
 Big Data Systems

Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS744

Teacher: Prof. Shivaram

 Big Data Systems
Infrastructure

Datacenter as a Computer
GFS
MapReduce
Spark

Scheduling
Mesos
DRF

Machine Learning

PyTorch Distributed
PipeDream
Parameter Server
Gavel

Nexus
SQL Frameworks

SCOPE
Snowflake

Stream Processing
Dataflow Model
Apache Flink

Spark Streaming
Graph Processing

PowerGraph
Marius

DistDGL
New Models

Serverless Computing
Owl

TPU

af://n0
https://shivaram.org/

Infrastructure
Datacenter cluster architecture, storage system, general frameworks, ...

Datacenter as a Computer

Link: http://cs.wisc.edu/~shivaram/cs744-readings/dc-computer-v3.pdf

The need for a cluster of machines:

Resource limit on a single machine scaling out to a collection of affordable machines is generally

more effective than scaling up to a giant machine
Brings more parallelism may also help with completing small jobs faster
Fault-tolerance, availability, and reliability avoid a single point of failure

Summary of trends in hardware:

CPU speed per core is flat
Memory bandwidth growing slower than capacity
NVMe SSDs replacing HDDs
Ethernet bandwidth rapidly growing

Datacenter warehouse-scale computers (WSCs) typical architecture:

Servers racks with a top-of-rack (ToR) switch aggregation switch network external Internet
Data movement is a primary concern in the storage hierarchy
Typically operated by a single organization
Typically has homogeneity of resources to some extent
Multiplexed across many applications and services for cost efficiency

Implies software's support for reliability, diversity across workloads, and diversity across layers

Example workloads:

Web indexing: latency-sensitive and bursty; use partition-aggregate scheme
Scholar similarity: cares about throughput; not latency-sensitive; use MapReduce scheme

Video-on-demand: transcoding is compute-intensive; cares about caching and serving
Machine learning: long-running and extremely compute-intensive

af://n8
af://n10
http://cs.wisc.edu/~shivaram/cs744-readings/dc-computer-v3.pdf

GFS

Link: http://cs.wisc.edu/~shivaram/cs744-readings/GFS.pdf

History of distributed file systems:

Transparent POSIX API standard

Server-client model

Servers run local FS on arrays of storage devices
Each server handles a region of the namespace tree
Client library sends internal requests over network

Caching protocols are non-trivial

NFS: block-based caching in client memory; using stat timestamps for checking

AFS: whole-file caching on client local disk; using server callback revocations

GFS workload assumptions:

Modest number of large files
Reads: large streaming reads or small random reads

Writes: large sequential appends; very few random updates
High bandwidth more important than low latency
Hardware component failures are a norm
Applications can work without POSIX guarantees

GFS architecture:

Files divided into chunks of 64MB

Single master (possibly SMR replicated) for metadata, i.e., namespace tree and chunk location
mapping

Many chunkservers holding chunks as regular Linux files; uses Linux buffer cache implicitly

Chunk size tradeoff:

Too small too much metadata and control RPC load on master

Too large overloading hot chunkservers and increasing fault recovery time
Each chunk is replicated on 3 different chunkservers for fault-tolerance

One replica will be the primary replica by holding a lease given by master

GFS core operations & guarantees:

read of a chunk

Procedure:

af://n54
http://cs.wisc.edu/~shivaram/cs744-readings/GFS.pdf

1. client library computes which chunk to read
2. client asks master for replica locations; master replies
3. client goes to any replica it chooses; replica replies

4. client caches the chunk locally until the cache lease expires or until the file is reopened
write of a chunk (a mutation)

Procedure:

1. client asks master for replica locations and who's the primary replica of chunk; master
replies

2. client pipelines written data through 3 replicas according to network topology
3. client goes to primary replica initiating a write request
4. primary asks secondary replicas if they have completed receiving data; secondary replicas

reply
5. chunk version number is updated on all replicas

6. primary replies to client
Guarantees under concurrent requests:

Consistent -- all replicas of a chunk apply mutations in the same order assigned by primary
Defined -- if all requests span only a single chunk
Undefined -- requests spanning multiple chunks may end up with different chunks
applying different mutation orders, therefore the final result is not the result of any write

request
record append (also a mutation, but client does not specify offset)

Procedure:

1. almost the same as write

2. at primary, it checks if appending the record to current chunk would cause it to exceed its
maximum size; if so, it pads the chunk, tells replicas to do so, and replies to clients
indicating retry on the next chunk

3. otherwise, the primary does a normal write at the current end offset
4. if a record append fails at any replica, the client retries the operation -- therefore,

replicas may contain different numbers of the same record, thus byte-wise inconsistent
Guarantees under concurrent requests:

At-least once -- same record might appear more than once upon success
Atomic -- entire record will appear together
Inconsistent -- the record might appear different number of times on different replicas

Metadata updates

Master maintains no directory inodes but just a full-path mapping table -- simplifies locking
Deletions are handled lazily and garbage collected in the background
Master is an SMR consensus cluster on a log of all metadata operations
Shadow masters are read-only, slightly lagging masters

MapReduce

Link: http://cs.wisc.edu/~shivaram/cs744-readings/mapreduce.pdf

Motivation to building a general computation framework:

Automatic parallelization of common big data tasks
Automatic network and disk optimizations
Handling of machine failures as a norm

Programming model:

Data is a collection of records, each being a (key, value) pair
map function:
reduce function:

af://n189
http://cs.wisc.edu/~shivaram/cs744-readings/mapreduce.pdf

Execution of the framework:

Assumes input is a splittable collection

Assumes local storage is fast and cheap

Assumes replicated FS for inputs and outputs

If a task crashes on a worker node:

Retry on another node
If the same tasks repeatedly fails, end the job

Assumes idempotent tasks with no side effects
If a task is going slowly on a straggler:

Launch second copy of task on another node
Take the output of whichever finishes first

Master failure simply restart the entire job

Spark

Link: http://cs.wisc.edu/~shivaram/cs744-readings/spark.pdf

Motivation to Spark beyond MapReduce:

Programmability: most real applications require multiple MapReduce steps, leading to spaghetti code
Data reuse performance: MapReduce writes out massive data for every pass; expensive for iterative
applications

Core concept: resilient distributed datasets (RDDs)

Immutable, partitioned collections of (key, value) records

May be cached (termed "persisted") in memory for fast reuse

Supports 2 types of operations:

Transformations: RDD RDD(s)

af://n235
http://cs.wisc.edu/~shivaram/cs744-readings/spark.pdf

Narrow transformations do not contain aggregations, e.g., map , filter , sample , union ,
join with inputs all co-partitioned with output

Wide transformations require aggregations across multiple input RDDs, e.g., groupByKey ,
reduceByKey , and join with inputs not co-partitioned with output

 Narrow -- Wide --

Actions: RDD reduced results, e.g., collect , reduce , fold

Lineage graph is the DAG graph of transformations used to create an RDD

If a worker crashed and some partition of an RDD has been lost, trace back its lineage graph
and recompute that partition from what's available
Lineage graph can be divided into stages, where stage boundaries are wide dependencies; tasks

within the same stage can get pipelined
Scheduler is partitioning-aware and thus avoids wide dependencies as much as possible by co-
partitioning

Scheduling
Scheduling policies, cluster scheduler design and mechanisms, ...

Mesos

Link: http://cs.wisc.edu/~shivaram/cs744-readings/mesos.pdf

Cluster scheduling basics:

Scheduling policy: algorithm or optimization problem to decide how much resource to allocate for

each task

Space sharing: partition resources statically and exclusively to tasks
Time sharing: multiplex resources across multiple tasks, controlling how long does each occupy
the resource

Scheduling mechanism: how to implement the scheduler to enforce a chosen policy

Motivation to Mesos:

Cluster is multiplex across multiple frameworks (MPI, Spark, MapReduce), each having its own
internal scheduler across tasks

Want to avoid rigidly partitioning the cluster across frameworks

may lead to under-utilization with time-varying workloads

may fail to elastically react to bursts
cannot allow data sharing and co-location of frameworks

Mesos two-level, decentralized scheduling architecture:

af://n271
af://n273
http://cs.wisc.edu/~shivaram/cs744-readings/mesos.pdf

Worker nodes periodically report amount of vacant resources through heartbeat messages

Mesos master periodically makes resource offers to framework agents

Framework may reply with a list of tasks to allocate on those resources

May not use up all resources in the offer

Framework may also reject an entire offer due to constraints

Soft constraints: e.g., locality
Hard constraints: e.g., memory size

An optimization here is to apply filters before handing over offers -- resources that do not
pass the filters are guaranteed to get rejected, thus don't make the offer in the first place

