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1 Mathematical Background

1.1 Summations

1.1.1 Sums of squares and cubes

n∑
k=0

k2 =
n(n+ 1)(2n+ 1)

6

n∑
k=0

k3 =
n2(n+ 1)2

4

1.1.2 Harmonic series

n∑
k=1

1

k
= lnn+O(1)

1.2 Stirling’s approximation

log n! = n log n− (log e)n+O(log n)

2 Analysis of algorithms

2.1 Master theorem

Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and let T (n) be defined on the nonnegative

integers by the recurrence

T (n) = aT (n/b) + f(n)

where we interpret n/b to mean either bn/bc or dn/be. Then T (n) has the following asymptotic bounds:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a).

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log n).

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant c < 1 and all

sufficiently large n, then T (n) = Θ(f(n)).

Note: In cases 1 (case 3), f(n) needs to be smaller (larger) than nlogb a by a polynomial factor nε, so we

can’t always apply Master theorem.

E.g. T (n) = 2T (n/2) + n log n, logb a = 1, f(n) 6= Θ(n) and f(n) 6= Ω(n1+ε), can’t use Master theorem

to solve this recurrence.
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2.2 Big O analysis

2.2.1 Asymptotic notation

notation set of functions form limit form

O(g(n)) {f(n) : ∃ c > 0, n0 > 0, ∀ n ≥ n0, 0 ≤ f(n) ≤ cg(n)} lim
n→∞

f(n)

g(n)
<∞

Ω(g(n)) {f(n) : ∃ c > 0, n0 > 0, ∀ n ≥ n0, 0 ≤ cg(n) ≤ f(n)} lim
n→∞

f(n)

g(n)
> 0

Θ(g(n)) {f(n) : ∃ c1 > 0, c2 > 0, n0 > 0, ∀ n ≥ n0, 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)} lim
n→∞

f(n)

g(n)
= c, 0 < c <∞

o(g(n)) {f(n) : ∀ c > 0, ∃ n0 > 0, ∀ n ≥ n0, 0 ≤ f(n) < cg(n)} lim
n→∞

f(n)

g(n)
= 0

ω(g(n)) {f(n) : ∀ c > 0, ∃ n0 > 0, ∀ n ≥ n0, 0 ≤ cg(n) < f(n)} lim
n→∞

f(n)

g(n)
=∞

2.2.2 Big O properties

1. f(n) = O(g(n)), f(n) = Ω(g(n)) =⇒ f(n) = Θ(g(n))

2. O, Ω, Θ are transitive.

3. Θ is symmetric.

4. O(1) is the set of constants.

3 Sorting

3.1 Comparison sorts

Ω(n log n) lower bound on time complexity

3.1.1 Insertion sort

Insertion-Sort(A)

1 for j = 2 to A. length

2 key = A[j]

3 // Insert A[j] into the sorted sequence A[1 . . j − 1].

4 i = j − 1

5 while i > 0 and A[i] > key

6 A[i+ 1] = A[i]

7 i = i− 1

8 A[i+ 1] = key

Complexity: O(n2)

Pros:

Simple algorithm with little bookkeeping overhead.

Requires only one unit of extra storage, for swap.

Fast if input is nearly sorted.

Effective for small n (e.g. n ≤ 20), due to low overhead, and O(n2) being not too big for small n.

Cons: not practical for large input size because O(n2) is too high
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3.1.2 Mergesort

Merge(A, p, q, r)

1 n1 = q − p+ 1

2 n2 = r − q
3 let L[1 . . n1 + 1] and R[1 . . n2 + 1] be new arrays

4 for i = 1 to n1
5 L[i] = A[p+ i− 1]

6 for j = 1 to n2
7 R[j] = A[q + j]

8 L[n1 + 1] = ∞
9 R[n2 + 1] = ∞

10 i = 1

11 j = 1

12 for k = p to r

13 if L[i] ≤ R[j]

14 A[k] = L[i]

15 i = i+ 1

16 else

17 A[k] = R[j]

18 j = j + 1

Merge-Sort(A, p, r)

1 if p < r

2 q = b(p+ r)/2c
3 Merge-Sort(A, p, q)

4 Merge-Sort(A, q + 1, r)

5 Merge(A, p, q, r)

Complexity: O(n log n)

Pros: much faster for large n; can be parallelized

Cons: needs extra storage in L, R, 2n storage for sorting n numbers

Combining mergesort and insertion sort:

Divide problem into small groups (≈ 20 elements each).

Use insertion sort to sort each group.

Combine the sorted groups using merge.

3.1.3 Quicksort

Partition(A, p, r)

1 x = A[r]

2 i = p− 1

3 for j = p to r − 1

4 if A[j] ≤ x
5 i = i+ 1

6 exchange A[i] with A[j]

7 exchange A[i+ 1] with A[r]

8 return i+ 1

Complexity: O(n)
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Quicksort(A, p, r)

1 if p < r

2 q = Partition(A, p, r)

3 Quicksort(A, p, q − 1)

4 Quicksort(A, q + 1, r)

Complexity: depends on how balanced the pivot is.

Best case: u = v, O(n log n)

Worst case: u = n− 1, v = 0, O(n2)

Average case: O(n log n) (use recursion tree to see if u = 0.9n, v = 0.1n− 1)

Pros: generally a little faster than mergesort; needs no additional storage; can be parallelized

Comparing mergesort and quicksort:

In mergesort, the division is trivial, but combination step takes O(n) time.

Quicksort spends more time finding a nice division of the problem, to make the combination step faster.

Overall time complexity of mergesort and Quicksort are the same (assuming random input).

3.2 Sorting in linear time

3.2.1 Counting sort

Assumes all input values are integers in the range 0 to k, for some k. Used as a stand-alone algorithm,

and also as a subroutine in other algorithms, e.g., radix sort, which ensures k is small when counting sort is

fast.

Counting-Sort(A,B, k)

1 let C[0 . . k] be a new array

2 for i = 0 to k

3 C[i] = 0

4 for j = 1 to A. length

5 C[A[j]] = C[A[j]] + 1

6 // C[i] now contains the number of elements equal to i.

7 for i = 1 to k

8 C[i] = C[i] + C[i− 1]

9 // C[i] now contains the number of elements less than or equal to i.

