
 Advanced Operating Systems
Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison

Teacher: Prof. Andrea Arpaci-Dusseau

 Advanced Operating Systems
Storage: Local HDD FS

FFS
LFS

Storage: Disk Failures
RAID
RDP

Storage: User File Benchmarking
iBench

Storage: Archival Storage
SnapMirror
Venti
Data Domain

Storage: FS Caching
ARC

Storage: Crash Consistency
ALICE
OptFS

Storage: SSD Contract
Unwritten Contract

Storage: ML for Sys
Bourbon

Storage: Persistent Memory
Mnemosyne
LevelHash

Synchronization: Monitors
Monitors
Mesa

Synchronization: Multicore Scalability
Linux Scalability
Commutativity Rule

Synchronization: Scalable Locking
RCL
Shuffling

Scheduling: User-Level Threads
Scheduler Activations
Arachne

Scheduling: System Services
SEDA
TAM
Monotasks

Scheduling: Scheduler Algorithms
Lottery Scheduling
Linux Scheduler

Scheduling: Resource Tracking
Resource Containers

Scheduling: GPU Scheduling
Themis

OS Structure: OS Models
THE
Nucleus
Exokernel
Arrakis

OS Structure: Disaggregation
LegoOS

OS Structure: OS in HLL
Biscuit

http://pages.cs.wisc.edu/~dusseau/


OS Structure: Virtual Machines
Disco
VMware ESX
ReVirt

This note lists knowledge fragments and great ideas shown by systems research papers on the reading list.

Storage: Local HDD FS

FFS

Link: https://dsf.berkeley.edu/cs262/FFS-annotated.pdf

Motivation

HDD structure; Low throughput by long seeks on random accesses

Traditional UNIX FS does not do well:

No locality in block allocation

Separation between metadata and data - long seek on file access
Do not group inodes in the same directory together - poor ls

Blocks too small

Pay fixed seeking costs per disk transfer
More indirect blocks for a file

Poor freelist organization, scattering

Contribution

Larger block sizes (Sec 3.1):

Fewer seeks between block transfers
Fewer cases going to indirect blocks
One block can be further divided into fragments to reduce internal space fragmentation of small files; A file 
consists of normal blocks + possibly some fragments for the tail only

Parameterize underlying HDDs (Sec 3.2):

Use bitmaps instead of linked-freelist
Cylinder groups & rotation sector skipping calculation
For each cylinder group, store superblock at different offset to avoid all superblocks on the top platter

Better layout policy (Sec 3.3):

Put inodes of files in the same directory in the same cylinder group
New directory prefers mostly-free cynlinder group - load balances the groups
First data block allocated near the inode block
Subsequent data blocks at rotationally optimal positions of previous block in a cylinder group
Large file after 48KB, then every 1MB: go to a new group

LFS

Link: https://dl.acm.org/doi/10.1145/146941.146943

Motivation

HDD characteristics; Sequential writes are much better

Technology:

Processors faster, so more pressure I/O
Seek time not improving
Main memory faster, disks will be dominated by writes as reads are mostly cached in memory

Workload:

Many small files pattern

Contribution

Whole on-disk structure is a write-forward copy-on-write log

Inodes are scattered across the log as well

https://dsf.berkeley.edu/cs262/FFS-annotated.pdf
https://dl.acm.org/doi/10.1145/146941.146943


Keep a inode map from inode number  inode physical address
Hopefully, most of the active inode map will be cached in memory

In-place updates will become writing a new log entry + a redirection, resulting in invalidating an old block

Free space management: threading vs. copying (Sec 3.2); LFS uses a hybrid way: disk partitioned into segments

Garbage collection by segment cleaners (Sec 3.3, 3.4):

Will garbage collect segments and write out compact, clean segments
Using segment summary block for quickly identifying garbage blocks; It lists inode + data offset for each data block 
in segment, i.e., reverse pointers from data blocks to its inode
Introduces the concept of write cost to compare performance in Sec 3.4

Crash recovery by checkpointing + roll-forward (Sec 4)

Checkpoint often: more random I/O vs. checkpoint less: slower recovery

Drawbacks

GC overhead measurement
Sequential re-read - poor performance compared to in-place FFS

Storage: Disk Failures

RAID

Link: https://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf

Motivation

CPU & main memory faster, HDD I/O performance bound
Inexpensive disks almost as good as expensive large disks

Contribution

Redundant array of inexpensive disks to overcome the reliability issue of grouping many disks together

RAID 0: striping, no redundancy

Capacity: 
How many can fail: 
Latency: 
Random throughput: 
Sequential throughput: 

RAID 1: simple mirroring; RAID 01: mirror of stripes vs. RAID 10: stripe of mirrors (assume RAID 10 here)

Capacity: 
How many can fail: 
Latency: 
Random read throughput:  (assume lots of overwhelming requests)
Random write throughput: 

Sequential read throughput:  or 
Sequential write throughput: 

RAID 4: striping + single parity ECC disk (assume subtractive parity update policy, 1R+1W on data block and 1R+1W on 
parity block for each write)

Capacity: 
How many can fail: 
Read latency: 
Write latency: 
Random read throughput: 
Random write throughput:  (parity disk needs to do 1R+1W for every write request)
Sequential read throughput: 
Sequential write throughput:  (parity calculated for full stripe)

RAID 5: striping + rotate parity ECC disk for each stripe (assume left-symmetric block layout)

Capacity: 
How many can fail: 
Read latency: 
Write latency: 
Random read throughput: 

https://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf


Random write throughput:  (every disk is responsible for 1R+1W on one data block and 1R+1W on its 
parity block at any given time point)
Sequential read throughput: 
Sequential write throughput:  (parity calculated for full stripe)

Metrics used:

 number of disks
 capacity of 1 disk
 sequential throughput of 1 disk
 random throughput of 1 disk
 latency of 1 small disk transfer

Drawbacks

Tradeoffs between capacity, reliability, and performance
RAID 0 is actually preferred RAID 5 for database workloads since it is much better at random throughput

RDP

Link: https://www.usenix.org/conference/fast-04/row-diagonal-parity-double-disk-failure-correction

Motivation

More inexpensive disks used as RAID lead to more frequent disk failures, so protecting against double disk failure is 
worthwhile doing

RAID reconstruction can reveal/trigger a second failure
Failures are not independent if we choose disks from the same make, model, etc.

