
 Artificial Intelligence

Author: Guanzhou (Jose) Hu 胡冠洲 @ MIT 6.034

Teacher: Kimberle Koile & other 6.034 staff

NOTE - Some uncited figures come from reference notes / quizzes.

 Artificial Intelligence
Introduction

What is AI?
History of AI
Problem Solving Strategies

Rule-Based Systems
Forward Chaining
Backward Chaining
Example

Basic Searching
Deterministic Searching
Using Heuristics
Example

Games & Adversarial Searching
Static Evaluation
Minimax (Max-Min Steps)

 Pruning
Progressive Deepening
Example

Constraints Solving Problems
Depth-First Solver
Optimizations with Reductions
Example

Learning Methods
Learning by Nearest Neighbors
Learning by Building Identification Trees
Example

Basic Neural Nets
Boolean Logical Neural Nets
Activation Functions
Performance Measurement
Forward Propagation
Backward Propagation

Support Vector Machines (SVMs)
Drawing Decision Boundary
Mathematical Contraints & Calculations
Transformation & Kernels

Bayes Nets
Bayesian Network
Probability & Hypothesis
Checking Independence

Boosting
Adaboost

Spiritual/Right-now Notes
Quiz 2 SRN
Quiz 3 SRN
Quiz 4 SRN

Introduction

What is AI?

AI (Artificial Intelligence) is about artificial ways to achieve intelligence. Operational definition: "Architectures" that
emply "Methods" enabled by "Constraints" exposed by "Representations" that support "Models" of perception, thinking,
and actions.

http://web.mit.edu/kkoile/www/

Examples: So many, needless to put here ;)

In two aspects, AI is important:

Engineering: build programs that solve problems
Science: understand human intelligence, build computational models of human intelligence

Need to clarify: AI is not all about Machine Learning (neither this course)!

History of AI

Wikipage: History of Artificial Intelligence. (1956 ~ present, and future)

Important Points:

1. Representation right Almost done
2. Rumplestilskin principle: once you name something, you have power over it
3. Simple things Trivial things

Problem Solving Strategies

Reducing the problem: Build the goal tree (with and/or nodes) Look for a solution Evaluation of performance.

Fully exploit the power of:

Problem decomposition
Building (mathematical / executable) models
...

Rule-Based Systems

A Rule is an IF-THEN statement in the form:

A Knowledge Base is the set of rules. A Database is the collection of all the statements we currently have, which may
dynamically get updated as we apply rules.

Forward Chaining

Chain from Facts to Goals:

1. Match: Find Rules that can apply on our current Database (i.e., antecedent accords, no matter whether the
consequent exists or not), and bind the variables in it;

2. Fire: Pick a matching Rule, check whether the consequent exists in current Database. If not, apply the rule, add the
consequent into our Base, and apply the side-effect if there is one;

3. Repeat from 1. until nothing more can be done.

Properties:

With no NOT / DELETE clauses, a matching Rule must always continue to match
Without DELETE clauses, a fired Rule must add something into the Database

Backward Chaining

Chain from Goal to Facts, to see whether a Hypothesis is true, and what rules make it true. Essentially is to recursively
build an AND-OR tree, where the root is our Hypothesis.

Assumptions:

At a node, first tries to match in the list of existing assertions; If no matching assertions, then tries to find a rule with
matching consequent (this introduces a subtree); If no matching consequent, then raise false
Always pick assertion / rule / antecedent from the list in order, and append new ones at the bottom

cousin_rule =

IF: (antecedent)

 AND (A is parent of B,

 C is parent of D,

 A and C are siblings)

THEN: (consequent)

 B and D are cousins.