10 for j = A. length downto 1

11 B[C[A[j]]] = A[j]

12 C[A[j]] = C[A[j]]− 1

Complexity: Θ(n+ k). If k = O(n), Θ(n).

Pros: stable

Cons: becomes increasingly inefficient as k gets larger

3.2.2 Radix sort

Radix-Sort(A, d)

1 for i = 1 to d

2 use a stable sort to sort array A on digit i

Complexity:

1. n d-digit numbers, where each digit is between 0 and k − 1, Θ(d(n+ k))
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2. n b-bit numbers, break each number into blocks of r ≤ b bits, Θ(
b

r
(n+ 2r))

3. setting r = min(blog nc, b) minimizes the running time Θ(
b

r
(n+ 2r))

3.2.3 Bucket sort

Works for real value inputs in [0, 1). Can shift and scale inputs so they always fall in this range.

Bucket-Sort(A)

1 let B[0 . . n− 1] be a new array

2 n = A. length

3 for i = 0 to n− 1

4 make B[i] an empty list

5 for i = 1 to n

6 insert A[i] into list B[bnA[i]c]
7 for i = 0 to n− 1

8 sort list B[i] with insertion sort

9 concatenate the lists B[0], B[1], . . . , B[n− 1] together in order

Complexity: Θ(n) if inputs are randomly distributed.

Proof. Total running time T (n) equals Θ(n) time distributing input values to buckets plus

n−1∑
i=0

O(n2i ) time

sorting all the buckets using insertion sort.

E[T (n)] = E

[
Θ(n) +

n−1∑
i=0

O(n2i )

]

= Θ(n) +

n−1∑
i=0

E[O(n2i )]

= Θ(n) +

n−1∑
i=0

O(E[n2i ])

Let Xij = 1 if the jth input value falls into the ith bucket, 0 otherwise. ni =

n∑
j=1

Xij is the number of inputs

in the ith bucket.

E[n2i ] = E


 n∑
j=1

Xij

2


= E

 n∑
j=1

n∑
k=1

XijXik



= E

 n∑
j=1

X2
ij +

∑
1≤j≤n

∑
1≤k≤n
k 6=j

XijXik


=

n∑
j=1

E[X2
ij ] +

∑
1≤j≤n

∑
1≤k≤n
k 6=j

E[XijXik]
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As E[X2
ij ] = 12 · 1

n
+ 02 ·

(
1− 1

n

)
=

1

n
, E[XijXik] = E[Xij ]E[Xik] =

1

n
· 1

n
=

1

n2
,

E[n2i ] =

n∑
j=1

1

n
+
∑

1≤j≤n

∑
1≤k≤n
k 6=j

1

n2

= n · 1

n
+ n(n− 1) · 1

n2

= 1 +
n− 1

n

= 2− 1

n

Thus E[T (n)] = Θ(n) +

n−1∑
i=0

O(E[n2i ]) = Θ(n) +

n−1∑
i=0

O

(
2− 1

n

)
= Θ(n).

3.3 Heapsort

3.3.1 Heap

Depth of a node: the length of the path from the node to the root

Height of a tree: the largest depth of any node

Complete binary trees: all layers, except possibly the last, are full; nodes in the bottom layer are as

far left as possible

height = h ⇐⇒ # of nodes ∈ [2h, 2h+1 − 1]

# of nodes = n ⇐⇒ height = blog2 nc
Heap: a complete binary tree where each node contains a value; the value of any node is larger (smaller)

than the value of any other node in its subtree in a max (min) heap.

3.3.2 Heapify

Left(i)

1 return 2i

Right(i)

1 return 2i+ 1

Max-Heapify(A, i)

1 l = Left(i)

2 r = Right(i)

3 if l ≤ A.heap-size and A[l] > A[i]

4 largest = l

5 else

6 largest = i

7 if r ≤ A.heap-size and A[r] > A[largest ]

8 largest = r

9 if largest 6= i

10 exchange A[i] with A[largest ]

11 Max-Heapify(A, largest)

Complexity: O(h− d) where h is the height of the heap and d is the depth of the node
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3.3.3 Building a heap

Label nodes left to right, top to bottom, heapify internal nodes in reverse label order (right to left,

bottom up).

Build-Max-Heap(A)

1 A.heap-size = A. length

2 for i = bA. length/2c downto 1

3 Max-Heapify(A, i)

Complexity: O(n)

3.3.4 Heapsort

Heapsort(A)

1 Build-Max-Heap(A)

2 for i = A. length downto 2

3 exchange A[1] with A[i]

4 A.heap-size = A.heap-size − 1

5 Max-Heapify(A, 1)

Complexity: O(n log n)

Cons: generally slower than others due to cache effects; cannot be parallelized

4 Search

4.1 Binary search

Binary-Search(A, x, l, r)

1 m = b(l + r)/2c
2 if x == A[m]

3 return m

4 if l == r

5 return nil

6 if x < A[m]

7 return Binary-Search(A, x, l,m− 1)

8 return Binary-Search(A, x,m+ 1, r)

Complexity: O(log n)

4.2 Ternary search

A function f is unimodal if there is an x s.t. f is monotonically decreasing for y ≤ x, and monotonically

increasing for y > x. Thus f has a unique minimum at x. Can also consider symmetric case where f first

increases then decreases. In this case f has a unique maximum. Our goal is to find x.
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Ternary-Search(f, l, r, ε)

1 if r − l < ε

2 return (r + l)/2

3 x = l + (r − l)/3
4 y = r − (r − l)/3
5 if f(x) < f(y)

6 return Ternary-Search(f, l, y, ε)

7 if f(x) > f(y)

8 return Ternary-Search(f, x, r, ε)

9 return Ternary-Search(f, x, y, ε)

Complexity: O(log( r−lε ))

4.3 Selection using median of medians

Median-of-Medians(A, p, r)

1 l = d(r − p+ 1)/5e
2 let M [1 . . l] be a new array

3 for k = 1 to l − 1

4 M [k] = A[Select(A, 5k + p− 5, 5k + p− 1, 3)]

5 M [l] = A[Select(A, 5l + p− 5, r, d(r − 5l − p+ 6)/2e)]
6 m = Select(M, 1, l, bl/2c)
7 if m == l

8 return b(5l + p− 5 + r)/2c
9 return 5m+ p− 3

Select(A, p, r, i)