Desired property of a dual-failure protection algorithm:

Stores data in clear, unencoded
Uses simple XOR operations on parity

Contribution

Two types of disk failures

Whole-disk: the disk goes bad, cannot be used anymore
Media failure: individual sector errors/corruption on a request

Row-diagonal parity algorithm to handle double disk failures at the same time

Two parity disks: row + diagonal
On two disk failures, there will always be one "diagonal stripe" which only misses one member block; Start from 
there, we can do cascading reconstruction to recover

Drawbacks

Group size - Best-case failure tolerance tradeoff

Fewer larger groups saves capacity (fewer parity disks)
But smaller groups have better fault-tolerance

Storage: User File Benchmarking

iBench

Link: https://research.cs.wisc.edu/adsl/Publications/ibench-sosp11.pdf

Motivation

Home-user applications I/O behaviors have not been carefully studied

Contribution

Observations from the test suite:

A file is not a file: it can maintain its internal database structure
Pure sequential access is very rare
Small, auxiliary files dominate
Most use fsync()  explicitly to force writes; Renaming and staging is also popular
Frameworks influence how applications do I/O

https://www.usenix.org/conference/fast-04/row-diagonal-parity-double-disk-failure-correction
https://research.cs.wisc.edu/adsl/Publications/ibench-sosp11.pdf


Storage: Archival Storage

SnapMirror

Link: https://www.usenix.org/conference/fast-02/snapmirror-file-system-based-asynchronous-mirroring-disaster-recovery

Motivation

Archival data backup is important

Asynchronous backup offers inadequate protection
Synchronous backup significantly hurts performance

WAFL file system log-structured nature; Compared to LFS:

Only one fsinfo  pointer can be overwritten
Has local snapshotting feature
Active map + individual block granularity

Contribution

Do asynchronous periodic updates with bounded frequency

Reduces the need to transfer unnecessary data overwritten in the same update window (Fig 3)
User can specify a proper update frequency to tradeoff between performance and protection

When a mirror schedules an update, it tells the source to make an incremental reference snapshot; The source will 
check both sides' WAFL active map

If a block is not allocated on both sides, the block is unused - will not be transfered
If a block is active on both sides, the block is unchanged since latest snapshot - will not be transfered
If a block is only on the base active map, the block is deleted - will not be transfered
If a block is only on the new active map, the block is newly-added - IS transfered

The FS superblock fsinfo  block will not be updated until all blocks in an update have been finished

Mirror maintains exactly the same logical block layout as the source - no extra indexing or mapping needed

Allows efficiently calculating difference with active map
Sequential layouts remain sequential on the mirror, which is not the case for other archival storage systems

Drawbacks

On larger systems or systems with very frequent changes, SnapMirror snapshots are gonna be big and slow

Venti

Link: https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage

Motivation

Archival storage systems impose a write-once policy and keeps written archives forever

Cryptographically-safe hashing as fingerprints for static blocks

Collision resistent
Almost impossible to revert

Contribution

Venti layer: Use hashing to mark fingerprints of blocks

Deduplicates blocks with exactly the same content and can quickly identify it
Helps security guarantees - can check content against fingerprint

Fingerprints lead to no locality on both index and data disks, so they keep an index cache and a data cache

Application is responsible for mapping namespace  Venti fingerprints

Drawbacks

Performance is ridiculously bad, even with cache

Data Domain

Link: https://www.usenix.org/conference/fast-08/avoiding-disk-bottleneck-data-domain-deduplication-file-system

Motivation

https://www.usenix.org/conference/fast-02/snapmirror-file-system-based-asynchronous-mirroring-disaster-recovery
https://www.usenix.org/conference/fast-02/venti-new-approach-archival-data-storage
https://www.usenix.org/conference/fast-08/avoiding-disk-bottleneck-data-domain-deduplication-file-system


Same as Venti, but is a significantly improved data-deduplication system over Venti

Contribution

Layered deduplication system structure:

Content store: object byte range

Segment store + Index: segment descriptors; 3 essential performance techniques:

Summary vector: bloom filter per segment for quick checking fingerprint definitely not in the segment
Stream informed segment layout: if we have seen fingerprint sequence f1, f2, f3 , then when we see f1  
again, we are probably going to see f2, f3 ; So, pack these blocks in a container
Locality preserved caching: cache prefetches the container for better locality

Container manager: actual data

Steps on a segment write (Sec 4.4)

Shows great I/O reduction by the 3 techniques (Table 4)

Storage: FS Caching

ARC

Link: https://www.usenix.org/legacy/events/fast03/tech/full_papers/megiddo/megiddo.pdf

Motivation

Metrics / goals:

High hit rate
Low implementation overhead - low algorithm complexity
Space overhead
Scan resistance
No priori parameters to tune - self-adaptive to the workload
Balance between recency & frequency

Problems with LRU:

Not scan-resistant
Poor concurrency

Problems with LFU:

Implementation complexity
Remembers ancient knowledge - not adapting to changes

Problems with LRU- :

Replaces the one with oldest recent -th reference
Very expensive to maintain this information

Background

Optimal offline replacement: given the future reference trace, replace the entry that will be seen again farthest in the 
future

2Q algorithm:

Re-ref of entry in : move to MRU position of 
Re-ref of entry in ghost FIFO : is a cache miss; promote to MRU position of 
New ref of an entry: is a cache miss; promote to  FIFO tail
Re-ref of entry in : move to  FIFO tail, NOT to  (intuition: it is possible that an entry appears to be hot 
at first but the workload is actually a scan, so we wait until it falls into , pay a tax of cache miss, and only 
then be confident that this is a hot entry and promote it to )
A sequential scan with 2Q will go through  and , but will not pollute 

MQ algorithm:

https://www.usenix.org/legacy/events/fast03/tech/full_papers/megiddo/megiddo.pdf


Have frequency count , and the entry will be in queue 
A sequential scan with MQ will go through  and 

Contribution

ARC algorithm:

Re-ref in  or : move to MRU position of 
Re-ref of entry in ghost : is a cache miss; move to MRU position of ; Increase  (enlarge ) by 

Re-ref of entry in ghost : is a cache miss; move to MRU position of ; Decrease  (enlarge ) by 

New ref of an entry: is a cache miss; move to MRU position of 
A sequential scan with ARC will go through  and 

Drawbacks

Only investigating the replacement policy
No prefetching, purely on-demand paging
Only reading, not discussing write-allocation policy
Assuming a strict storage hierarchy

Storage: Crash Consistency

ALICE

Link: https://www.usenix.org/conference/osdi14/technical-sessions/presentation/pillai

Background

Benefits of doing journaling:

Providing crash consistency for update-in-place file systems

Achieves atomic FS updates despite crashes - turns multiple disk writes into a single atomic action; Example: a 
file append must update three places atomically

The bitmap to mark new data block as allocated
The inode to add pointers to the new block
The new data block

Ordered mode journaling ensures FS metadata consistency: 

 is the new data block

 contains:

transaction begin  block
data bitmap update
file inode update

 contains the transaction end (commit)  block (when replaying the journal, only replay committed entries)

 is the actual metadata in-place updates

*Write-back journaling is weaker: does not ensure ordering of  before 

Data journaling mode is stricter: protects user data writes, but involves write-twice penalty

Motivation

Different FS provide different persistency properties guarantees

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/pillai


Applications care about crash consistency but they cannot assume running over a data journaling FS, so they have to 
implement their own sophisticated data consistency protocols

More checksums & more fsync() 's
Sometimes unnecessary when running over strict-mode FS

Contribution

Use BOB to study FS persistency properties; Different FS provide very different set of consistency semantics
Use ALICE to run application syscall traces over abstract FS models, reorder those syscall logical operations, and see 
under what circumstances will it have inconsistency vulnerabilities

OptFS

Link: https://research.cs.wisc.edu/adsl/Publications/optfs-sosp13.pdf

Motivation

Default FS journaling is pessimistic: forcing users to call fsync() 's frequently

The FLUSH  command (part of fsync() ) itself does not enforce ordering
It just flushes the disk cache and make sure they are actually persistent