DELETE: (side-effect)

 /

https://en.wikipedia.org/wiki/History_of_artificial_intelligence

Iteration Rules Matched Rule Fired New Assertion Added

1 P0, P1, P2 P0 Alison is charismatic

2 P0, P1, P2, P4 P0 Brad is charismatic

3 P0, P1, P2, P4 P1 Chris can dance like Mick Jagger

4 P0, P1, P2, P4 P2 Chris wears leather

5 P0, P1, P2, P4 P4 Alison should become a rockstar

6 P0, P1, P2, P4 P4 Chris should become a rockstar

Short circuiting: whenever a branch of an AND is false / a branch of an OR is true, the rest branches are skipped

Example

An example from 2012 Quiz 1:

Rules & Initial assertions:

To backward chain to test the hypothesis "Chris should become a rockstar", the constructed goal tree is as follows:

And thus the rules the backward chainer looks is the following in order:

1. Chris should become a rockstar
2. Chris wears leather
3. Chris is a rebel
4. Chris can dance like Mick Jagger
5. Chris is nimble
6. Chris takes dance lessons

Running a full forward chaining on the initial assertions, the procedure is:

Additional notes:

When there is multiple-binding rules ... (?x) ... (?y) ... , some variables might not get binded at first look-up
branch (leave them as unbinded variable, e.g., (?y)); after that branch touches the bottom, it may finally be binded
to a value so the following sibling antecedent branches should be concrete

http://courses.csail.mit.edu/6.034f/Examinations/2012s1.pdf

Algorithm
Extend which

one in
queue?

How to add
extensions
into queue?

Backtrack?
Extended

list?

Possible
path

guaranteed?

Optimal
(edge len

considered)?

DFS 1st front ✓ ✓ / ✕ ✓ ✕

BFS 1st back ✓ ✓ / ✕ ✓ ✕

Branch &
Bound

best by anywhere ✓ ✓ / ✕ ✓ ✓

Hill
Climbing

1st
sort by ,
then front

✓ / ✕ ✕ ✓ / ✕ ✕

Best First best by anywhere ✓ ✕ ✓ ✕

Beam

keep top
beam-width

ones in each
depth by ,
then best by

anywhere ✕ ✕ ✕ ✕

A*
best by

anywhere ✓ ✓ ✓ ✓

Example: , called 1 variable binding backtrack.

Be careful of NOT / DELETE clauses

Basic Searching

Searching is a class of algorithms that allow exploration of abstract plans (= sequences of actions).

Search tree
Extended list: nodes that have been determined; when to extend again, avoid adding those paths stepping on these
nodes again
Backtrack: when deadend is reached, go back one step and iterate one the next extension path choice

Deterministic Searching

1. British Museum Search: from , enumerate & check whether there is a solution of scale

2. BFS, DFS (queue v.s. stack + avoid duplication with extended list)

3. Branch & Bound (BB): in this course an "extension" means a new path (instead of a new node to explore), so BB is
essentially Dijkstra

I don't know why they call it BB; for me pruning is BB ;(
Naturally, BB cannot handle negative edge weights

Using Heuristics

Heuristics! Use them as an estimate of which next step is better to pick up first. A heuristic function should be:

Admissible: actual true distance from goal; AND

Consistent (Monotone): actual distance between , where they are neighbors;

If using an extended list, the heuristic must be consistent
o.w., cannot ensure that the solution is optimal

Hill Climbing is different from Best First: it stays on the current node head

Beam Search: only top beam-width nodes at each level maintained in the agenda

A * Search: omitted

Example

Example from 2010 Quiz 1:

Given the following graph with start node "Troy" goal "Ithaca":

The A* search tree w/ extended list is as follows:

It expands nodes in the order: Troy, Z, A, B, C, D, F, Ithaca.

It gives an optimal path: Troy A B C D F Ithaca.

Games & Adversarial Searching

In games, using Rule-based Systems results in lack in global & long-term view, while basic searching algorithm only involve
one single target. (It's like players A & B both want A to win.) That's why we need Adversarial Searching.

Static Evaluation

The computation of the score of a certain State (Snapshot) is called Static Evaluaton. When player A is evaluating:

A's advantage Score higher
B's advantage Score lower
Tie Score = 0

For endgame states, there's normally a fixed evaluation rule so that, say, A wins = 1000, B wins = -1000, and Tie = 0.

For non-endgame states, the game is not over yet. We will need a heuristic function on the state to give an estimated
score.

Minimax (Max-Min Steps)

Build a Game Tree, where each node is a state. Root is the current state, and children of a node are the states we can go to
in that turn from that node. Leaves are all endgame states.