1 if r − p+ 1 ≤ 5

2 Insertion-Sort(A[p . . r])

3 return p− 1 + i

4 exchange A[r] with A[Median-of-Medians(A, p, r)]

5 q = Partition(A, p, r)

6 k = q − p+ 1

7 if i == k

8 return q

9 elseif i < k

10 return Select(A, p, q − 1, i)

11 else

12 return Select(A, q + 1, r, i− k)

Complexity: S(n) = S(n/5) + S(u) +O(n) where u is the size of whichever partition we recurse on

O(n) finding medians of d(n/5)e groups of 5 numbers and partitioning the array

S(n/5) finding the median of the d(n/5)e medians

u ≤ 7n/10, S(n) = O(n), but the hidden constant term is large

4.4 Randomized selection

Randomized-Partition(A, p, r)

1 i = Random(p, r)

2 exchange A[r] with A[i]

3 return Partition(A, p, r)
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Randomized-Select(A, p, r, i)

1 if p == r

2 return A[p]

3 q = Randomized-Partition(A, p, r)

4 k = q − p+ 1

5 if i == k // the pivot value is the answer

6 return A[q]

7 elseif i < k

8 return Randomized-Select(A, p, q − 1, i)

9 else

10 return Randomized-Select(A, q + 1, r, i− k)

Complexity: expected linear time

5 Binary search trees

5.1 Operations

Complexity: all O(h)

5.1.1 Find

Find(x, k)

1 if x == nil or k == x.key

2 return x

3 if k < k.key

4 return Find(x. left , k)

5 return Find(x.right , k)

Iterative-Find(x, k)

1 while x 6= nil and k 6= x.key

2 if k < x.key

3 x = x. left

4 else

5 x = x.right

6 return x
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5.1.2 Insert

Insert(T, k)

1 x = T.root

2 if Find(x, k) == nil

3 allocate a new node z

4 z.key = k

5 z. left = nil

6 z.right = nil

7 y = nil

8 while x 6= nil

9 y = x

10 if z.key < x.key

11 x = x. left

12 else

13 x = x.right

14 z.p = y

15 if y == nil

16 T.root = z // tree T was empty

17 elseif z.key < y.key

18 y. left = z

19 else

20 y.right = z

5.1.3 Successor

Minimum(x)

1 while x. left 6= nil

2 x = x. left

3 return x

Successor(x)

1 if x.right 6= nil

2 return Minimum(x.right)

3 y = x.p

4 while y 6= nil and x == y.right

5 x = y

6 y = y.p

7 return y

5.1.4 Delete

Transplant(T, u, v)

1 if u.p == nil

2 T.root = v

3 elseif u == u.p. left

4 u.p. left = v

5 else

6 u.p.right = v

7 if v 6= nil

8 v.p = u.p

10



Delete(T, z)

1 if z. left == nil

2 Transplant(T, z, z.right)

3 elseif z.right == nil

4 Transplant(T, z, z. left)

5 else

6 y = Minimum(z.right)

7 if y.p 6= z

8 Transplant(T, y, y.right)

9 y.right = z.right

10 y.right .p = y

11 Transplant(T, z, y)

12 y. left = z. left

13 y. left .p = y

5.2 Rotations

Left-Rotate(T, x)

1 y = x.right // set y

2 x.right = y. left // turn y’s left subtree into x’s right subtree

3 if y. left 6= T.nil

4 y. left .p = x

5 y.p = x.p // link x’s parent to y

6 if x.p == T.nil

7 T.root = y

8 elseif x == x.p. left

9 x.p. left = y

10 else

11 x.p.right = y

12 y. left = x // put x on y’s left

13 x.p = y

Right-Rotate(T, y)

1 x = y. left // set x

2 y. left = x.right // turn x’s right subtree into y’s left subtree

3 if x.right 6= T.nil

4 x.right .p = y

5 x.p = y.p // link y’s parent to x

6 if y.p == T.nil

7 T.root = x

8 elseif y == y.p. left

9 y.p. left = x

10 else

11 y.p.right = x

12 x.right = y // put y on x’s right

13 y.p = x

Complexity: O(1)

11



5.3 AVL trees

AVL invariant: bal(x) = ht(x.r)− ht(x. l) at all nodes is -1, 0 or 1

Insert: BST-Insert first, then find the lowest unbalanced node and use O(1) (one or two) rotations

to restore balance.

Delete: BST-Delete first, then bottom up find unbalanced node and use O(h) rotations to restore

balance.

Complexity: O(h) = O(log n)

6 Hashing

6.1 Direct addressing

• Suppose we want to store (key , value) pairs, where keys come from a finite universe U = {0, 1, . . . ,m−1}

• Use an array of size m. All operations take O(1) time.

– Insert(k, v) Store v in array position k.

– Find(k) Return the value in array position k.

– Delete(k) Clear the value in array position k.

• Cons:

– If m is large, then we need to use a lot of memory. Uses O(|U |) space.

– If only need to store few values, lots of space wasted.

6.2 Hash tables

• A randomized data structure to efficiently implement a dictionary.

• Support find, insert, and delete operations all in expected O(1) time, but in the worst case, all opera-

tions are O(n). The worst case is provably very unlikely to occur.

• Do not support efficient min/max or predecessor/successor functions. All these take O(n) time on

average.

• A practical, efficient alternative to binary search trees if only find, insert and delete needed.

• Consists of the following:

– A universe U of keys.

– An array T of size m.

– A hash function h : U → {0, 1, . . . ,m− 1}.

• Assuming h(k) takes O(1) time to compute, all operations still take O(1) time. Uses O(m) space, much

less than direct addressing if m� |U |.

– Insert(k, v) Hash key to h(k). Store v in T [h(k)].

– Find(k) Return the value in T [h(k)].

– Delete(k) Delete the value in T [h(k)].

• Collisions unavoidable when |U | > m by Pigeonhole Principle.
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6.3 Closed addressing

• Every entry in hash table points to a linked list. Keys that hash to the same location get added to the

linked list.

• Suppose the longest list has length n̂, and average length list is n̄. Each operation takes worst case

O(n̂) time. An operation on a random key takes O(n̄) time.

– Insert(k) Add k to the linked list in T [h(k)].