Disk flushes introduce huge overhead (Fig 1)

Contribution

Model probabilistic crash consistency by measuring the inconsistency window length (Sec 3)

Get rid of the two flushes in  optimistically while still maintaining atomicity:

Checksumming over  so that these three can be reordered whatever the disk wants; But this does not 
improve durability because we are not forcing anything to be persisted - we are just now able to check what goes 
wrong after a crash and ignore/abort these
Asynchronous durability notifications (ADN, a new disk interface) to get rid of the second flush; FS/user 
applications do not have to block on a flush - instead, the metadata in-place update  will simply wait for the 
ADNs of all three  and the FS can do other stuff at this time; It aborts this operation after crash if 
haven't received those ADNs before the crash

Splits fsync()  into two different interfaces:

osync()  only ensures ordering but not durability (Slide 66)
dsync()  as the original fsync()

Drawbacks

Worsens freshness (durability): after a crash, state will be consistent but not very fresh - all operations without 
receiving metadata in-place update's ADN will be forgotten
Introduces a new disk interface ADN and argues that disks should provide such interface - limits compatibility on 
current hardware

Storage: SSD Contract

Unwritten Contract

Link: http://pages.cs.wisc.edu/~jhe/nvmw18-he.pdf

Background

SSD structure; how NAND flash chips work and how they form an SSD device

Channels of blocks of pages

Read in pages
Write (program) some 0's only in erased pages
Erase a whole block to 1's

SLC (expensive, robust) vs. MLC (more capacity, less robust)

https://research.cs.wisc.edu/adsl/Publications/optfs-sosp13.pdf
http://pages.cs.wisc.edu/~jhe/nvmw18-he.pdf


Flash translation layer (FTL) responsible for logical  physical page mapping and:

Reallocate on update writes or trim pages

Hybrid FTL has coarse-grained block-level mapping for most of physical address + page-level mapping for only 
recent data, to save the space for the mapping

Full merge
Partial merge
Switch merge

Garbage collection

Wear leveling

Contribution

The written contract is the device interface specifications

Reveals the unwritten contract of SSD devices: how they perform and react to different workload characteristics; Rules 
for good performance:

Large request scale: to utilize high internal parallelism of channels
Access with locality: to avoid translation cache misses
Aligned sequentiality: for hybrid-mapping FTL mapping cache, improves hit rate and encourage switch merges
Group by death time: reduce garbage collection work
Uniform lifetime: reduce wear leveling work

Storage: ML for Sys

Bourbon

Link: https://www.usenix.org/conference/osdi20/presentation/dai

Motivation

Log-structured merge (LSM) trees were for HDDs to get better sequentiality, but has very large I/O amplification

Large write amplification - lots of merges
Large read amplification - lots of lookup steps

LevelDB uses LSM trees

Lookup returns latest version of an item on top-most level

sstable  files are sorted & immutable; In L0, sstables  may not cover disjoint ranges; In L1 and below, range of 
keys is disjoint across files in that level

Lookup steps at a level:

FindFiles: find candidate file(s) that may contain the key (indexing)
LoadIB + FB: in a file, load index block and bloom-filter block
SearchIB: search index block for data block that may contain the key (indexing)
SearchFB: use bloom filter to see if key definitely not in the data block (indexing)
LoadDB: load data block if bloom-filter says positive
SearchDB: binary search the data block (indexing)
ReadValue: if found the key, read and return the value

WiscKey reduces LevelDB write amplification by storing values in a separate value log and only store a pointer to the 
value in the sstable 's (Fig 1)

Breaks some sequentiality but reduces write amplification - actually values won't move during merges
Must perform an extra random read to fetch a value

ML for systems is a hot topic; Learned indexes have the potential to be applied to LSM trees, but they are more 
tailored to read-only settings

Contribution

Applies learned indexes to LSM trees by modeling a file / a whole level as a piece-wise linear regression (PLR) model

Essentially, breaks a file / level into monotonic segments with different slopes

For a key , predicts its offset in file / level with error bound as ; True offset guaranteed to be in the 
error bound

To lookup the key in file / level:

1. Binary search for the segment - 

https://www.usenix.org/conference/osdi20/presentation/dai


2. Predict final location using the segment - 
3. Linear search within error bound - 

Bourbon benefits more when cost of indexing steps is high compared to cost of loading data

File model vs. level model

Models last longer for

File models than level models (any file in level changes leads to invalidating the level model)
Workloads with fewer writes
Lower levels

A valid model is more beneficial for

Higher levels
Level models than file models

Learns a model by all files ever existing at that level

Performance behavior with different write percentages (Fig 12)

Storage: Persistent Memory

Mnemosyne

Link: https://research.cs.wisc.edu/sonar/papers/mnemosyne-asplos2011.pdf

Motivation

Storage-class memory (SCM) coming out: persistent NVRAM connecting to memory bus

Ultra-fast latency
Writes significantly worse than reads: needs write reduction
Endurance pretty bad: needs good wear leveling

Existing storage systems cannot manage such devices effectively

Persistent naming: what a persistent virtual address maps to should always be on persistent memory
Crash consistency: hard to do because memory bus directly controlled by the CPU
Kernel FS system calls overhead: too large for fast SCM - build direct-access user-level libs
Performance degradation for reducing writes

Contribution

Persistent naming region: virtual memory segments mapped to SCM

Swaps SCM pages to per-region backing file
Sandboxes user SCM memory leaks

Supports consistent updating by:

Assuming in-place small writes (  8 bytes) are atomic
For appends: use logging mechanisms, just like journaling FS; Use "cache line flush" and "memory fence" 
instructions to force ordering
For in-place updates: do shadowing, i.e., write in a replica and simply atomically swap the pointer

Introduces the raw word log for detecting torn writes (Slide 50)

Supports memory transactions to bundle a bunch of operations and send them to SCM atomically (Sec 5)

LevelHash

Link: https://www.usenix.org/system/files/osdi18-zuo.pdf

Motivation

Same as Mnemosyne above
Indexing structures are common, so hash tables do matter

Contribution

Dual-level hash table (Fig 1)

Insertion operation steps (Sec 3.1 - )

Resizing operation steps (Sec 3.2; Fig 3)

Consistency guarantees brought by the assumption that updating the bitmap header of a bucket is small & atomic

Delete: clear a bit in the bitmap in one atomic write (log-free)

https://research.cs.wisc.edu/sonar/papers/mnemosyne-asplos2011.pdf
https://www.usenix.org/system/files/osdi18-zuo.pdf


Insert: write the element first, then set a bit in the bitmap in one atomic write (log-free)

Update:

If there is an empty slot in the bucket, then write the new value to an empty slot first, then swap the two bits 
in the bitmap in one atomic write (log-free)
Otherwise, do logging

Synchronization: Monitors

Monitors

Link: https://john.cs.olemiss.edu/~dwilkins/Seminar/S05/Monitors.pdf

Motivation

Semaphores for OS resource synchronization and its lack of abstraction

Contribution

The concept of monitors for OS resource synchronization

Associates (encapsulates) data with monitor

Handles mutex locking automatically - less error-prone

Monitors + CV = separates mutual exclusion & scheduling, whereas semaphores mixes these two jobs