Layers interleave as MAX / MIN, representing that we forecast MAX / MIN player's turn. From top down, MAX player tries
to pick the move towards maximum score, when MIN player tries to minimize. Essentially it is a DFS with the goal flipping
at each depth.

 Figure from Prof. Bob Berwick's note.

We will get a best_moves list from this algorithm which ideally leads to that best_score . Make the first move in list.

The problem with minimax till endgame (leaves) is that we have to search until the leaf nodes, which is absolutely not
feasible for most of the games. So we should give a depth limit and search only up to that limit. If we do not reach the
leaves at depth limit, use heuristics to get scores.

 Pruning

With depth increasing, search time increases exponentially. There is one thing that we can optimize: if the current subtree
we are in already conflicts with the results from previous subtrees (i.e., the best score I can get from my children is worse
than the best of my previous siblings), than simply prune this subtree off. The play will never go into this subtree, since
the opponent will not allow him to do so in the last turn.

We maintain two values , :

 is the score that the MAX player will at least get, from the nodes already searched
 is the score that the MIN player will at most get, ...

Whenever , we no longer need to explore this subtree.

def minimax_till_endgame(state, maximize):

 # Base case reached.

 if state.is_game_over():

 return ([state], state.get_endgame_score(maximize), 1)

 # Recurse on all children.

 children = [minimax_endgame_search(s, not maximize)

 for s in state.generate_next_states()]

 # If i'm maximizing, pick the maximum of children's score results; o.w., pick the minimum.

 if maximize:

 best_moves, best_score, _ = max(children, key=lambda tup: tup[1])

 else:

 best_moves, best_score, _ = min(children, key=lambda tup: tup[1])

 # Number of evaluations done is the sum up of all branches.

 num_evals = sum(map(lambda tup: tup[2], children))

 # Enqueue current state to the moves.

 return ([state] + best_moves, best_score, num_evals)

def minimax_search(state, maximize, heuristic_fn=always_zero, depth_limit=INF):

 # Base case reached.

 if state.is_game_over():

 return ([state], state.get_endgame_score(maximize), 1)

 elif depth_limit == 0:

 return ([state], heuristic_fn(state, maximize), 1)

 # Recurse on all children.

 children = [minimax_search(s, heuristic_fn, depth_limit - 1, not maximize)

 for s in state.generate_next_states()]

 # ...

http://web.mit.edu/6.034/wwwbob/handout3-fall11.pdf

 Figure from Prof. Bob Berwick's note.

Progressive Deepening

Still, real-life games may require strict timing at each turn. Progressive Deepening is a kind of Anytime Algorithm, where
we do on depth limit from (well, actually maximal depth of this game). After each , we update the choice.
Whenever time is up, we return the current decided choice. Since searchig on a shallow depth is fast, it is guaranteed to
give a solution. Longer time limits give us chance to do deeper searches and get a better choice.

When using progressive deepening, we can also deploy the reordering trick to increase the chance of pruning at for
later iterations. Bottom up, at a MAX layer, sort children in non-increasing order from left to right; vice versa. Then, at the
following deeper searching, the right branch will more likely to be pruned.

Example

Example from 2015 Quiz 1 & 2017 Quiz 1:

The minimax with pruning on the following tree [top layer MAX, second layer MIN, bottom layer endgames], NO
pruning happens:

The minimax with pruning with a better ordering, pruning happens (C does not actually got statically evaluated):

def minimax_search_alphabeta(state, alpha=-INF, beta=INF, heuristic_fn=always_zero,

 depth_limit=INF, maximize=True):

 # Base case reached.

 if state.is_game_over():

 return ([state], state.get_endgame_score(maximize), 1)

 elif depth_limit == 0:

 return ([state], heuristic_fn(state, maximize), 1)

 # Recurse on children, update alpha/beta and prune if we see 'alpha >= beta'.

 best_moves, num_evals = [], 0

 for s in state.generate_next_states():

 child_moves, child_score, child_evals = minimax_search_alphabeta(s, alpha, beta,

heuristic_fn,

 depth_limit - 1, not

maximize)