– Find(k) Search the linked list in T [h(k)] for k.

– Delete(k) Delete k from the linked list in T [h(k)].

• Suppose the hash table contains n items, and has size m. Call α = n/m load factor. The average

time for each operation is O(α). However, even with uniform hashing, in the worst case, all keys can

hash to the same location, so the worst case performance is still O(n).

6.3.1 Heuristic hash functions

• Assume the keys are natural numbers. Convert other data types to numbers.

• Division method: h(k) = k mod m, often choose m a prime number not too close to a power of 2.

• Multiplication method: h(k) = bm(kA mod 1)c, where A is a constant in the range (0, 1).

6.3.2 Universal hashing

• No matter what the n input keys are, every operation takes optimal O(n/m) time in expectation, for

a size m hash table.

• Universal hash family H: ∀ keys x 6= y, Ph∈H [h(x) = h(y)] ≤ 1/m.

• Let S be a set of n keys, and let x ∈ S. If h ∈ H is chosen at random, then the expected number of

y ∈ S such that h(x) = h(y) is n/m.

• Constructing a universal hash family

– Choose a prime number p such that p > m, and all keys < p.

– hab(k) = ((ak + b) mod p) mod m

– Hpm = {hab | a ∈ {1, 2, . . . , p− 1}, b ∈ {0, 1, . . . , p− 1}}

6.4 Open addressing

Define a new hash function h : U × {0, 1, . . . ,m − 1} → {0, 1, . . . ,m − 1} and a probe sequence

〈h(k, 0), h(k, 1), . . . , h(k,m− 1)〉.
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6.4.1 Operations

Hash-Insert(T, k)

1 i = 0

2 repeat

3 j = h(k, i)

4 if T [j] == nil or T [j] == deleted

5 T [j] = k

6 return j

7 else

8 i = i+ 1

9 until i == m

10 error “hash table overflow”

Hash-Search(T, k)

1 i = 0

2 repeat

3 j = h(k, i)

4 if T [j] == k

5 return j

6 i = i+ 1

7 until T [j] == nil or i == m

8 return nil

Hash-Delete(T, k)

1 T [Hash-Search(T, k)] = deleted

Now search time depends both on current number of table entries, and also number of past deleted ones,

so closed addressing is more common when keys need to be deleted. Since each table entry stores one

key, a table of size m can store at most m keys. However, since each table entry stores just the key and no

pointers, then for the same amount of storage, an open addressing hash table can store more entries than a

closed addressing table. Thus, it has lower load factor.

6.4.2 Probe sequences

• Two Properties

– h(k, 0), h(k, 1), . . . , h(k,m− 1) covers all table entries 0, 1, . . . ,m− 1.

– Given a random key k, h(k, 0), h(k, 1), . . . , h(k,m−1) is a random sequence in the m! permutations

of {0, . . . ,m− 1}.

• Techniques to compute probe sequences

– Linear probing: h(k, i) = (h′(k) + i) mod m, where h′ is an ordinary hash function. h′(k) de-

termines the entire probe sequence, so theres only m different probe sequences. Poor performance

due to primary clustering. An empty slot with i filled slots before it gets filled with probability

(i+ 1)/m, so long runs of filled slots, that tend to get even longer.

– Quadratic probing: h(k, i) = (h′(k) + c1i+ c2i
2) mod m, where c1, c2 are constants. No pri-

mary clustering, but secondary clustering, where h(k1, 0) = h(k2, 0) implies both probe se-

quences are equal.
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– Double hashing: h(k, i) = (h1(k) + ih2(k)) mod m. h2(k) needs to be relatively prime to m to

make sure entire table searched. One way to ensure this is make m a power of 2, and h2 always

odd. Can also make m prime, m′ = m− 1, and set h1(k) = k mod m, h2(k) = 1 + (k mod m′).

Since each distinct (h1(k), h2(k)) leads to distinct probe sequence, double hashing can produce

O(m2) probe sequences. Performs quite well in practice.

6.5 Perfect hashing

• Ensures no colisions for a fixed set of keys.

• Allows Find(k) and Delete(k) in O(1) time. Does not support Insert(k).

• Uses two levels of universal hashing.

– Use first layer hash function h to hash key to a location in T .

– Each location j in T points to a hash table Sj with hash function hj .

– If nj keys hash to location j, the size of sj is mj = n2j .

• Suppose we store n keys in a hash table of size m = n2 using universal hashing, then there is a < 1/2

probability of collision. If collisions occur, pick another random hash function from the universal family.

In expectation, do this twice before finding a hash function causing no collisions.

• Suppose we store n keys in a hash table of size m = n. Then the secondary hash tables use space

E[
∑m−1
j=0 n2j ] ≤ 2n, where nj is the number of keys hashing to location j. Overall the sapce use is

O(m+
∑m−1
j=0 n2j ) = O(m).

6.6 Bloom filters

• Can implement a set. It only keeps track of which keys are present, not any values associated to keys.

• Supports insert and find operations. Doesn not support delete operations. Deletes can be done by

storing a count of how many keys hashed to that location, and incline/decline the counts when inserting

or deleting. But this uses more memory. Also, what if the counts overflow?

• Use less memory than hash tables or other ways of implementing sets.

• Approximate: can produce false positives, no false negatives. False positive probability

f =

[
1−

(
1− 1

m

)nk]k
≈
(

1− e−nk
m

)k
where k is the number of hash functions, m is the size of the table and n is the number of keys inserted.

False positive probability minimized by k = m ln 2
n , which leads to f = (1/2)k ≈ 0.6185

m
n , where m/n

is the average number of bits per item. So error rate decreases exponentially in space usage.

• Neat trick Given Bloom filters for sets S1, S2, we can create Bloom filter for S1 ∩S2 and S1 ∪S2 just

by bitwise ANDing or ORing S1 and S2’s filters.

• Consists of:

– An array A of size m, initially all 0’s.