Mesos master then forwards the tasks to available workers

Assumes most tasks are short -- when they finish, consider the next round of allocation
For long tasks, can do revocation beyond guaranteed allocation

Mesos master only maintains soft state, which can be reconstructed by talking to framework
schedulers and workers

To enable placement preferences, do lottery scheduling: offering slots to frameworks with
probabilities proportional to their preference weights on the resources

DRF

Link: http://cs.wisc.edu/~shivaram/cs744-readings/drf.pdf

Policy setting:

Achieving max-min fairness: maximizing the minimum share across users
Work-conserving: no resources are left idle
Slot-based model: allocation for a task goes in units of fixed slots (called demand vector, e.g.,

)
Applications have diverse needs across multiple resources

Dominant resource fairness (DRF) properties:

af://n332
http://cs.wisc.edu/~shivaram/cs744-readings/drf.pdf

Sharing incentive: user is no worse off then a cluster with resources
Strategy proof: user should not benefit by lying about their demands
Pareto efficiency: after allocation, not possible to increase one user's allocation without decreasing

someone else's
Envy free: user should not prefer the allocation of another user
Single resource fairness
Bottleneck fairness
Population monotonicity: one user leaving should not lead to decreasing other users' allocation; vice

versa
Resource monotonicity

DRF approach:

The dominant resource of a user is the one that it has the biggest percentage share of

Value of that percentage share is called the dominant share of the user

DRF Equalizing the dominant share of users
Algorithm that can be used to enforce this policy: whenever there's available resource in the cluster,
pick the user with the current lowest dominant share and allocate one more tasks of it

This algorithm provides instantaneous fairness and does not take into account the history of
allocations

Comparison to other approaches:

Asset fairness: equalize users' sum of resource shares over all resources

violates sharing incentive
Competitive equilibrium from equal incomes (CEEI): each user receives of each resource initially;
they can trade resources with other users in a perfectly competitive market

equivalent to maximizing the product of number of tasks over users
violates strategy proofness

Machine Learning
Machine learning frameworks, training systems, scheduling, serving, ...

af://n392

PyTorch Distributed

Link: https://arxiv.org/pdf/2006.15704.pdf

Is an example of data parallel CNN training:

Workers all hold the same complete model and parameters

Input batch is divided into mini-batches and distributed across workers

For each iteration:

workers compute forward pass on its mini-batch
workers compute backwards pass on its mini-batch to get gradients
the global gradients (as if no parallelism) is
workers perform a round of collective communication to know the full value of global gradients

workers all apply the gradients to model parameters using an optimizer

Collective communication patterns: broadcast , scatter , gather , reduce , allreduce

In CNN training, what we want to do is allreduce

Gradient bucketing optimization:

Why? Because doing an allreduce for each individual gradient value would be prohibitively slow

Model walks backwards the computation graph and assigns gradients to buckets

When bucket becomes full, do an allreduce to exchange the bucket

Can pipeline (overlap) backward pass computation over layers with gradient communication

Processes can form hierarchical ProcessGroups based on network link types

PipeDream

Link: https://cs.stanford.edu/~matei/papers/2019/sosp_pipedream.pdf

Limitations of only having data parallelism:

Gradient synchronization overhead can be very high for some model types

Overhead increases with the number of participating workers and GPUs
Each worker has to hold the complete set of model parameters; also cannot use heterogeneous
machines

Introducing model parallelism:

Each worker holds a subset of model layers
For each batch, computation flows through the workers and back

Combining the two parallelism paradigm gives us pipeline parallelism:

 Vanilla model parallelism --

 GPipe pipeline parallelism --

af://n394
https://arxiv.org/pdf/2006.15704.pdf
af://n434
https://cs.stanford.edu/~matei/papers/2019/sosp_pipedream.pdf

	

	 PipeDream pipeline parallelism --

Instead of feeding 1 input batch each round, feed in batches and pipeline their computation;

Steady state utilization should be high

Challenges:

Stage balancing: want stages to have the same amount of work

Solution: stage can be replicated, e.g., having two workers do the first stage, etc.
Use a profiler to estimate the computation time of forward & backward of each layer, their size

of parameters, etc., do the best split according to profile
Workload scheduling:

Solution: always do 1 forward 1 backward in steady stage on a worker (1F1B)
Effective learning: in PipeDream's version of pipeline parallelism, the forward pass of the next batch
is not using the most up-to-date model parameters

e.g., the forward of 5 uses a model where only the gradient of batch 1 is applied, not 2~4

Introduces a stochastic convergence problem (i.e., model staleness)

Weight stashing: workers also have to keep several recent versions of the model so that on-flight
forward passes of a batch use the same model version across workers

Loses the benefit of memory overhead saving due to this mitigation

Parameter Server

Link: https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Motivation to parameter server design:

Model is getting excessively large (up to parameters), hard to hold on computation nodes
Efficient and flexible gradient synchronization
Fault-tolerance and durability of intermediate model state
Most model parameter updates are sparse -- most entries are zeros, so updates can be compressed

Scalability of model storage and optimizer updates

Parameter server architecture:

af://n482
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-li_mu.pdf

Model is partitioned and stored (with replication) on parameter server nodes

Typical round of iteration:

1. workers do backward pass, push (sparse) gradients to servers
2. servers apply gradients with an optimizer to update the model parameters

3. workers pull parameters from servers for the next forward pass
API supports range push and pulls, as well as user-defined functions

As discussed before, can overlap iterations at the cost of having model staleness

"Consistency" (staleness) models:

Sequential: always synchronize at iteration boundaries -- always up-to-date
Eventual: no guarantee on parameter freshness
Bounded delay: parameter is bounded to be at most iterations stale

Implementation details:

Parameter versions implemented using vector clocks associated with each parameter

on every push, increment the timestamp at the workers index in the vector clock
on every pull, returns vector lock alongside

Model partitioned & replicated across servers using consistent hashing (DHT)

immediately-next node on ring is the primary replica
the following several nodes are secondary replicas for this partition

Straggler workers can be either replaced by adding a new worker or simply terminated

Gavel

Link: https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak

Motivation to Gavel:

Hardware heterogeneity:

Different types of accelerators, memory sizes, etc.

Different models have different preferences to accelerator type
Supporting a wide range of objectives:

Minimize makespan
Minimize average job completion time (JCT)
Fairness

af://n541
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak

Placement/co-location sensitivity

Heterogeneous scheduling is an optimization problem with the following constraints:

: model, i.e., task
: accelerator type

: the allocation matrix

The objective of the optimization problem depends on the chosen scheduling policy:

Weighted max-min fairness:

where , i.e., weighted sum over allocation

throughput matrix comes from the estimator module or provided by user

Minimize makespan:

Minimize finish-time fairness:

where

FIFO:

where is the total number of tasks

Shortest job first:

Minimize total cost:

Can have hierarchical policies, where each node may deploy a different policy across its children
nodes

Solve an optimization problem across entire organization
where weights are constrained by policy within entity, and multiply-chained

Scheduling mechanism -- round-based scheduler:

Every round is ~6 mins

At the beginning of every round, consider a list of schedulable jobs and solve an optimization
problem to get

Decide which jobs are chosen to run on which accelerators in this round, based on their number of
rounds spent on each accelerator type

compute all jobs' priority on each accelerator type by

for each accelerator, schedule the job with the highest priority on it

Is a greedy mechanism -- converges over rounds

Nexus

Link: https://dl.acm.org/doi/pdf/10.1145/3341301.3359658

Inference workloads and video analysis serving:

Jobs have latency service-level objectives (SLOs) that must be met to be considered successful
Lots of data coming in interactively and continuously
Each stream is processed by a DNN forward-pass "query"

Scheduling goal is to have high GPU utilization:

Deciding which GPUs hold which ML models

moving models to GPUs is expensive operation
GPU memory is limited, cannot hold all models at once

Job batching improves utilization but has to control its latency:

batch too small low latency for that single job, but low utilization
batch too big high latency, may miss latency SLOs, but high utilization

Batch-aware scheduling procedure:

Do profiling etc. to get a batch-to-performance mapping table as the following example

Objective is reaching the target throughput for all models, while meeting the latency SLO

Idea: divide time into duty cycles, length = of latency SLO

Why? Because need to ensure that an arriving task that just misses the start of a cycle can catch
the next cycle and still meet its SLO
From table, for each model, choose the batch size configuration that at least reaches its

throughput target
Then, try to pack them into the duty cycle

How to do the packing exactly?