Helps formalism - can specify mathematical invariants

Monitors implement 3 types of procedures:

Entry: grabs lock
Internal: assumes lock held
External: does not grab lock

Introduces condition variables:

Has a queue; Supports cv.wait()  and cv.signal()  semantics

Fundamental difference with semaphores:

Condition variables rely on external conditions to decide whether to wait / signal - more flexibility & 
generality for the programmer
Semaphores track that condition with itself, as the semaphore value

Locks + condition variables has the equivalent semantics power as semaphores

Drawbacks

Implicitly assumes the semantics that Signaling process must stop running and immediately relinquish monitor lock; 
Waiting process, after woken up, must acquire the lock and run immediately

Brings extra context switches for some situations
Complex interactions between the monitor & the scheduler
NO need of the while  loop on condition variables

Mesa

Link: https://people.eecs.berkeley.edu/~brewer/cs262/Mesa.pdf

Motivation

The experience of using monitors in the Mesa system

Contribution

Discusses why non-preemptive scheduler is problematic to implement mutual exclusion (Page 3):

Malicious process can get complete control
Disables the ability to handle device interrupts
Reduces modularity of critical sections - cannot call a procedure that yields the processor, e.g., page faults
Cannot handle multiprocessors

Implements the condition variable semantics in a practical way:

Signal wakes up any waiting process
Woken up process not guaranteed to be scheduled next
Woken up process not guaranteed to acquire monitor lock next

https://john.cs.olemiss.edu/~dwilkins/Seminar/S05/Monitors.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/Mesa.pdf


In this way, waking up a process only pulls it out of CV queue and puts in into monitor lock queue
MUST have the while  loop on condition variables, because the condition may no longer hold when the woken 
up process actually scheduled to get the monitor lock

Other optimizations:

Broadcast semantic: cv.notifyAll()  - more context switches, worse performance

Timeout & Aborting from a wait

Introduces the "naked notify" problem (Sec 4.2):

Hardware device may call a notify  without grabbing a lock

Kernel cannot do:

Instead, change it into a binary semaphore so that the condition checking and waiting decision happens in 
one atomic instruction

Fixes the problem of priority inversion by dynamic priority donation

Nested monitor calls: split outer monitor into two parts

Drawbacks

Adapting monitor semantics from Hoare to Mesa isn't always changing if  to while ! Consider this RW lock 
implementation:

Adapting it to Mesa semantics:

Better way:

while (!cond)

        // <- WRONG! device notify can happen here.

    cv.wait();

startread() {

    if (busy || OKtowrite.queue)    // Prevents writer starving.

        OKtoread.wait();

    readercount++;

    OKtoread.signal();  // Allows more readers to come in.

}

endread() {

    readercount--;

    if (readercount == 0)

        OKtowrite.signal();

}

startwrite() {

    if (readercount > 0 || busy)

        OKtowrite.wait();

    busy = true;

}

endwrite() {

    busy = false;

    if (OKtoread.queue)

        OKtoread.signal();

    else

        OKtowrite.signal();

}

startread() {

    while (busy || OKtowrite.queue)     // WRONG! there might be a writer in queue

        OKtoread.wait();                //        when woken up by first writer's end

    ...

}



Synchronization: Multicore Scalability

Linux Scalability

Link: https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores

Motivation

Many-core architectures are becoming popular these days - most of them are NUMA, i.e., multiple chip sockets

Cores on the same socket share an L3 cache; Different sockets do not have shared L3 cache
Each socket has its fast local memory and accessing other sockets' "remote" memory is slow

Traditional Linux kernel does not seem to scale well onto multicore hardware - this work does not go for a 
microkernel / message-passing kernel design, it tries to argue that Linux can be adapted to scale well on multicore 
computers as well

Common scalability limitation causes:

Locking shared data structure / counter
Writing shared memory location - waiting for cache coherence protocol
Competing for shared hardware resources, e.g., interconnect bus
Too few tasks to keep all cores busy

Linux implements spin-lock as a ticket lock:

Contribution

Picks a collection of kernel-intensive applications to form MosBench

Runs MosBench and identifies common scalability problems in the Linux kernel (Fig 1) - not application-specific 
bottlenecks

Fix the bottlenecks and re-run the benchmark, until good performance
Or until they find out that this is an application-specific bottleneck

Example: the Exim application's primary collapse cause is contention on a spin-lock on shared vfsmount  table

Ticket locks cause intense cache coherence protocol traffic on the lock structure itself
Even if the critical section is small - which is good - the lock structure itself can cause contention

Optimizations proposed by the paper:

Per-core data-structure cache to ease the lock contention problem above
Sloppy distributed counters to delay global counter access only when background garbage collection work starts

Commutativity Rule

Link: http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf

Motivation

The above paper focuses on developer effort to identify bottlenecks

New workloads may expose new bottlenecks
More cores may expose new bottlenecks
The real bottlenecks may be in the interface design itself

startread() {

    if (OKtowrite.queue)

        OKtoread.wait();

    while (busy)

        OKtoread.wait();

}

void spin_lock(lock) {

    t = atomic_inc(&lock->next_ticket);

    while (t != lock->current_ticket);

    ...

}

void spin_unlock(lock) {

    lock->current_ticket++;

}

https://www.usenix.org/conference/osdi10/analysis-linux-scalability-many-cores
http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf


Goal: guideline to design scalable interface

Contribution

Interface scalability issue example:

POSIX open()  must return the current lowest unused non-negative integer as FD
If we do not force returning the lowest FD, then the interface can be scalable

The commutativity rule: whenever interface operations commute, they can be implemented in a way that scales 
because they are conflict-free

Commutativity is sensitive to operations, arguments, and internal state (e.g., whether creating files in the same 
directory or not)

Develops a commuter framework to detect scalability bottlenecks on a concrete model:

Input interface specification model, e.g., POSIX, produced by symbolic execution and model checking
Auto-generate commutativity conditions testcases
Run the tests through a concrete implementation, e.g., Linux, and identify whether each case is conflict-free

Guidelines for designing a scalable FS (Sec 6.3)

Drawbacks

This study is oblivious to applications; It only checks whether a kernel implementation meets commutativity 
requirements when it should; It does not consider whether those violations are severe - whether a particular 
application is actually calling those interfaces (or using bad arguments) at all

Synchronization: Scalable Locking

RCL

Link: https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi

Motivation

Mutex locks tend to contend a lot on many-core machines, due to:

Lock data structure itself bouncing off among caches - just as presented in the Linux Scalability work
A critical section may access some global data structure, which may perform badly when cache locality on this 
data structure is bad - many cores grabbing this structure into their own cache line

Goals:

Implement entirely in software
Support legacy applications
Support blocking in critical sections, nested critical sections, and condition variables

Background

MCS lock to improve locality (Slide 16):

Every thread spinning on self-cached variable instead of a global lock variable (measurement: Fig 7)
MCS-TP: a further optimization which parks a thread of it has spinned for too long - avoids busy waiting

Contribution

Identify that cache locality is important for speeding up highly-contended critical sections (Fig 3)

Delegate a specific thread for a critical section, so that everything needed by the critical section will always be cached 
in that core's cache

Use cache line-sized mailboxes to notify the server
Server loops through mailboxes and serve any requests to execute critical section (Fig 2)

Tricky thing is to identify what locks are beneficial to be converted to RCL; Non-contended critical sections or very 
short critical sections will not be suitable for RCL and may not benefit

Drawbacks

Does not show application performance without high contention - the applications themselves may not scale well, 
perhaps not the problem of the lock-contended critical sections

Blocking in critical sections / nested critical sections

Adds multiple threads as server cores
Further leads to having extra CAS locks for server threads to grab mailbox requests atomically

https://www.usenix.org/conference/atc12/technical-sessions/presentation/lozi


Multiple independent locks & critical sections:

Adds multiple threads as server cores (Fig 13): false serialization kind of solved by having two server cores
Final performance results seem awkward (Fig 9): pay attention to the vertical numbers!