– k independent hash functions h1, . . . , hk : U → {1, . . . ,m}.
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Bloom-Filter-Insert(A,H, x)

1 for each h ∈ H
2 A[h(x)] = 1

Bloom-Filter-Search(A,H, x)

1 for each h ∈ H
2 if A[h(x)] == 0

3 return false

4 return true

7 Divide and conquer

7.1 Multiplication

7.1.1 Gauss’s method for multiplying complex numbers

(a+ bi)(c+ di) = x+ yi, where x = ac− bd, y = ad+ bc = (a+ b)(c+ d)− ac− bd
4 multiplications + 2 additions → 3 multiplications + 5 additions

7.1.2 Karatsuba multiplication

To multiply binary numbers a and b, split their bits in half, a = 2n/2 · a1 + a0, b = 2n/2 · b1 + b0, then

ab = 2n · a1b1 + 2n/2 · (a1b0 + a0b1) + a0b0 = 2n · a1b1 + 2n/2 · ((a1 + a0)(b1 + b0)− a1b1 − a0b0) + a0b0.

Complexity: S(n) = 3S(n/2) +O(n), S(n) = Θ(nlog 3) = O(n1.59)

7.1.3 Strassen’s algorithm for block matrix multiplication

[
C11 C12

C21 C22

]
=

[
A11 A12

A21 A22

]
×
[
B11 B12

B21 B22

]
P1 = A11 × (B12 −B22) P2 = (A11 +A12)×B22 P3 = (A21 +A22)×B11

P4 = A22 × (B21 −B11) P5 = (A11 +A22)× (B11 +B22)

P6 = (A12 −A22)× (B21 +B22) P7 = (A11 −A21)× (B11 +B12)

C11 = P5 + P4 − P2 + P6 C12 = P1 + P2 C21 = P3 + P4 C22 = P5 + P1 − P3 − P7

Complexity: S(n) = 7S(n/2) +O(n2), S(n) = Θ(nlog 7) = O(n2.81)

7.1.4 FFT for polynomial multiplication

Details see Recitation2.pdf

Complexity: O(n log n)
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7.2 Counting inversions

Count-Crossing-Inversions(A, p, q, r)

1 n1 = q − p+ 1

2 n2 = r − q
3 let L[0 . . n1 − 1] and R[0 . . n2 − 1] be new arrays

4 num = 0

5 for i = 0 to n1 − 1

6 L[i] = A[p+ i]

7 for j = 0 to n2 − 1

8 R[j] = A[q + 1 + j]

9 i = 0

10 j = 0

11 k = p

12 while i < n1 and j < n2
13 if L[i] > R[j]

14 num = num + 1

15 A[k] = R[j]

16 j = j + 1

17 else

18 num = num + j

19 A[k] = L[i]

20 i = i+ 1

21 k = k + 1

22 if j == n2
23 num = num + (n1 − i− 1) ∗ n2
24 for r = 0 to n1 − i− 1

25 A[k + r] = L[i+ r]

26 else

27 num = num − j
28 for r = 0 to n2 − j − 1

29 A[k + r] = R[j + r]

30 return num

Count-Inversions(A, p, r)

1 if p == r

2 return 0

3 if r == p+ 1

4 if A[p] > A[r]

5 return 1

6 else

7 return 0

8 q = b(p+ r/2)c
9 return Count-Inversions(A, p, q) + Count-Inversions(A, q + 1, r)+

Count-Crossing-Inversions(A, p, q, r)

Complexity: T (n) = 2T (n/2) +O(n), T (n) = O(n log n)
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7.3 Maximum subarray

Find-Max-Crossing-Subarray(A, low ,mid , high)

1 left-sum = −∞
2 sum = 0

3 for i = mid downto low

4 sum = sum +A[i]

5 if sum > left-sum

6 left-sum = sum

7 max -left = i

8 for j = mid + 1 to high

9 sum = sum +A[j]

10 if sum > right-sum

11 right-sum = sum

12 max -right = j

13 return (max -left ,max -right , left-sum + right-sum)

Find-Maximum-Subarray(A, low , right)

1 if high == low

2 return (low , high, A[low ])

3 else

4 mid = b(low + high)/2c
5 (left-low , left-high, left-sum) = Find-Maximum-Subarray(A, low ,mid)

6 (right-low , right-high, right-sum) = Find-Maximum-Subarray(A,mid + 1, high)

7 (cross-low , cross-high, cross-sum) = Find-Max-Crossing-Subarray(A, low ,mid , high)

8 if left-sum ≥ right-sum and left-sum ≥ cross-sum

9 return (left-low , left-high, left-sum)

10 elseif right-sum ≥ left-sum and right-sum ≥ cross-sum

11 return (right-low , right-high, right-sum)

12 return (cross-low , cross-high, cross-sum)

7.4 Closest point pair

8 Greedy algorithms

8.1 Interval scheduling

8.2 Interval coloring

8.3 Huffman coding

Huffman(C)

1 n = |C|
2 Q = C

3 for i = 1 to n− 1

4 allocate a new node z

5 z. left = x = Extract-Min(Q)

6 z.right = y = Extract-Min(Q)

7 z. freq = x. freq + y. freq

8 Insert(Q, z)

9 return Extract-Min(Q) // return the root of the tree
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9 Graph algorithms

9.1 Graphs

9.1.1 Basic definitions

• G = (V,E), where V is the set of vertices (nodes), E ⊆ V × V is the set of edges.

|E| = O(|V |2)

• An edge e = (u, v) consists of two endpoints, u and v are adjacent (neighbors). Two edges are

adjacent if they share an endpoint.

• A path is a set of adjacent edges. A graph is connected if theres a path between any two nodes. If a

graph is not connected, it consists of a set of connected components. Distance between two nodes

is the smallest number of edges between the nodes in any path.

• A cycle is a path that starts and ends at the same vertex. A graph is acyclic if it doesnt have any

cycles.

• Degree of a vertex v, d(v), is the number of neighbors v has.

• Handshaking theorem: Let G = (V,E) be an undirected graph,
∑
v∈V d(v) = 2|E|.

9.1.2 Types of graphs

• directed (follow edge in direction indicated), undirected (follow edge in either direction)

• simple (no parallel edges between nodes, no self loops), cyclic (following edges from a node, can get

back to the same node)

• explicit (edges are listed), implicit (edges generated on the fly, e.g. in search trees)

• weighted (edges have values attached), unweighted (all edges have weight 1)

• dense (many edges in graph), sparse (O(n) edges in graph with n nodes)

• embedded (vertices have coordinates, e.g., in Euclidean space), topological (edges only indicate

connections)

• labeled (nodes have labels (names) attached)

9.1.3 Trees

• A tree is a connected, acyclic undirected graph.