1. given each model's input request rate, find the batch size configuration with the best
throughput, and start with full GPUs s.t. request rate (so that we won't stall on

client input)

af://n620
https://dl.acm.org/doi/pdf/10.1145/3341301.3359658

2. take the minimum duty cycle length across all models
3. try to pack two batches into one duty cycle -- if does not fit, try reducing the batch size of one

model until fit (so that we can pack, though that model's throughput may not be the optimal

any more)

Complex queries involve inference along a sequence of models:

Need to break down end-to-end SLO into individual model SLOs
Need to do query analysis to determine request rate splits if there are branches in the graph

Adaptive batching:

Clipper adapts batch size dynamically according to the request at head of queue

may lead to a high fraction of SLO misses and low utilization
early-dropping requests that cannot miss SLO is a good idea

Nexus does batch-aware dispatch: after batch size has been decided, do sliding-window over queue,

until requests in the entire window can meet SLO

requests ahead of them are just dropped, since they cannot meet SLO anyway with this batch
size

SQL Frameworks
Database analytical frameworks for SQL, ...

SCOPE

Link: http://www.vldb.org/pvldb/vol1/1454166.pdf

SCOPE architecture for analytical workloads in SQL (Structured Query Language):

Query language extension to SQL:

Input reading (Extraction): input can be from many sources; allows custom extractor function
specifying the logic for getting one row
All common SQL operators are supported
Language integrated queries (LINQ): allows calling C# functions inside the queries

Execution pipeline is MapReduce-like:

Process - Reduce
Combine is new: takes multiple tables that are co-partitioned, outputs one table

af://n693
af://n695
http://www.vldb.org/pvldb/vol1/1454166.pdf

System components:

Compiler: parses query and returns an internal parse tree

Optimizer: rewrite the query parse tree to get a query plan with the lowest estimated cost

Examples:

Removing unnecessary columns

Push down selection predicates
Pre-aggregating

Query plan is aware of being in a distributed system:

Runtime: applies run-time optimizations, e.g., locality-aware task placement

Snowflake

Link: https://event.cwi.nl/lsde/papers/p215-dageville-snowflake.pdf

Snowflake is a cloud-native, storage-disaggregated, elastic data warehouse, which enables data analytics as
a service; goals:

Software-as-a-Service

Considers mostly read-only analytical workloads
Storage disaggregation

Shared-nothing: cannot independently scale compute and storage, but has good locality
Shared-data via disaggregated storage: can scale independently and can leave data replication
entirely in the storage service, but loses locality

Elastic scaling according to workload

Highly available

Semi-structured data (partially data lake)

Snowflake architecture:

af://n738
https://event.cwi.nl/lsde/papers/p215-dageville-snowflake.pdf

Hybrid-columnar format for data storage

Virtual warehouses (VWs) are entirely stateless and isolated among users

Deploys local caching
To handle stragglers, does work stealing

A query may span multiple VWs
Cloud services are a collection of services for metadata & control

Metadata storage on a fast cloud key-value store
Transaction manager: MVCC concurrency control
Query optimizer: min-max pruning, etc.

For fault-tolerance, services and storage span multiple datacenters worldwide

Storage is the ground-truth and is geo-replicated
Each VM resides in one datacenter and is stateless
Each cloud service is stateless

Stream Processing
Streaming, events, dataflow, ...

Dataflow Model

Link: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43864.pdf

Streaming data means unbounded data that may arrive out-of-order, e.g.:

Physical sensor readings
Logs generated by services
Shared service with user sessions (e.g., multi-player gaming)

Streaming vs. Batching:

Previous batch processing can be viewed as a special case of stream processing, where we wait for a
fixed amount of time or input data, then run a batch job (e.g., MapReduce or Spark) to calculate the
output for that batch.