Shuffling

Link: https://taesoo.kim/pubs/2019/kashyap:shfllock.pdf

Motivation

Same as the RCL work above

Goals:

Adapting to different contention levels / over-subscription levels / workloads
Minimizing memory footprint (i.e., memory usage)

Background

Hierarchical locks (Slide 9): high memory usage; poor normal single thread performance

Contribution

Shuffling mechanism to sort thread waiters on the fly

Shuffler will be a waiter, so queue re-ordering work is off the critical path; Stop shuffling when:

It gets the lock
It completes one pass through the queue

Groups waiters on the same NUMA socket, i.e., same socket id, together in the queue

The last thread moved in the group will be the next shuffler

For RW locks, only group writers together since readers will access concurrently anyway

Drawbacks

Queue re-ordering affects lock fairness and may cause starvation: keeps a simple quota count trying to solve this
Bad data representation & graph drawing (Slide 44): non-linear x-axis!

Scheduling: User-Level Threads

Scheduler Activations

Link: https://web.eecs.umich.edu/~mosharaf/Readings/Scheduler-Activations.pdf

Motivation

People want user-level threads support

Ultra-fast thread management & context switching
Flexible application-optimized thread scheduling policy

Background

Problems with naïve user-level threads:

Kernel thread vessels may block and get preempted without notifying the user

Common solution is to create more kernel vessels than physical processors, and when one vessel blocks, 
more are available
Problem: there will be too many kernel threads at some time and extra OS scheduling will happen

Kernel thread vessels scheduled obliviously to user-level thread state, for example the user thread may be 
holding a lock

Contribution

Each application given virtual multiprocessor

Application knows how many and which processor cores it has
Application has complete control over threads running on those cores
OS kernel knows how many processors would be useful to each application
OS kernel has complete control over which cores are given to which application

Every processor the kernel gives to an application resides in a scheduler activation (SA, vessel)

https://taesoo.kim/pubs/2019/kashyap:shfllock.pdf
https://web.eecs.umich.edu/~mosharaf/Readings/Scheduler-Activations.pdf


Kernel  User thread system upcalls:

Add this processor
Processor has been preempted
SA  has blocked
SA  has unblocked

User thread system  Kernel downcalls:

Give me more processors
This processor is now idle

Demonstration (Fig 1):

Note: every upcall comes with a new SA vessel, so at time , to convey the message that A 's thread has 
unblocked, the kernel actually needs to revoke a current SA ( B  in this case) and give a new one ( D ) to make the 
notification
The kernel picks B  to preempt at , but the user may prefer preempting C  - so there needs to be an interface 
to tell the OS which SA is preferred to be preempted
For the same reason, for a "Processor preempted" upcall, the kernel actually needs to take away two SAs and 
give a new one to do that notification

If a thread is in a critical section and kernel wants to preempt it, checks if its PC range is in a critical section; If so, 
silently run the copy that returns to thread library; In common case, won't slow down normal critical sections

Drawbacks

Only focuses on CPU - not memory or I/O
How to do fair allocation of how many processors to give to each application?

Arachne

Link: https://www.usenix.org/conference/osdi18/presentation/qin

Motivation

Concrete implementation of a user-level thread management system that reduces latency in datacenters

Difference in assumptions from scheduler activations:

Tasks tend to be very short-lived
Assumes lots of memory so that threads do memory mapping and don't block on page faults
Assumes asynchronous interfaces for performing I/O so that threads don't block on I/O

Contribution

The basic design is very similar to scheduler activations (Fig 1)

Cooperative revoking of cores: the arbiter asks runtime to hand back a core and assumes that the runtime will 
periodically check that flag - works well for short-lived threads

Extremely cache-optimized design:

https://www.usenix.org/conference/osdi18/presentation/qin


Prepares thread contexts (vessels) in advance; Arbiter loops through them and check for "runnable" ones to give 
to runtime
Application runtime  Arbiter: sockets, slow but rare
Arbiter  Application runtime: shared memory page

Comparison across thread management solutions (Tab 2; Fig 2)

Arachne places new threads on different core
Go creates thread on parent's core (load balance later if needed)

Improvement to Memcached (Fig 3 (a)):

 Arachne takes up 2 cores so they cannot be used for work: Less max throughput; At higher throughput, latency 
goes up high

 Great latency improvement ratio in less-loaded scenarios
 For a fixed latency, Arachne delivers higher throughput

Isolates latency behavior from background, high-throughput jobs (Fig 4)

Drawbacks

Does not handle kernel thread blocking

Scheduling: System Services

SEDA

Link: http://www.sosp.org/2001/papers/welsh.pdf

Background

Work dispatch model: dispatch a new thread for every new network request

Easy to program √
Overhead in thread creation, scheduling, and lock contention
Can use a bounded thread pool, but still fairness issues

Event-driven model: one thread per CPU, loops continuously handling events (of different types)

Robust throughput √
Threads cannot block, tough on I/O
Ugly to code all logics in one event-handling thread

Contribution

An architecture of a stream of stages (Fig 5)

Every stage has a thread pool and two controllers (Fig 6 & 7):

Thread pool controller adjusts the number of threads based on incoming queue length

Add when queue length  threshold
Reduce when some thread goes idle

Batching controller adjusts the number of events processed by each iteration of the event handler (batch size) 
based on outgoing rate (throughput)

Maintain the lowest batch size that sustains high throughput
Async I/O for sockets; Outstanding I/O threads for files; Blocking I/O may be solved by using mechanisms like 
scheduler activations

TAM

https://www.usenix.org/conference/osdi18/presentation/yang

Motivation

Scheduling in current system-intensive DB/FS applications are complex and broken
Needs a way to understand scheduling points within these applications

Contribution

The thread architecture model (TAM) (Fig 2) helps expose 5 scheduling problems:

1. Lack of scheduling points
2. Unknown resource usage (Slide 16)
3. Hidden contention between threads

http://www.sosp.org/2001/papers/welsh.pdf
https://www.usenix.org/conference/osdi18/presentation/yang


4. Uncontrolled blocking (Slide 20)
5. Ordering constraints upon requests

Helps improve current systems scheduling by optimizing its TAM architecture, verify that through simulation, and 
then implement those changes into production code

Monotasks

Link: http://kayousterhout.org/publications/sosp17-final183.pdf

Motivation

Help users with performance clarity and prediction: answer what-if questions that how much faster would my 
application run if given x% more of this type of resource?
Traditional multitasks pipeline multiple types of resources at fine-time granularity - bottleneck shifts over time