 # Found better child, needs update.

 if maximize and child_score > alpha:

 alpha = child_score

 best_moves = child_moves

 elif not maximize and child_score < beta:

 beta = child_score

 best_moves = child_moves

 # Increment number of evaluations.

 num_evals += child_evals

 # Prune the rest branches because this whole subtree is not active.

 if alpha >= beta:

 break

 # Enqueue current state to the moves.

 return ([state] + best_moves, alpha if maximize else beta, num_evals)

http://web.mit.edu/6.034/wwwbob/handout3-fall11.pdf
http://courses.csail.mit.edu/6.034f/Examinations/2015s1.pdf
http://courses.csail.mit.edu/6.034f/Examinations/2017s1.pdf

Another clear example with notations:

Constraints Solving Problems

A Constraints Solving Problem (CSP) is a problem consisting of:

Variables

Values - each variable can be assigned one value / currently unassigned (have no assigned value yet)

Domains - each variable has a domain of values that can be assigned to, may get updated during the search for a
solution

Constraints - a constraint spedifies a condition to be satisfied between 's value and 's value

If there is at least one constraint between and , we say they are neighbors

The goal is to assign each variable to a proper value in its domain with all the constraints satisfied (possibly not solution or
multiple solutions).

Example:

One solution to this example is A = 1, B = 0, C = 2 .

Depth-First Solver

A naive algorithm to a CSP is to apply DFS on the search tree w/o any reduction (i.e., check only the assigned variable):

Variables = {A, B, C}

Initial_domains = {

 A: [1, 2],

 B: [0, 1],

 C: [0, 1, 2]

}

Constraints = [

 "A != B",

 "A != C",

 "C > A",

 "C > B",

 "B + C < 3"

]

def constraints_solving_dfs(problem):

 # Initial agenda constains the original snapshot.

 agenda, extension_count = [problem], 0

 while len(agenda) > 0:

 csp = agenda.pop()

 extension_count += 1

 # Some variable's domain reduced to empty / Some constraints are violated, then BACKTRACK.

 if has_empty_domains(csp) or not check_all_constraints(csp):

 continue

 # All values assigned, then got a solution.

 if len(csp.unassigned_vars) == 0:

 return (csp.assignments, extension_count)

 # Add the new problems with the possible values assigned for the next variable to agenda.

 var = csp.pop_next_unassigned_var()

 for val in csp.get_domain(var)[::-1]:

 agenda.append(csp.copy().set_assignment(var, val))

This will result in a huge number of meaningless extensions during the search.

Optimizations with Reductions

To improve, we consider doing different levels of reductions. Whenever we give a new assignment and want to add that
into the agenda, we propagate through the graph and try to eliminate some values from some variables' domains that are
certainly impossible.

To distinguish between different strategies of propagation, we have different enqueue condition (whether to propagate
further or not):

Forward-Checking (only check current var's neighbors, i.e., no propagation): enqueue condition is always False

Domain Reduction / Propagation through Reduced Domains (whenever a neighbor 's domain is reduced,
continue on 's neighbors): enqueue condition is always True

Doing so after every assignment is very expensive, but it can do elimination the most thoroughly
Given an initial problem, we can also do this once before the search (setting initial propagation agenda to all
variables in the problem) This simplifies the problem later to be solved

Propagation through Singleton Domains (continue on a neighbor 's neighbor only if now has only one possible
value in its domain): enqueue condition is csp.get_domain(n) has only 1 element

This sacrifices some eliminations but can be done much faster then propagating through all reduced domains

Example

Example from 2014 Quiz 2: omitted.

Do assignment list constraints involving the assigned variable in this step reduce & update the domains
(globally) propagate following the desired rule
Order matters: most constrained (most edges) first

Learning Methods

Learning by Nearest Neighbors

 # None of the assignment combinations work, so no solution.

 return (None, extension_count)

def propagate(enqueue_condition_fn, csp, var) :

 agenda = [var] # This is the propagation agenda, not the CSP solver's agenda.

 while len(agenda) > 0:

 var = agenda.pop(0)

 # Iterate through all neighbors.

 for neighbor in csp.get_neighbors(var):