In streaming, we must differentiate the following types of timestamps:

Event time: time at which an event happened, tagged in the event
(Arrival time: time at which an event arrives at the system)

Processing time: time at which the event is used in computation
Processing time Arrival time Event time

af://n793
af://n795
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/43864.pdf

Dataflow model concepts:

Windowing (on event time):

Fixed (or Tumbling)
Sliding (or Moving)
Sessions (activity triggered/grouped)

Watermark that represent the skew (or lag) of system processing:

Note that the watermark is assumed to be an input given to the system as a heuristic

Data processing API:

ParDO : map
GroupByKey : group events by key
AssignWindow : put event into window(s)

MergeWindow : useful for sessions

Triggering: when in processing time are groups emitted

Trigger types:

At fixed time period
At fixed count of arriving events
At given watermark

Accumulation strategies:

Discarding: discard old sum
Accumulating: accumulate on old sum
Accumulating & Retracting: accumulate on old sum, while also returning negative old sum

Example of fixed windows, micro-batch watermark:

Example of fixed windows, arbitrary watermark:

Apache Flink

Link: https://asterios.katsifodimos.com/assets/publications/flink-deb.pdf

Flink's computation model:

Long-lived operators that implement map/reduce/windowing

Operators can be partitioned (scaled to multiple machines)

Operators can be stateful: they internally maintain mutable state

Windowing
Aggregation, running sums, etc.

Intermediate data streams:

Transient: pipelined data push

Materialized: blocking data push, materialized on disk

A special batch processing mode is integrated

Allows new blocking operators, e.g., sort , that can only be used in this mode

Fault-tolerance techniques to recover from failed stateful operators:

Asynchronous barrier snapshotting to periodically snapshot operators state to persistent storage

af://n876
https://asterios.katsifodimos.com/assets/publications/flink-deb.pdf

By injecting a "start snapshot" control message barrier to the dataflow
An operator makes snapshot at the time when it receives snapshot control messages from all
of its input edges -- before that it must block on edges that it has received a control message

from
Assumes in-order message delivery

Assumes that the input data source is replayable, e.g., Apache Kafka

After failure, reset all operators to snapshot, redo all processing from there beyond

Spark Streaming

Link: https://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf

Operator fault-tolerance in previous streaming frameworks:

Replicated operators: higher resource consumption; higher synchronization overhead
Snapshotting + replaying: high fail-over cost

Discretized streams (D-Streams) to mitigate these problems:

Divide time into fixed intervals

Run Spark-like stateless batch job on each discredited interval

Output and state are (persistently) saved
State can be tracked as streams of (key, event) (key, state)

APIs:

All stateless Spark transformations

Stateful windowing operations: slidingWindow , reduceByWindow , etc.

Associative only vs. Associate & invertible sliding window
Example of running sum:

Spark streaming system architecture:

af://n922
https://people.csail.mit.edu/matei/papers/2013/sosp_spark_streaming.pdf

Optimizations:

Timestep pipelining: no barrier across time steps unless needed (faithful to the lineage graph)
Checkpointing: checkpoints are done by async. I/O as RDDs are immutable; truncate lineage
graph after checkpoint
Stragglers are mitigated by speculative execution

Fault-tolerance: parallel recovery

When a worker fails, we need to recompute state RDDs stored on worker, then re-execute
tasks running on the worker
Strategy is to run all independent recovery tasks in parallel on all other healthy worker
machines in the cluster

Graph Processing
Iterative graph algorithms, embedding learning, graph neural networks, ...

PowerGraph

Link: https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf

Background on classic graph analytics:

Examples:

PageRank
Shortest path
Connected components

Pregel programming model: Vertex programs

"Think like a vertex"

Receive inputs from neighbors, combine Do computation on vertex Send message to
neighbors

Natural graphs impose significant challenge to existing frameworks:

Exponential distribution of neighborhood sizes
Lack of symmetry in graph structure, hard to perfectly partition

PowerGraph's Gather-Apply-Scatter programming model:

Gather: function called on receiving in-edge information from a neighbor

Apply: apply accumulated result of gather to vertex state

Scatter: send update to an adjacent neighbor

May possibly activate the neighbor if the difference (delta) is sufficiently large

Execution model:

af://n974
af://n976
https://www.usenix.org/system/files/conference/osdi12/osdi12-final-167.pdf

Active vertices:

At the beginning, all vertices are activated
In scatter, activate destination neighbor for the next iteration only if the update is sufficiently

significant
Accumulators and vertex states are persistent across iterations

Delta caching:

Cache accumulator value computed in previous iteration for reuse
Scatter optionally returns a delta; accumulate only the deltas to avoid running Gather for that

vertex
Synchronous vs. Asynchronous execution:

Sync: barrier after each minor-step (e.g., all the Gathers of an iteration)