• A tree with n vertices has n− 1 edges.

• Removing any edge from a tree disconnects it into two subtrees.

• Adding any edge to a tree creates a cycle.

• There is a unique path between any two nodes in a tree.

• A forest is a collection of trees.
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9.2 Representations of graphs

9.2.1 Adjacency list

An array of linked lists. Each array location represents a vertex. Linked list at a location gives (directed)

neighbors of vertex. Size is O(|E|), i.e., proportional to number of edges. Uses less memory if G doesnt have

many edges, but to see if (i, j) is an edge, need to scan i’s list in O(|V |) time.

9.2.2 Adjacency matrix

|V | rows and |V | columns. Entry (i, j) = 1 if i is adjacent to j in an undirected graph and if there is an

edge from i to j in a directed graph, 0 otherwise. Size is O(|V |2). Uses more memory, but can check if (i, j)

is an edge in O(1) time.

9.3 BFS

Use a queue Q storing nodes. Each node v has three fields:

v.d giving v’s distance to s

v.color ∈ {white,gray,black} showing whether v is undiscovered, being processed or processed

v.π giving v’s parent

BFS(G, s)

1 for each vertex u ∈ G.V − {s}
2 u.color = while

3 u.d = ∞
4 u.π = nil

5 s.color = gray

6 s.d = 0

7 s.π = nil

8 Q = ∅
9 Enqueue(Q, s)

10 while Q 6= ∅
11 u = Dequeue(Q)

12 for each v ∈ G.Adj [u]

13 if v.color == white

14 v.color = gray

15 v.d = u.d + 1

16 v.π = u

17 Enqueue(Q, v)

18 u.color = black

Complexity: Using an adjacency list, for each vertex, O(1) to enqueue it and O(d(v)) to examine all its

neighbors. T (n) =
∑
v∈V O(1 + d(v)) = O(V +

∑
v∈V d(v)) = O(V + 2E) = O(V + E).

The graph (V, {(v, v.π)}v∈V ) is a forest called the BFS forest. If all nodes are reachable from s, then

the forest has one tree. Each tree in the forest is connected, and each node has a unique path to the root of

the tree. Say the nodes with v.d = L are at layer L of the BFS tree. All these nodes are distance L from

the source node s.

9.4 DFS

Visit unvisited neighbors of a vertex when possible, otherwise backtrack to its parent. Use timestamps

to track when events occur. The timestamps are used in many other algorithms using DFS as a subroutine.
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Each node v has four fields:

v.colot ∈ {white,gray,black} showing whether v is undiscovered, being processed or processed

v.π giving v’s parent

v.d giving the time when v is discovered

v. f giving the time when v is finished, i.e., itself and its non-parent neighbors have been processed

DFS(G)

1 for each vertex u ∈ G.V
2 u.color = white

3 u.π = nil

4 time = 0

5 for each vertex u ∈ G.V
6 if u.color == white

7 DFS-Visit(G, u)

DFS-Visit(G, u)

1 time = time + 1 // white vertex u has just been discovered

2 u.d = time

3 u.color = gray

4 for each v ∈ G.Adj [u] // explore edge (u, v)

5 if v.color == white

6 v.π = u

7 DFS-Visit(G, v)

8 u.color = black // blacken u; it is finished

9 time = time + 1

10 u. f = time

Complexity: Using an adjacency list, similar as BFS, O(V + E).

The graph (V, {(v, v.π)}v∈V ) is a forest called the DFS forest.

Nesting property of discovery and finish time

u is a descendant of v =⇒ [u.d , u. f ] ⊂ [v.d , v. f ]

u and v are not descendants of each other =⇒ [u.d , u. f ] and [v.d , v. f ] are disjoint

Classify each edge e = (u, v) ∈ E as

tree edge (e is in the DFS tree)

back edge (v is an ancestor of u in the DFS tree)

forward edge (v is a descendant of u in the DFS tree)

cross edge (otherwise)

9.5 Applications of BFS and DFS

9.5.1 Connected components

Start with an arbitrary node s in V and run BFS or DFS from s. Let V ′ be all the black nodes. V

forms one connected component. If V − V ′ 6= ∅, set V = V − V ′, and repeat the above process to find more

connected components.

Complexity: O(V + E). Each node v is processed once, i.e., takes O(1 + d(v)) time.
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9.5.2 Testing bipartiteness

Is-Bipartite(G)

1 s = any vertex v ∈ G.V
2 BFS(G, s)

3 for each vertex u ∈ G.V
4 if u.d is even

5 u.color = red

6 for each edge (u, v) ∈ G.E
7 if u.color == v.color

8 return false

9 return true

Complexity: O(V + E)

9.5.3 Satisfiability (2SAT)

Write expressions in conjunctive normal form (CNF), i.e., as the ANDs of ORs. In k-CNF, each

clause has k literals. Brute force solution O(2k).

Given a 2-CNF formula φ, convert it into a directed graph G. There are two nodes, called x and ¬x, for

each variable x in φ. For each clause of the form (¬a ∨ b) in φ, create an edge (a, b).

If theres a path from a node u to v, then theres also a path from ¬v to ¬u.

Suppose there is a variable x such that there is a path from x to ¬x and a path from ¬x to x in G, Then

φ is not satisfiable.

2-Sat(G)

1 for each vertex x ∈ G.V
2 x.value = nil

3 if Exist-Path(x,¬x) and Exist-Path(¬x, x)

4 return false

5 Q = G.V

6 while Q 6= ∅
7 x = any vertex such that Exist-Path(x,¬x) == false

8 R = {all the vertices reachable from x found by BFS or DFS}
9 for each vertex v ∈ R

10 if v.value == NIL

11 v.value = true

12 Q = Q− {v}
13 if ¬v.value == nil

14 ¬v.value = false

15 Q = Q− {¬v}
16 return true

Complexity: O(n(m+ n)), where n, m are the number of literals and clauses, resp.

9.5.4 8 queens puzzle

• Use a directed graph to search for solutions.

• Each vertex represents a legal placement of k ≤ 8 queens. The root of the tree represents the empty

board. At most 88 nodes, actually far less.
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• Edge (u, v) means placement v is an extension of u.

