. describes the effect of going through 
 is a composition of  for , e.g. 

For each edge  in the CFG, there are two possibilities:

1. The endpoint is not a Join Node (e.g. the higher two edges in the example), then 

2. The endpoint is a Join Node who has predecessors , then 

Meet Operator  also depends on the problem scenery

With this standard framework, whenever we have a specific problem scenery, we can solve it with the following procedure:

1. Determine what should  /  / Transfer Function  / Meet Operator  be

2. List relationships for  Basic Block :

3. Initial conditions of  or  should be given

4. Iterate through all relationships until a Fixed Point Solution is met

Scenery: Reaching Definitions

A Definition  Reaches a point  iff  a path  such that  is not overwritten. The problem of Reaching Definitions 
is one of the Dataflow Analysis sceneries, which can be stated as: "For each Basic Block in the program's CFG, determine 
which definitions reach that point".

void globalOptimization() {

    do {

        do {

            Choose a Local Optimization and perform it;

        } while (still have possible Local Optimizations);

        Choose a Global Optimization and perform it;

    } while (still have possible Optimizations && iteration threshold not met);

}



 / : set of Definitions 

 means the Definition  generated in  (if  is d: x = ... )
 means set of all other Definitions of  in the program

 is simply Union ( )

An iterative algorithm can be:

To save space and accelerate the algorithm, we can use a Bitmap (Bit-vector) to represent in[B] / out[B] sets.

Scenery: Liveness Analysis

A Variable v  is Live at point  iff it has been defined now and will be used along some path in the CFG starting at . 
Otherwise v  is Dead and that can trigger Dead Code Elimination. The problem of Liveness Analysis can be stated as: 
"For each Basic Block in the program's CFG, determine which variables are Live at that point".

Note that Liveness Analysis is conducted backward along the CFG edges, therefore the framework is slightly 
different:

Initial condition should be 
Transfer Function reversed, i.e. 
Meet Operations occur at startpoints of edges

 / : set of Live Variables 

 means set of all Variables ( ) used at  (if  is x = y + z )
 means the Variable defined at  ( )

 is simply Union ( )

An iterative algorithm can be:

Scenery: "Must-reach" Definitions

A Definition  "Must-reach" a point  iff  paths ,  appears at least once and will not be overwritten. In this case:

 should be 
All other setups are the same as Reaching Definitions

Semi-Lattice Diagram

Dataflow Analysis framework can be represented as a mathematical Meet Semi-Lattice (最大下界半格) Diagram. That 
Semi-Lattice is a Partially-ordered (偏序的) set which has a Greatest Lower Bound (i.e. Meet) for  finite subset.

void reachingDefinitions(Dataflow CFG) {

    for (each Basic Block B other than entry)

        out[B] = {};

    do {

        for (each Basic Block B other than entry) {

            in[B] = Meet of all out[predecessor of B];

            out[B] = f_B(in[B]);

        }

    } while (any changes occur to any out[B] set);

}

void livenessAnalysis(Dataflow CFG) {

    for (each Basic Block B other than exit)

        in[B] = {};

    do {

        for (each Basic Block B other than exit) {

            out[B] = Meet of all out[successor of B];

            in[B] = f_B(out[B]);

        }

    } while (any changes occur to any in[B] set);

}



Example 1 ( ):  Example 2 ( ): 

Domain  of the problem is the set of all possible values (e.g. set of all Definitions)

Greatest Lower Bound of subset  and   first common successor of  & 

A partial-order  indicates there is a path 

If Meet Operation is , largest subset (i.e. Top ) is , and smallest subset (i.e. Bottom ) is the whole Domain
If Meet Operation is , then largest is the whole Domain, and smallest is 

Meet Operator follows several properties:

1. Idempotent (幂等): 
2. Commutative (交换): 
3. Associative (结合): 

Partial-order should have several properties (similar to Equivalent relations, except for Anti-symmetric):

1. Reflexive (自反): 
2. Anti-symmetric (反对称): if  and  then 
3. Transitive (传递): if  and  then 

For a Dataflow Analysis framework  with Transfer Functions family :

It is Finite-descending iff every descending chain from Top to Bottom has finite length
It is Monotone (单调的) iff 
It is Distributive (可分配的) iff  (this is a special case of Monotonicity)

Scenery: Constant Propagation

The problem of Constant Propagation can be stated as: "For each Basic Block in the program's CFG, determine which 
variables are Constant and their Values at that point".

Domain: mappings from all Variables to its Value 

 can be either Undef  / NAC  (NOT a Constant) / Constant 
Transfer Function  is defined as:

For non-assignment statement ,  is identity function

For assignment statement  : x = e ,  produces new  where

If  is Constant , then 
If  is y op z  and any of them is NAC , then  NAC
If  is y op z  and , then  op  
If  is y op z , none of them is NAC  and any of them is Undef , then  Undef
Else (e.g.  is a function call),  NAC

Meet Operation  is defined as:

If any of them is NAC , then  NAC
If any of them is Undef , then  value of another one
If  where , then  NAC
If , then  Constant 

Under this scenery, the Meet Semi-Lattice framework is Monotone but NOT Distributive.