Async: no barriers; execute active vertices as cores become available

Can optionally choose serializable mode: connected vertices are not processed
concurrently

Graph partitioning for distributed execution:

Edge-cut vs. Vertex-cut:

Edge-cut: previous systems assign vertices to machines; neighbors at the other end of a cut
edge become a ghost vertex imbalance for natural graphs
Vertex-cut: assign edges to machines; when a vertex is on many machines, one is the primary of
the vertex and data is synchronized across replicas

Edge distribution policies:

Random placement

Coordinated greedy placement: if either vertex of an edge is already placed, favor those
machines
Oblivious greedy placement: avoid coordination during parallel partitioning by only tracking
vertices present locally

Marius

Link: https://www.usenix.org/system/files/osdi21-mohoney.pdf

Graph embeddings learning:

Given a graph structure, learn a vector representation (i.e., embedding) for each vertex such that it
captures the graph structure

Then we can do efficient (approximate) K-nearest-neighbor algorithms, etc., using those
embeddings

Score function on an edge:

Score can be the opposite of some distance function
We want to maximize scores for edges in graph
At the same time, minimize scores for non-existing (negative) edges
Loss

af://n1062
https://www.usenix.org/system/files/osdi21-mohoney.pdf

Training algorithm can be standard SGD/AdaGrad optimizer

Note that this "learning" here has no concept of "model" or "training vs. testing" like in neural
networks: our goal here is solely to generate good vertex embeddings for a known graph

Large graphs lead to excessively large embedding sizes, cannot fit in memory

Data movement between CPU-GPU memory or between memory-disk is a major challenge

Marius design for I/O-efficient graph embeddings learning:

Pipelined training:

If the graph has relation embeddings (i.e., edge type embeddings) as well (which tend to be

small), store those in GPU memory
Pipelining introduces staleness: if a pre-loaded batch has vertices in common with a just-
computed batch that has not been updated on CPU memory, those embedding values will be
stale

Out-of-memory training:

Maintain a cache of graph partitions (partitioned by edges) in CPU memory

To traverse partitions in a cache-friendly way, uses BETA-ordering:

for i in range(num_batches):

 B = getBatchEdges(i)

 E = getEmbeddingParams(B)

 G = computeGrad(E, B)

 updateEmbeddingParams(G)

Initialize cache with partitions
In each cycle, keep the first partitions and swap in one next partition
Once all partitions touched once, re-initiate cache and repeat

DistDGL

Link: https://arxiv.org/pdf/2112.15345.pdf

Classic graph embedding learning vs. Graph neural networks (GNNs):

Embedding learning in Marius is decoder-only

GNNs, however, use a neural network to capture neighborhood structure

 is the one-hop neighborhood of vertex

 is a model-parameterized aggregation function
Go through such layers of a GNN effectively aggregates information of -hop neighbors for
each vertex

Distributed Deep Graph Library (DGL) system overview:

KVStore stores current embedding state

Apply METIS to partition graph across machines

Re-apply METIS to partition within a machine
Adopts heterogeneous graph partitioning to support knowledge graphs with multiple edge
types (have them co-partitioned)

Sampler samples the graph structure into mini-batches for training

Start with a set of target vertices

Sample neighbors of current vertices, resolve common neighbors
Repeat expansion for some iterations

Trainer runs NN training

Async mini-batch sampling with sync training: sample neighborhood and embeddings for
future mini-batches asynchronously only if current batch is not updating them

New Models
Serverless computing, content distribution, TPUs, ...

af://n1119
https://arxiv.org/pdf/2112.15345.pdf
af://n1162

Serverless Computing

Link: https://shivaram.org/publications/pywren-socc17.pdf

Usability is the main motivation behind serverless computing:

Users write simple, stateless computation functions
The framework completely abstracts away hardware management, scaling, fault-tolerance,

execution models, etc.
"Cloud button"
Network I/O cost from/to a storage service is now is competitive speed with local SSDs

PyWren state data processing architecture:

Functions (operators) cannot save state; input/output must be through external storage

Key-value store for low latency, small volume
Blob storage for high bandwidth

Cluster-side scheduler schedules functions as virtual machines or containers to run in a cluster

Does not have to cold-start containers each time; may have a pool of standby containers
Function dependencies are tracked on application side library

When to use serverless:

Yes cases:

Tasks are independent
Latency is not a concern
Cluster utilization is low

No cases:

Long running tasks with checkpoint overheads

Iterative algorithms with intermediate state
Convoluted function dependencies

Owl

Link: https://www.usenix.org/system/files/osdi22-flinn.pdf

Content distribution workload:

Distribution of read-only content to a huge amount of clients

Website resources

Video-on-demand
Docker container binaries
AI model parameters
Search indexes

af://n1164
https://shivaram.org/publications/pywren-socc17.pdf
af://n1214
https://www.usenix.org/system/files/osdi22-flinn.pdf

This is different from previous workloads discussed:

Read-heavy (-only), very few internal updates (typically with multi-versioning applied)
Can be extremely skew towards hot content

Number of clients can scale to millions or more
Different content may want different policies

Previous solutions to content distribution:

Hierarchical caching: deployed in most CDN solutions

Centralized solution, need centralized control over all cache servers
Requires a ton of resources to scale to millions of clients

Peer-to-peer (P2P) exchange: e.g., BitTorrent

Scalable and decentralized
Inevitable staleness in data
Lack of global picture, policy enforcement, and manageability

Owl system design & architecture:

Data source is assume to be a highly-available, scalable storage service

Peers run in each client-side library inside applications, forming the data plane

Simple API; asks (a random) tracker where to fetch data and whether to cache it in

memory/disk
Assumes clients are still organizational users whose resources can be used for caching
SuperPeers are standalone peers not linked into client applications, providing more reliable
resources for caching

Trackers store metadata mappings (peers cached chunks) and controls which peers cache what

data + which peers fetch data from where

Soft state, similar to GFS
A tracker will internally be a replicated service for fault-tolerance

Owl uses the idea of ephemeral distribution trees to maintain a view of what is going on:

Edges represent on-going data transfer, hence ephemeral

Policies affect decisions made by tracker:

Selection policy: upon receiving a new fetch request from a peer, decide which peer (or external
storage) should it fetch data from
Caching policy: which blocks should the peer keep in its memory/disk

Policies can be different across different data and applications
To avoid trackers becoming bottlenecks, peers are sharded and may belong to different tracker

Trackers periodically exchange metadata
A tracker can decide to delegate a peer's request to another tracker to let it make decision

Disadvantages of Owl's design:

Client network bandwidth is used by Owl's content distribution
For very small files, latency added by RPCs to tracker can be significant
Client needs to sacrifice memory/disk resources for caching
Peer churn could be high if applications are short lived

TPU

Link: http://stanford.edu/class/cs114/readings/tpu.pdf

Motivations behind building specialized hardware accelerator for inference:

New products (voice assistants) drastically increase inference workload volume

Energy consumption (power) per operation becomes a critical metric

Total cost of ownership of high-end generic CPUs/GPUs are high

ML inference workloads have potentials in building simplified hardware

Quantization to lower precision saves time and energy

8-bit integer multiplications, not floating-point
Need for predictable latency but not throughput

Tensor Processing Unit (TPU) architecture:

af://n1312
http://stanford.edu/class/cs114/readings/tpu.pdf

Most area is taken by the matrix multiply units
Model parameters are stored in on-chip DRAM cache
Local activations are stored in SRAM unified buffer

External interface is relatively low-bandwidth PCIe

Software execution atop TPUs:

Uses CISC format instructions, e.g., Read_Weights and MatrixMultiply ; all model layers are
translated into these instructions

Very specific to ML inference workload
Systolic execution:

Reading large SRAM uses much more power than doing arithmetic
Data streams through systolic arrays to avoid materializing the results as much as possible,
unlike in Von-Neumann architecture

Roofline model for measuring performance:

Tells you how much peak performance is possible for given operational intensity
For sufficiently high intensity, performance becomes flat become all compute resources are
saturated

	 Big Data Systems
	Infrastructure
	Datacenter as a Computer
	GFS
	MapReduce
	Spark

	Scheduling
	Mesos
	DRF

	Machine Learning
	PyTorch Distributed
	PipeDream
	Parameter Server
	Gavel
	Nexus

	SQL Frameworks
	SCOPE
	Snowflake

	Stream Processing
	Dataflow Model
	Apache Flink
	Spark Streaming

	Graph Processing
	PowerGraph
	Marius
	DistDGL

	New Models
	Serverless Computing
	Owl
	TPU