Contribution

Proposes the monotasks model: each task uses only one resource

Every monotask starts only if all its dependencies have been finished
Each resource has its own dedicated scheduler
Answering what-if questions: see Slide 34 for an example

Two layers of schedulers on each worker machine:

Local DAG scheduler to decompose and track dependencies for monotasks
Per-resource scheduler with queues

Global scheduler dispatches multitasks to worker machines; E.g., if a worker machine can do 4 CPU monotasks + 4 
network monotasks + 2 disk monotasks at the same time, then dispatch 10 multitasks to it for full utilization

Drawbacks

On disk monotasks, they no longer buffer any writes, but instead writes to disk immediately to ensure complete 
control over the disk resource

Monotasks hurt performance (significantly) if:

There isn't enough concurrency (Fig 8)
Disables buffer cache - Comparison to Spark with buffer cache off, not fair comparison! (Sec 5.3)

Scheduling: Scheduler Algorithms

Lottery Scheduling

Link: https://www.usenix.org/legacy/publications/library/proceedings/osdi/full_papers/waldspurger.pdf

Motivation

Priority-based schedulers do not naturally consider providing a fair proportional share - they just let the highest-
priority thread to run; They are difficult to control and poorly understood
Want to provide proportional share and provide hierarchical modularity

Contribution

Using lottery tickets to represent resource rights; At every scheduling decision, the thread winning the lottery will get 
scheduled

Relative
Abstract
Uniform

At every level of the currency graph, the ratio is local (Tab 1; Fig 3): when thread 1 becomes active, Alice would now 
have a total of 300

http://kayousterhout.org/publications/sosp17-final183.pdf
https://www.usenix.org/legacy/publications/library/proceedings/osdi/full_papers/waldspurger.pdf


Ticket transferring:

Process doing work on another process's behalf
Process is waiting for another process (e.g., locks)

Compensation tickets: if a thread is only active for a short period of time (  fraction of the time slot) and then goes to 
sleep, on the next scheduling point, inflate its tickets by  to provide instantaneous fairness

Results:

Can decrease proportion of CPU given to tasks that need less work (Fig 6)
Can transfer tickets to process working on your behalf (Fig 7): clients  the server thread
Can insulate changes in tickets across different currencies (Fig 9)

Drawbacks

Does not guard against starvation: probabilistically, starvation won't happen
Hard to transfer the notion of tickets to I/O

Linux Scheduler

Link: https://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf

Background

Performance bugs are hard to spot, identify, and solve, because they don't trigger panics/crashes

Linux completely fair scheduler (CFS):

Each CPU core has a runqueue, CFS periodically load balances tasks across cores
Some tasks have lower niceness (i.e., higher priority), hence longer timeslice allowed to run
When a thread is done running for its timeslice, enqueue again
Hierarchical load balancing: first balance every pair of two cores, then balance across pairs using average load

Contribution

Identified 4 Linux scheduler bugs:

1. Group imbalance (Slide 14): using average of cores in pair for that pair's load - possible that one is loaded by a 
heavy task and the other is idle

 Solution: use minimum instead of average here

2. Scheduling group construction (Fig 4): each scheduling domain contains groups that are lower-level domains

Each pair of core contains cores
Each CPU contains pairs of cores
Each group of directly-connected sockets (nodes, CPUs) contain CPUs
The whole machine contains groups of directly-connected sockets

At the last level, groups might overlap - if an application runs on overlapped nodes, will not trigger balancing

https://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf


 Solution: make groups disjoint at the last level

3. Missing scheduling domains: just a code bug

4. Overload on wakeup (Fig 3): wakeup algorithm only considers local CPU core when a thread unblocks

 Solution: wakeup on core idle for the longest time, not restricted to local

Scheduling: Resource Tracking

Resource Containers

Link: https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/banga/banga.pdf

Motivation

Resource management is important

Want to exert explicit QoS policies
Handle DoS attacks

Scheduling must know which entities are doing work for which clients

Background

Currently, protection domain + resource principal are combined in the process abstraction

One process may handle different work over time
One work might be fault-isolated into multiple processes (Fig 6)
No kernel tasks accounting (Fig 5): e.g., networking

Some web servers use dispatcher model, others use event-driven model

Contribution

Processes for protection domain

Resource containers for resource principal: every resource container covers exactly a specific client/work, including the 
kernel accounting or across multiple threads

Multi-threaded server (Fig 9)
Event-driven server (Fig 10)

Properties:

A thread can register itself to and switch to different resource containers over time
Multiple threads can be bound to a single resource container
Network activity in kernel needs to specify the socket and the resource container ASAP

Able to defend against SYN-flooding DoS attack (Fig 14): mark client bad when SYN dropped, so the application can 
bring down that resource container's priority

Drawbacks

The actual scheduling is not 100% accurate: it would be too costly if we de-schedule a thread every time it switches to 
a low-priority resource container
Does not handle I/O share (Fig 11): reads the same 1KB file to ensure it is in buffer cache; More problems if we have 
batched work

Scheduling: GPU Scheduling

Themis

Link: https://www.usenix.org/conference/nsdi20/presentation/mahajan

Motivation

Deep learning makes shared GPU clusters popular

Fig 2 shows that:

Most applications are composed of multiple jobs
Most applications explore various hyper-parameters for a given model
Only about 5% of applications contain about 1 job

Sharing incentive (SI): an application should not run slower on a shared cluster with  apps ( ) than on a dedicated 
cluster with  of the GPU resources ( )

https://www.usenix.org/legacy/publications/library/proceedings/osdi99/full_papers/banga/banga.pdf
https://www.usenix.org/conference/nsdi20/presentation/mahajan


Background

Current scheduler - DRF: allocate on resource distribution to minimize application time to completion

Does try to optimize SI, PE, & EF
Uses only instantaneous resource fairness
Fails to consider the long durations of non-preemptive ML tasks
Does not take into account placement preference of ML apps

Current scheduler - LAS (Tiresias): allocate on lease duration to minimize application attained service (#GPUs  time)

Does better than DRF for ML
But still does not take into account placement preference (Slide 29)

All shared cluster schedulers (including Themis) require tasks to provide their estimation of resource demand

Contribution

Finish-time fairness metric: ; SI means  for all apps

Ask application agent and its hyper-parameter optimizer to calculate this for us
, where  observed finish-time of app in whole cluster

 involves a slowdown  to account for placement penalty (e.g., 1.3 for cross-rack)
May not work well if the number of competing apps changes dramatically over its lifetime

Optimization SI objective: 

Strawman approach: whenever there is free GPU, allocate to app with currently highest  for lease duration

Does not consider placement efficiency
Apps can lie with high  values

Themis: filter  fraction of apps with max  values and do auctions to give the GPUs (apps bid on how much 
beneficial it would be if I'm given which of these free GPUs); uniformly randomly distribute auction-dropped 
GPUs to the remaining  fraction of apps

Fairness results (Fig 9):

Other scheduling algorithms have long tails due to placement inefficiency
Themis is fair enough ( )
Themis minimizes maximum  compared to others

Tradeoffs for  and lease time (Fig 19): increasing  limits scheduling choices, hence worse performance