 # If given a value w in the neighbor's domain, for all current variable's values v,

 # some constraint is violated, then w is certainly not possible to be assigned to

 # the neighbor. Eliminate w from the neighbor's domain.

 to_del = set()

 for v_neighbor in csp.get_domain(neighbor):

 violates_fn = lambda v_var: any(map(lambda c: not c.check(v_var, v_neighbor),

 csp.constraints_between(var, neighbor)))

 if all(map(violates_fn, csp.get_domain(var))):

 to_del.add(v_neighbor)

 # This neighbor's domain gets reduced.

 if len(to_del) > 0:

 for v_neighbor in to_del:

 csp.eliminate(neighbor, v_neighbor)

 # Check how far still to propagate.

 if enqueue_condition_fn(csp, neighbor) and neighbor not in agenda:

 agenda.append(neighbor)

def constraints_solving_generic(problem, enqueue_condition) :

 ...

 var = csp.pop_next_unassigned_var()

 for val in csp.get_domain(var)[::-1]:

 agenda.append(csp.copy().set_assignment(var, val))

 propagate(enqueue_condition, agenda[-1], var) # Propagation happens here.

 ...

http://courses.csail.mit.edu/6.034f/Examinations/2014s2.pdf

When handling numeric data, map data onto a -dimensional feature space, classify each input by its nearest neighbor
target. Classification is based on which of the target point (point with known classification) is the nearest to a given data
point. To avoid calculation of all distances for each input data point, we typically pre-calculate the Decision Boundary,
and then only use these boundaries to classify input data points.

Different definition of distance (suppose mapping onto a Cartesian space):

Euclidean:
Manhattan:
Hamming: (normally for binary / boolean coded vectors)

Cosine: (1 minus cosine of the angle between two vectors starting from origin (0 ~ 2)), i.e.,

differentiating the ratio between different factor values

Difficulties:

Proper extraction of features
Narrow spread of values Normalization, use "how much standard deviations is it away from the mean"

K-Nearest Neighbors: pick nearest neighbors and they vote for a classification pick the majority choice.

Learning by Building Identification Trees

When handling symbolic data:

Non-numeric
Some factors don't matter, some factors only contionally matter

We can use an Identification Tree (ID Tree) to do such classification. Consider the vampire test problem, each data point
has the following features: Shadow: {true, false, unknown}, Garlic: {true, false}, Complexion: {pale, ruddy,
avg}, Accent: {heavy, odd, none}, Vampire: {yes, no} . Our goal is to use the previous four features to identify the
last feature - a datapoint is vampire / not.

Calculation of a set's disorder from the Information Theory: , where is the number of
positive samples in the set, is the number of negative samples in the set, and is the total number . Disorder
is a value between 0 (least disordered, i.e., homogeneous) 1 (most disordered, i.e., half-half). Here, if the target feature
is non-binary, can be defined as

A feature's overall disorderness can then be given by a weighted sum of branch:

Pick the lowest-scored feature as the classifier of the current node.

If a branch is homogeneous, we are done on that branch. For each heterogeneous branch, we still need to inspect
another feature to further separate those data apart. Repeat the feature selection process on the remaining features on
data of that branch. Finally we will get an Identification Tree, where leaf nodes are all homogeneous (providing a
classification of the target feature):

After optimizing, the logic behind this tree can be simplified as:

if shadow or not garlic:

 not vampire

else:

 is vampire

The principle of Occam's Razor: law of parsimony, entities should not be more complicated without necessity. A
simpler ID tree is more likely to be correct for general data, while a sophiscated ID tree probably overfits the training
data.

Example

Exmaple from 2015 Quiz 2: omitted.

In a greedy disorder-minimizing ID tree, the same test will NOT appear twice in the same branch.
In a greedy disorder-minimizing ID tree, should never use a test with only one branch (does nothing), unless no other
tests can do better and breaking the tie gives that one-branch test.

Basic Neural Nets

Neural nets are biologically inspired classification model.

A Neuron: , A Neural Net:

 Figure from 6.034 lab 6. (T defaults to -1)

Boolean Logical Neural Nets

When input/output are all boolean (0/1), a combination of neurons can be used as logcial gates. For example, a neuron
with 2 inputs, both with weight 1, and a threshold , is an AND gate; a threshold , is an OR gate.