• Nodes on level 8 of solution graph are solutions to puzzle.

• Algorithm

– Run DFS, starting from the root node (empty board).

– If current node has k > 0 child nodes, run DFS from each child node in order. After all DFS’s

finished, backtrack to parent node.

– If node were exploring has 0 child nodes, backtrack to parent.

– If we reach a level 8 node, record it as a solution.

• Uses O(1) memory. Only need to keep track of the parent nodes in the DFS branch were searching.

• Huge time complexity since DFS needs to go through all nodes of the solution tree, but still much

faster than brute force search.

9.5.5 Solving a maze

• Represent the maze by an undirected graph.

• Nodes are junctions, where multiple paths branch off. Also two nodes for the start and finish.

• Edges between nodes that dont have intermediate junctions.

• Algorithm

– Run DFS on graph from the start node.

– If we visit finish node, chain of parent nodes back to start node is maze solution.

– If DFS returns without visiting finish node, maze has no solution.

9.5.6 Partial orders

• A partial order is an (incomplete) ordering on a set.

• Can be represented by a directed graph, where vertices are the elements in the set, and an edge (v, w)

means v < w in the order.

• Graph must be acyclic for the partial order to be valid, called a directed acyclic graph (DAG).

• Topological sort of the DAG representing the partial order: Find a total order consistent with the

partial order. There may be multiple consistent orderings, we can return any one.

• Suppose v < w in a partial order corresponding to G. Then v. f > w. f .

Topological-Sort(G)

1 call DFS(G) to compute finishing times v. f for each vertex v

2 as each vertex is finished, insert it onto the front of a linked list

3 return the linked list of vertices

Complexity: O(V + E)
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9.5.7 Strongly connected components

• A maximal set of nodes C in a directed graph G such that for all v, w ∈ C, both paths from node v to

w and from w to v exist.

• Suppose we contract all the nodes in each SCC of G to a single node. This forms a component graph

G′, then G′ is a DAG.

• The SCCs output in the second DFS occur in the topological sort order of the component graph.

Strongly-Connected-Components(G)

1 call DFS(G) to compute finishing time u. f for each vertex u

2 compute GT // with all edges in G reversed

3 call DFS(GT), but in the main loop of DFS, consider the vertices in order of decreasing u. f (as computed in line 1)

4 output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Completxity: O(V + E) = 2O(V + E) +O(E)

9.5.8 Biconnected components

• Articulation point: a node whose removal separates the graph into multiple parts.

• Biconnected graph: graph without articulation points, are either a single edge or have ≥ 2 edge

disjoing paths between any pair of nodes.

• Biconnected component: a maximal biconnected subgraph.

Biconnected-Components(G)

1 S = ∅ // S is a stack different from the one used to implement DFS itself

2 C = ∅ // C is the set of edges in a biconnected component

3 SCC = ∅
4 during DFS(G)

5 for each edge e encountered

6 S.push(e)

7 if DFS backtracks to an edge (u, v) where u is an articulation point

8 repeat

9 e = S.pop()

10 C = C ∪ {e}
11 until e == (u, v)

12 SCC = SCC ∪ {C}
13 C = ∅
14 return SCC

Complexity: O(V + E) if the articulation points are known.

9.6 MST

Start with no edges, and add one edge per stage. At every stage, edges form a partial MST, which does

not have any cycles and is a forest. Stop when adding any edge creats a cycle.

MST principle: Let G be a weighted graph. Suppose H is a subset of some MST of G. C is any

connected component of H. S is set of edges connecting C to any other component of H. e is the

min weight edge in S. Then H ∪ {e} is also a subset of some MST of G.
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9.6.1 Prim’s algorithm

MST-Prim(G,w)

1 // H contains the nodes in the partial MST

2 H = {an arbitrary node v ∈ G.V }
3 // F contains the edges in the partial MST

4 F = ∅
5 // R contains the edges touching F and not creating a cycle, initially containing all edges from G.V

6 R = ∅
7 for each vertex u ∈ G.Adj [v ]

8 R = R ∪ {(u, v)}
9 while H 6= G.V

10 e = Get-Min-Weight-Edge(R)

11 let e = (u, v), with v /∈ H
12 H = H ∪ {v}
13 F = F ∪ {e}
14 for each vertex u ∈ G.Adj [v ]

15 if u /∈ H
16 R = R ∪ {(u, v)}

Complexity: O(E log V ) = O(1) +O(V ) +O(V log V ) +O(E log V ), R implemented by priority queue.

9.6.2 Kruskal’s algorithm

MST-Kruskal(G,w)

1 A = ∅
2 for each vertex v ∈ G.V
3 Make-Set(v)

4 sort the edges of G.E into nondecreasing order by weight w

5 for each edge (u, v) ∈ G.E , taken in nondecreasing order by weight

6 if Find-Set(u) 6= Find-Set(v)

7 A = A ∪ {(u, v)}
8 Union(u, v)

9 return A

Complexity: O(E log V ) = O(V ) +O(E log V ) + EO(log V )

9.6.3 Arborescences

• Directed spanning trees. Given a directed graph and a root vertex r, there is a unique directed

path from r to every other vertex.

• BFS or DFS can find some arborescence, if one exists.

• A subgraph T of G is an arborescence rooted at node r ⇐⇒ T has no directed cycles and every node

v 6= r has exactly one incoming edge

• Edge reweighting

– For each vertex v, let δ(v) be the minimum cost of any incoming edge.

– For each of its incoming edges (u, v), set w∗(u, v) = w(u, v)− δ(v).

– Call the reweighted graph G′. All edge weights in G′ are nonnegative.
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– An arborescence is minimum weight for G′ if and only if it is minimum weight for G.

– Each vertex in G′ has at least one incoming edge with weight 0.

– If a set of weight 0 edges form an arborescence, then it has min weight.