OS Structure: OS Models

THE

Link: https://www.cs.utexas.edu/users/dahlin/Classes/GradOS/papers/p341-dijkstra.pdf

Motivation

Providing a multi-programming environment

Contribution

Layered monolithic OS design:

Processes with synchronization: defines a sequential process, and use semaphores for synchronization
Automatic backing storage allocation: virtual memory
Strict system hierarchy (Slide 14): every layer trusts the layer beneath, so can develop from the lower level

Semaphores:

P(sem)  to down a semaphore and continue on sem.value >= 0

V(sem)  to up a semaphore and wake waiting process if now sem.value <= 0

Initialize semaphore to value 1  to implement a mutex

Private semaphore means only one process will call P  on it

https://www.cs.utexas.edu/users/dahlin/Classes/GradOS/papers/p341-dijkstra.pdf


Interesting summary in system research principles

Nucleus

Link: http://brinch-hansen.net/papers/1970a.pdf

Motivation

Provide basic primitives that allow extensible OS

Contribution

The early work on extensible systems and the prototype of microkernels:

Process interposition: can replace a running process with another (Slide 19)

Internal: executes interruptible program logic
External: interprets messages from internal processes and initiates I/O with storage devices - i.e., device 
drivers

Message passing for IPC

send_msg(receiver_pid, msg, &buffer) : Nucleus will allocate the buffer, and the sender can continue

wait_answer(&result, &answer, buffer) : sender actually wants to wait for the answer

Allows for easy process interposition

The buffer helps accelerate the response since it has already been allocated

The buffer removes potential deadlocks since buffer is guaranteed to exist; If the device driver dies with a 
pending send_answer , Nucleus will send an "error" answer to the sender

Claims no "built-in" strategy: all OS strategy is implemented in processes' program logic

/** Consumer. */

P(mutex);

if (elem on q)

    V(private);     // Enables atomic checking of condition

V(mutex);

P(private);         // If previous condition is false, will block here

get(q, elem);

/** Producer. */

P(mutex);

put(q, elem);

V(private);

V(mutex);

/** Client. */

send_msg(disk, "READ file A @ offset B", &buffer);

wait_answer(&result, &answer, buffer);

/** Device driver process. */

while (1) {

    wait_msg(&sender, &req, &buffer);

    ...

    send_answer(result, answer, buffer);

}

http://brinch-hansen.net/papers/1970a.pdf


Drawbacks

Many processes, so much context switching overheads
IPC performance becomes critical, and is fundamental to extensible systems

Exokernel

Link: https://cs.nyu.edu/~mwalfish/classes/14fa/ref/engler95exokernel.pdf

Motivation

OS provides high-level abstractions but hides the semantic & performance characteristics of underlying hardware, so 
may not suit all kinds of applications well

Background

Roles of OS:

Hardware abstraction & virtualization
Resource sharing & concurrency
Process isolation & protection

Contribution

Proposes the exokernel model (Fig 1; Slide 5): kernel only exposes low-level device APIs and provides access control; 
Library OS responsible for high-level abstractions and highly-optimized for the application

Scheduling in this context:

Exokernel round-robins all library OSs
Library OS handles context switching within it
Exokernel uses an abort protocol to relinquish resource from a non-responsive library OS

Networking in this context:

Application can install code into the exokernel network surface (downloading code, application-specific safe 
handlers, ASH), e.g., packet filters
When packets arrive, filtering happens early so it avoids switching between kernel & library OS every time

Drawbacks

https://cs.nyu.edu/~mwalfish/classes/14fa/ref/engler95exokernel.pdf


For performance issues, putting everything in library OSs is infeasible; Sometimes we need to comprise and lean back 
towards a monolithic model, e.g., the network ASHs

Arrakis

Link: https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter

Motivation

Modern I/O devices are ultra-fast, and they provide native support for virtualized multiplexing (on-chip VNICs, VSICs)
Kernel overhead is becoming too much

Contribution

A successful kernel bypassing design:

Removes unnecessary logic out of the critical data path

I/O processing logic in the application library
Device handles multiplexing & I/O scheduling; Requires sophisticated hardware controller support

The kernel is responsible for control plane operations: naming, access control

Device directly notifies the application about new events in queue if it is now running; Kernel is involved only 
if the application is now not active

Low latency, high throughput, & good scalability for I/O over fast devices

OS Structure: Disaggregation

LegoOS

Link: https://www.usenix.org/conference/osdi18/presentation/shan

Motivation

Target environment: datacenters

Ultra-fast network & RDMA
Processes do not write-share memory, no cache coherence problems

Provide these properties which current kernel models do not provide:

Resource utilization
Heterogeneity
Elasticity: easy to plug and remove resources
Fault tolerance: failing a component should not fail the whole server node

Contribution

The abstraction of virtual nodes (vNodes):

A vNode is made up of different shares of different physical hardware components
pComponent - processor node; mComponent - memory node; sComponent - storage node
Each physical component runs its own monitor

Separates processor with memory (Slide 27):

Move the whole virtual memory system to the DRAM side

CPU cache on pComps uses virtual address (Sec 4.2; Fig 5):

Homonyms - multiple different address spaces use the same virtual address for different data

 Solution: label cacheline with address space ID (ASID)

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/peter
https://www.usenix.org/conference/osdi18/presentation/shan


Synonyms - multiple virtual addresses map to the same physical address

 Solution: LegoOS does not allow write-share memory, hence does not have synonyms

But a kernel runs on pComp and uses physical addresses directly, hence still leaves some physical memory on 
pComp

Adds a small ExCache on the pComp side to improve performance

Separates storage from others (Fig 6):

Storage monitors do not maintain any state, e.g., file descriptors; pComp sends full path names

sComp uses hash map for fast lookup from full path name to file

Each file maps to a particular mComp as its buffer cache

Reads first go to the mComp; On a miss, go to sComp and refill the cache
Writes / fsync 's push stuff from mComp all the way to sComp (4 hops round-trip, slow)

Drawbacks

Storage throughput results (Fig 9):

Random reads do well because network can keep up
Sequential reads / writes are bad due to the network overheads / extra hops

OS Structure: OS in HLL

Biscuit

Link: https://www.usenix.org/conference/osdi18/presentation/cutler

Motivation

Pros of using High-level languages (HLLs):

HLLs provide much better memory safety and fewer bugs

Pitfall: HLLs can still panic on out-of-bound errors
Pitfall: HLLs have bugs in their compiler/runtime as well

HLLs are much simpler to code

Cons:

Safety tax: bounds, casts, garbage collection (GC)
GC CPU and memory overhead
GC pause time

Contribution

New HLL kernel from scratch, written in Go

Good compiler
Easy concurrency
Easy static analysis
Garbage collector: stop-the-world pauses for tens of microseconds  harms tail latency

Handling kernel heap exhaustion:

C kernels rewind back from an allocation failure (+ "too small to fail"); Cannot do that in Go because Go does not 
expose failed allocations and implicitly allocates for you
Instead, static analysis over all syscalls code to get max memory footprint - reserve that much at syscall entry

Breakdown of HLL tax (Fig 7:

1. GC cycles: not much if memory is abundant
2. Prologue cycles: check stack expansion, ...
3. Write barrier cycles
4. Safety cycles

Observations:

Good OS performance is more about tons of optimization techniques, less about HLL
Same code path comparison: 15% worse performance

Rust seems a promising future for HLL OS kernels: compile-time memory safety and no GC

Drawbacks

https://www.usenix.org/conference/osdi18/presentation/cutler


Does not include some functionalities/features that Linux has:

File permissions
Scheduling priority (relies on Go runtime scheduler)
No swapping to disk
Not NUMA-aware
Security features

Should better discuss how we could improve Go to support OS development

Control GC behavior
Memory fence support
Exposing allocations

OS Structure: Virtual Machines

Disco

Link: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1473D91F21DBDF43FEF78259A24F0F2D?doi=10.1.1.103.7
14&rep=rep1&type=pdf

Motivation

Enable existing commodity OSs to handle NUMA architectures

But ended up being a classic VM system design; Challenges of using VMs:

Time overhead: syscalls, extra layer of TLB translations
Space overhead: OS code, file buffer cache
Lost information about resource usage: memory in use, CPU idle thread
Handle sharing: most commodity OS require exclusive access to disk

Background

cc-NUMA: cache-coherent non-uniform memory architecture

Each CPU socket (node) has its own local memory
Accessing other node's memory is uniform, but slower

Contribution

Type-1 virtual machine manager (VMM) layer called Disco

Syscall procedure:

User app  Disco  Guest OS (IRIX)  Disco  User

Memory management: lets TLB store v.a.  m.a. translation directly!

User app  Disco  IRIX  Disco looks up per-guest pmap to find out  
and replaces in TLB   User

User app - virtual addresses (v.a.)
Guest OS - "physical" addresses (p.a.)
Disco - machine addresses (m.a.) - actual memory address on hardware

Use software 2nd-level TLB to cache translations ; Migrating a guest OS to a different 
NUMA node only requires moving memory content and updating the pmap - IRIX does not know it happened

Page sharing, i.e., memory deduplication (Fig 4; Slide 21): multiple guests' physical pages of the same content can 
point to the same machine page

Read sharing is easy
Write from one guest invalidates its old TLB entry, copies and writes to a new machine page

Time overhead of virtualization on uniprocessor (Fig 5):

Pmake & Database are system-intensive workloads, hence large overhead, big black bar
IRIX Kernel time decreases because Disco is now doing zeroing pages, 2nd-level TLB, ...

Page sharing effectiveness (Fig 6): does a great job on IRIX_text and buffer cache, but not that great for IRIX_data

Fig 7 shows comparison between IRIX on bare metal vs. Disco opening 8 VMs; Fig 8 shows the power of Disco placing 
optimal memory to reduce remote memory access time

Drawbacks

Requires slight modifications to the guest OS code, i.e., it is paravirtualization:

http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1473D91F21DBDF43FEF78259A24F0F2D?doi=10.1.1.103.714&rep=rep1&type=pdf


IRIX itself lives in unmapped kseg0 , hence Disco needs slight modification to IRIX to make it not live in kseg0  to 
enable TLB interposition
Replace simple syscalls with memory reads/writes to boost performance
Disco already zeros pages at allocation for privacy; IRIX does not need to do that again
More on Slide 23 ...

VMware ESX

Link: https://www.vmware.com/pdf/usenix_resource_mgmt.pdf

Motivation

Must run unmodified guest commodity OSs
Server consolidation & Oversubscription: memory may be overcommitted

Background

Increasing concern and popularity in virtual machines

Modularity
Equivalence: exactly the same virtual environment as the underlying hardware
Safety: isolation across VMs
Performance: cannot show major decrease in speed
Server consolidation
VMMs got the name Hypervisor

Type-1 v.s Type-2 hypervisors:

Type-1: Hypervisor running directly on hardware, no host kernel

Examples: Disco, ESX, Xen, ...

option a) - hypervisor implements all the device drivers
option b) - a "domain-0" OS provides drivers implementation, hypervisor sends "domain-U" OS device 
requests to the "domain-0" OS

Type-2: Host OS supports hardware-assisted virtualization, VMM is just a supported mode / kernel module

Examples: KVM

Popek/Goldberg Theorem (Slide 12): "sensitive" instructions vs. "privileged" instructions

Privileged instructions are those that will trigger a trap from user mode
Sensitive instructions are fundamental instructions updating shared host state
A system is virtualizable ONLY IF the user never calls sensitive instructions directly w/o trapping, i.e., sensitive 
instructions must form a strict subset of privileged instructions!

Contribution

Assumes hardware TLB, so needs software shadow page table managed by ESX hypervisor

The double paging problem: hypervisor pages out dirty page  from VM to hypervisor swap area, but then VM runs 
and guest OS decides to page out  to its virtual disk - results in  gets read back and written to a different area 
again

 Solution: ballooning - Insert a balloon device driver in guest OS; The driver asks for more memory and sends to 
hypervisor the allocated 's to act as taking memory back from that VM

If guest memory is scarce, it is the guest OS that decides which pages to swap out
Avoids double paging
Negligible overhead compared to guest OS just configured to have that much memory (Fig 2)

Similar memory deduplication technique but uses content-based hash fingerprints like data deduplication (Fig 3); In 
contrast, Disco modified IRIX code of bcopy()  to do copy-on-write

Periodic scan of memory and maintain a hash table
By default, a frame is set to NOT doing COW - a hint frame hit on non-COW page hence must do full comparison 
of page content for confirmation
Effective even with just 1 VM (Fig 4)

Memory QoS: allocate memory to guests proportional to shares, but can exceed than when hardware underutilized

If contention, do min-funding revocation from guest with 

Sometimes, completely fair isn't wanted:

Lower system-wide performance

https://www.vmware.com/pdf/usenix_resource_mgmt.pdf


Idle clients may hoard resources
Busy clients get more benefit from resource

 Solution: Idle memory tax , where  is the active fraction;  accounted through 
periodic sampling that invalidates a small few pages to let the hypervisor know when they get re-accessed

ReVirt

Link: https://web.eecs.umich.edu/virtual/papers/dunlap02.pdf

Motivation

Improving security by analyzing attacks after they occur is important

Previous logging mechanisms not sufficient:

Assumes OS is trustworthy
Log coverage is not complete

Contribution

Encapsulate target system into a VM, then place logger below the VM to log everything happened

Using a Type-2 hypervisor + UMLinux guests

Syscall procedure: host OS provides virtual modes for guest kernel vs. guest user

User  Host OS checks virtual mode bit  Guest OS  User

The trusted computing base (TCB) becomes just the host kernel + logger and nothing else

Not all external inputs need to be logged:

Reading from a disk is assumed deterministic (disk available at replaying)

Network data is huge and becomes problematic

 Possible solution: cooperative logging to log the sender as well, then those become the sender's output

At replaying: signal feeding point is identified by the PC reg + branch PMC counter

Sensitive instructions like rdtsc , rdpmc  are problematic...

Drawbacks

Since using a host kernel, it is arguable saying the TCB is becoming smaller - one reasonable argument is that guest 
OS only uses 7% of host syscalls

https://web.eecs.umich.edu/virtual/papers/dunlap02.pdf