Visualization guideline:

1. On input layer, every boundary line needs a neuron, which can represent the sub plane on one side of this line

If can represent the region, done;
Else, need following logical gates layers to combine these sub planes

2. Find out the logical combination expression of these sub planes, and use corresponding neurons

3. For minimal such neural nets, need some tricks...

A AND B / A OR B : [2, 1]
A AND B AND C : [3, 1]
(A AND B) OR (A AND B) : [2, 2, 1]
(A AND B) OR C can be done in [3, 1]

Example from 2013 Quiz 3:

Given these four neural nets ,

The following pattern can be represented by:

Activation Functions

Typically used Activation Functions:

Stairstep (i.e., Threshold): if , otherwise

Sigmoid: ; when ,

ReLU:

Performance Measurement

The most basic performance measurement is . Its derivative is .

Forward Propagation

From input layer output layer, calculate neuron outputs until we get the final output of this neural net. Too simple, just
omitted here.

Backward Propagation

http://courses.csail.mit.edu/6.034f/Examinations/2015s2.pdf
http://courses.csail.mit.edu/6.034f/Examinations/2013s3.pdf

The goal of Backward Propagation is to derive the partial derivative for each weight, thus we know how to adjust

this weight value to improve the performance.

This gradient calculation has a reusable part for each neuron, that can be reused for all neurons in its previous layers.
This shows the dependencies given by the chain rules. So, typically we first calculate the values for neurons:

And then apply linear Gradient Descent with learning rate :

We can then Train the neural net's weight values by repeating [forward + backward] epoches on training data until the
performance is good enough.

Learning rate tradeoff:

Large: jumping around, never finding the maximum
Small: stuck in local maximum

Support Vector Machines (SVMs)

SVMs are another classification model which tries to find a maximum separation between samples. Maximization
helps avoid overfitting (but still vulnerable).

SVM terminology:

 Figure from 6.034 lab 7.

Core formula for an SVM is , where is the weight vector, is scalar offset, and is a datapoint
Not all vectors (points) on the gutter are necessarily support vectors - there might be ambiguity

Drawing Decision Boundary

For 2-D datasets:

1. Draw the convex hull for all points and points (contracting a rubber band around them)

2. Find where these two hulls are the closest, which can only be one of the following two situations:

 OR

 Figures from Roberts's note.

Mathematical Contraints & Calculations

Every SVM follows these contraints:

 defines the decision boundary
 defines the positive/negative gutters

Distance between two gutters

For all non-support vectors, ; For all support vectors, , where is the "supportiveness"

http://web.mit.edu/dxh/www/rlm-svm-notes.pdf

, where for positive/negative respectively

, (a higher- SVM's gutter is closer to the boundary)

The process of determing for Quiz questions (not training, because we find the boundary by hand first and
calculate the parameters. In actual training of SVMs, start from a bunch of initial values, and optimize on maximizing the
gutter width):

1. Find the boundary line and write it in the way

2. Use Eqn-2., pick a positive support vector , which gives scale the parameters above to get

actual and

(should be perpendicular to the boundary, pointing towards region)

Finding values: Solve equations given by Eqn-5. and Eqn-6.,

NOTE: On a two-supports gutter, moving one support vector A closer to the perpendicular point makes its and the
other B's .

Transformation & Kernels

There will be situations that such simple SVMs cannot handle. Here we need feature transformations to transform the
original data into a different representation where they can be correctly separated.

Doing so for every datapoint is tedious. Instead, we can change the Kernel which defines a way of computing the "dot
product" of two vectors. Simple linear kernel can only handle a straight line boundary. Fancier kernels can define
curves and thus give better classification for more complicated datasets:

Quadratic kernel can draw quadratic curves
Polynomial kernel can draw higher dimensional polynomial curves
Radial-basis kernels can transform the 2-D dot product into infinite dimensional spaces, so can give very sophiscated
separation but will emphasize overfitting

Given a feature representation transformation , the corresponding kernel is .

If one and one sit on exactly the same point, no kernels can separate them then.

Bayes Nets

Independence of events (variables):

(Marginally) Independent:
Conditionally independent:

Bayesian Network

A Bayesian Network (Bayes Net) encodes dependence between events. A variable is dependent on its parents:

 Figures from 6.034 Lab 8.

where each variables is accompanied with a probability table, recording "given its parents, the probabilities of this vairable
taking certain values":

 Figures from 6.034 Lab 8.