Arborescence(G,w)

1 for each vertex v ∈ G.V
2 v.δ = min(weight of incoming edge (u, v))

3 for each incoming edge (u, v)

4 w(u, v) = w(u, v)− v.δ
5 Q = ∅
6 for each vertex v ∈ G.V
7 Q = Q ∪ {one of (u, v) such that w(u, v) = 0}
8 if Q is an arborescence

9 return Q

10 C = a directed cycle found by BFS or DFS

11 v = Contract(C)

12 return Arborescence(G− C + {v}, w) + C − {one edge of C}

Complexity: O(V E)

9.7 Single source shortest paths (SSSP)

9.7.1 Relaxations

Initialize-Single-Source(G, s)

1 for each vertex v ∈ G.V
2 v.d = ∞
3 v.π = nil

4 s.d = 0

Relax(u, v, w)

1 if v.d > u.d + w(u, v)

2 v.d = u.d + w(u, v)

3 v.π = u

9.7.2 Negative weight cycles

• A cycle in the graph such that the sum of all weights on the cycle is negative.

• If a graph has a negative weight cycle reachable from the source, then shortest paths are not well

defined, because we can repeatedly go around the cycle to get arbitrarily short paths.

9.7.3 Properties of shortest paths

• Suppose a graph doesnt contain any negative weight cycles, and all nodes are reachable from the source

s.

• Triangel inequality: The length of a shortest path from s to v, δ(s, v) ≤ δ(s, u) + w(u, v)

• Shortest subpaths: Let p = 〈(s, v0), (v0, v1), . . . , (vk, v)〉 be a shortest path from s to some node v,

then for every vi ∈ {v0, . . . , vk}, 〈(s, v0), (v0, v1), . . . , (vi−1, vi)〉 is a shortest path from s to vi.
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• Shortest path tree: There exists a tree T rooted at s such that the shortest path from s to any node

v lies in T . Each node v has a parent in the tree. By following parent pointers starting from v, we find

shortest path from s to v.

9.7.4 Bellman-Ford algorithm

Returns false if there is a negative weight cycle reachable from s in the graph. Settles nodes in order

of number of edges on the shortest path.

Bellman-Ford(G,w, s)

1 Initialize-Single-Source(G, s)

2 for i = 1 to |G.V | − 1

3 for each edge (u, v) ∈ G.E
4 Relax(u, v, w)

5 for each edge (u, v) ∈ G.E
6 if v.d > u.d + w(u, v)

7 return false

8 return true

Complexity: O(V E)

9.7.5 Dijkstra’s algorithm

Assumes all weights are nonnegative. Settles nodes in order of distance of node from source. Q is a

priority queue.

Dijkstra(G,w, s)

1 Initialize-Single-Source(G, s)

2 S = ∅
3 Q = G.V

4 while Q 6= ∅
5 u = Extract-Min(Q)

6 S = S ∪ {u}
7 for each vertex v ∈ G.Adj [u]

8 Relax(u, v, w)

Complexity: O(E log V ) using a binary (min) heap, O(V log V + E) using a Fibonacci heap

9.8 All pairs shortest paths (APSP)

• Want to find the shortest paths from each node to all the other nodes.

• Represent this by an n×n matrix L, where Li,j is the length of shortest path from i to j, and n = |V |.

• Can also output a predecessor matrix Π, where Πi,j is the last node before j on the shortest path from

i.

• Assume in following that there are no negative weight cycles. Algorithms can be modified to detect

negative weight cycles.

• Can solve APSP by running SSSP n times.

– If all weights are nonnegative, running Dijkstra |V | times takes O(V 2 log V + V E) time.

– For general weights, can run Bellman-Ford |V | times, in O(V 2E) = O(V 4) time.
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9.8.1 Recursive shortest paths

• Given nodes i, j, and 1 ≤ m < n, let l
(m)
i,j be the length of the shortest path from i to j using at most

m edges, or ∞ if there is no such path. Set l
(0)
i,j = 0 for i = j, and l

(0)
i,j =∞ otherwise.

• l(m)
i,j = min

1≤k≤n
{l(m−1)i,k + w(k, j)}

• The shortest path distances are given by {l(n−1)i,j }i,j

9.8.2 Matrix multiplication APSP

Extend-Shortest-Paths(L,W )

1 n = L.rows

2 let L′ = (l′ij) be a new n× n matrix

3 for i = 1 to n

4 for j = 1 to n

5 l′ij = ∞
6 for k = 1 to n

7 l′ij = min(l′ij , lik + wkj)

8 return L′

APSP(W )

1 n = W.rows

2 L(1) = W

3 m = 1

4 while m < n− 1

5 let L(2m) be a new n× n matrix

6 L(2m) = Extend-Shortest-Paths(L(m), L(m))

7 m = 2m

8 return L(m)

Complexity: similar to matrix multiplication, O(n3 log n) using repeated doubling

9.8.3 Floyd-Warshall algorithm

Consider the shortest path from i to j using only nodes 1, . . . , k as intermediate nodes, which are

nodes on the path besides i and j.

Let d
(k)
i,j be the minimum distance from i to j using 1, . . . , k as intermediate nodes. The shortest path

distance from i to j equals d
(n)
i,j . Define d

(0)
i,j = wi,j .

Floyd-Warshall(W )

1 n = W.rows

2 D(0) = W

3 for k = 1 to n

4 let D(k) = (d
(k)
ij ) be a new n× n matrix

5 for i = 1 to n

6 for j = 1 to n

7 d
(k)
ij = min(d

(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj )

8 return D(n)

Complexity: O(n3), can also compute the predecessor matrix in O(n3) time.
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9.8.4 Johnson’s algorithm

Johnson(G,w)

1 compute G′, where G′.V = G.V ∪ {s}, G′.E = G.E ∪ {(s, v) : v ∈ G.V }, and w(s, v) = 0 for all v ∈ G.V
2 if Bellman-Ford(G′, w, s) == false

3 print “the input graph contains a negative-weight cycle”

4 else

5 for each vertex v ∈ G′.V
6 set h(v) to the value of δ(s, v) computed by the Bellman-Ford algorithm

7 for each edge (u, v) ∈ G′.E
8 ŵ(u, v) = w(u, v) + h(u)− h(v)

9 let D = (duv) be a new n× n matrix

10 for each vertex u ∈ G.V
11 run Dijkstra(G, ŵ, u) to compute δ̂(u, v) for all v ∈ G.V
12 for each vertex v ∈ G.V
13 duv = δ̂(u, v) + h(v)− h(u)

14 return D

Complexity: O(V 2 log V + V E) = O(V E) +O(V 2 log V + V E)
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