Suppose can take values , minimum number of probabilities we need to store in 's' probability table above is
. The column is not needed, becaused it can be infered by previous columns as they add up to 1 for each

row.

The Bayes net assumption says: Every vairable is conditionally independent of its non-descendants, given its parents. For
example, given , is independent of and .

Probability & Hypothesis

A probability of a hypothesis is in the form . For a Bayes net with variables :

Joint probability:

Can be computed with a chain rule from the top of the net to the bottom
Marginal probability: e.g.,

Can be computed with a partial chain rule
Can be computed as a sum of joint probabilities, with remaining variables traversing all their possible values

Conditional probability: e.g.,) is a ratio of marginal probabilities

Can be computed as a ratio of marginal probabilities
Can be simplified if the givens contain all 's parents but no 's descendants. In this case, all 's non-
descendents can be removed from the givens

Their mathematical relationships are recorded here: READ Flowchart.

Checking Independence

Two variables in a Bayes net can be structurally independent (refer to the definition of a Bayes net). A quesiton like "
?" can be converted to "Are and independent, given ?". A quesiton like "

?" can be converted to "Are and independent, given ? Are and independent, given ?
".

Use d-separation algorithm as a formal procedure to determine structural independence:

1. Draw the ancestral graph, a subnet with only the variables mentioned and their ancestors

2. Moralize: for each pair of variables with a common child, draw an undirected line between them

3. Disorient: replace all directed edges with undirected lines

4. Delete all the givens (e.g., and) and removed their edges

5. Read the answer:

If and are disconnected, they are structurally independent
If one or both of them are missing, they are independent
If and are connected (have a path), they are not structurally indpendent

Furthermore, two variables and may not be structurally independent, but happen to have approximately the same
probability values in all table entries w/ or w/o given. In this case, they are numerically independent. Structural
independence is a special case of numerical independence.

Bayes net with all variables independent has no edges; with NO variables independent follows either a mesh or a chain.

Boosting

Boosting is a technique to combine a bunch weak classifiers into a strong ensemble/amalgam classifier which can correctly
all or most samples.

http://web.mit.edu/jmn/www/6.034/probability-flowchart.pdf

Adaboost

Here we consider the Adaboost (Adaptive Boosting) algorithm on two classifications to get a strong classifier :

1. Initialize all training points with equal weights

2. Compute the error rate of each weak classifier as the sum of weights of all points it misclassifies

3. Pick the "best" weak classifier

Might be the one with the smallest error rate
Might be the one with error rate furthest from

(Error rate close to 100% results in a strongly negative voting power)
4. Use the error rate of to compute the voting power of ,

5. Add into the : after round

6. Update weights of each training point

If is classified correctly by : , going down

If is misclassified by : , going up

(This makes 's error rate now =)

7. Repeat steps.2-7 until:

No good classifier remains (all have error rate)
Reached max number of iterations

 is good enough (misclassifies few points)

This gives us an ensemble classifier . Weak classifiers may be selected multiple times. 's
error rate oscillates but is exponentially bounded.

Spiritual/Right-now Notes

Quiz 2 SRN

1. Prof. Howard Shrobe - Constraints in interpretation:

Constraint propagation in line-drawing analysis demonstrates that better description yields more constraint and
faster performance.
Constraint exploitation in object recognition involves determining vertex locations using a small number of
standard views.
Drawing-understanding program is most dependent on using constraint propagation to find consistent
interpretations.
Drawing-understanding program is best attributed to joint efforts of people with diverse characteristics.

2. Dr. Marc Raibert - Boston Dynamics

Exhibited robots: Spot (dog), Handle (chicken), Atlas (human).
3. Prof. Ed Boyden - Biological engineering

A core motivation of his research is to build better tools to study the brain.

Space & Time: difference in scale between components of the brain and the quick neurological impulses
compared to other biological processes, makes it difficult to study and model brain.

MAP: Expansion Microscopy

Describe a procedure that enlarges brains by infusing diaper polymers that swell.
CONTROL: Optogenetics

Describe how rats can be respond to light without normal retinal photoreceptors.
Optogenetics has to do with optical stimulation of genetically altered neurons.
Light can be used as a reward mechanism because fiber optic implants can be directed toward genetically
engineered photoreceptor neurons.
(Describe a procesure involving direct electrical stimulation of brain tissue so as to stop hand tremors.)

OBSERVE: Fluorescent Imaging

His researchers could more clearly image presynaptic and postsynaptic connection sites.
4. Prof. Peter Szolovits - Deep neural nets

Performance measurement Activation Training (partial deriv by chain rules) Threshold (by bias) Set
learning rate Re-use computation to save complexity.
Pooling refers to a mechanism that reduces input size by passing along only one value (e.g., max value) from
each group.
Sudden success of deep neural nets is best attributed to increases in computing speed.

5. Prof. Aleksander Madry - Adversarial attacks

Quiz 3 SRN

1. Prof. Howard Shrobe - AlphaGo:

Bootstraps up from random behavior by playing itself.
Uses limited-depth rollouts.

2. Prof. Peter Szolovits - Learning in sparse spaces: Learning phonological rules using Sussman-Yip:

Is possible because negative examples prevent overgeneralization (Stops generalizing when an evolving pattern
matches a negative example).
Starts from a "seed" example which it generalizes.
Forms its own negative examples by exploiting the fact that words have only one plural form.
Uses several examples to learn pluralization rules.
Sparseness of phonemes in a high-dimensional distinctive-feature space.

3. Dr. Kimberle Koile - Genetic algorithms:

Can be viewed as a kind of hill climbing.
Involve a mechanism that helps to avoid problems with local maxima.
Use mutations for local optimizations and crossovers for global jumps.
Works better if diversity is a component of fitness determination.
Karl Sim's creatures are so successful because the domain had many solutions, allowing genetics to produce a
variety of outcomes.

4. Prof. Randall Davis - Represetations:

Transition space suggests that in human thinking, change causes change.
Transition space works because a small vocabulary of change descriptors can describe complicated events.
Architectures using chunking remember useful sequences of actions.
Case-frame (Role-frame) representation has slots for entities participating in events.

5. Dr. Kimberle Koile - Near-miss learning:

Makes it possible to learn something definite with every sample, positive or negative.
Positive examples leading to generalization & negative examples cause specialization.
Specializes knowledge through forbidding and requiring relation links.
Number of samples approximating the number of characteristics learned.
Uses a climb-tree heuristic when a positive sample has a different type from the evolving model.
Starts with a seed example and then makes modifications to both limit and expand matches.

6. Prof. Nancy Kanwisher - Brain functional MRI (fMRI):

Indicated we have special purpose brainware dedicated to processing images of body parts.
Indicated we have special purpose brainware dedicated to words.

Quiz 4 SRN

1. Prof. Randall Davis - Architecture, General Problem Solver (GPS):

Subsumption architecture features robust action by way of functional abstraction
GPS is based on means-ends analysis

2. Dr. Gill Pratt - Toyota Research Institute:

Human drivers are extremely competent when viewed from a fatalities-per-mile perspective
Chauffeur is made for full autonomy and Guardian for driver assistance

3. Dr. Boris Katz - NLP, START:

START suggested the feasibility of Watson and Siri
Translates English into sets of ternary expressions
A good way to collect information needed for constructing a large set of natural language questions is to gather
semi-structured data from the information boxes on the top of Wikipedia pages

4. Prof. Robert Berwick - Language & Evolution, Merge:

Merge is associated with completion of an anatomical loop in the train
An important outcome of the merge operator in humans is the ability to create hierarchical representations
Merge is as a language CPU which processes speech into meaning and vice versa

5. Dylan Holmes - Story understanding, Genesis:

Uses if-then rules to build a graph of causal connections
Models different cultures with different sets of rules and concepts
Key idea is the use of rules and search for reasoning and conceptual analysis
Involves using a carefully tuned prior that is a function of model size to guide Bayesian structure search
Tells stories persuasively by filtering content

Reflects our human tendency to seek explanations
The role of stories in human intelligence explains why merge matters

6. Bonus - The AI Biz: None recorded.

