
 Advanced Computer Networks

Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS740

Teacher: Prof. Ming Liu

 Advanced Computer Networks

Network Architecture

NOW

VL2

BCube

Jupiter

Routing

BGP Instability

Chord

Flow Scheduling

Hedera

pFabric

PIFO

Load Balancing

CONGA

Duet

Resource Sharing

FairCloud

DRF

Programmable Networks

Ethane (SDN)

Open vSwitch

RMT

AccelNet

Congestion Control

XCP

DCTCP

Network Monitoring

OpenSketch

Minions (TPP)

End-Host Network Stack

PicNIC

Snap

This note includes the summary paragraph I wrote for the papers we reviewed this semester.

Network Architecture

NOW

Link: https://research.cs.wisc.edu/wind/Publications/now95.pdf

VL2

Link: https://dl.acm.org/doi/pdf/10.1145/1592568.1592576

This paper presents a new design of data-center networking architecture named VL2 (which stands for Virtual Layer-2)

that emphasizes assignment agility, performance isolation, and scalability. VL2 adopts a Clos interconnect topology, where

aggregation switches and intermediate switches form a bipartite link-state network using Locator Addresses (LAs), while

servers use flat Application Addresses (AAs) to locate any other server under ToR switches, decoupling addresses from

locations to enable assignment flexibility. VL2 uses Viliant Load Balancing (VLB) and ECMP in flow granularity to randomly

pick an intermediate switch for each connection between server pair. VL2 maintains a separate Directory System using

Paxos to serve translations from AA to ToR LA. Evaluation results show that a VL2 prototype achieves comparable latency

with traditional spanning-tree topology, while also providing uniform high capacity, fair load balancing, performance

isolation, and fast convergence after failures.

https://pages.cs.wisc.edu/~mgliu/
https://research.cs.wisc.edu/wind/Publications/now95.pdf
https://dl.acm.org/doi/pdf/10.1145/1592568.1592576

BCube

Link: https://dl.acm.org/doi/pdf/10.1145/1592568.1592577

This paper presents BCube, a hypercube-based network architecture for modular datacenters (MDCs). The paper argues

that existing datacenter network architecture designs, such as fat-tree and DCell, do not work well for MDCs, which might

contain thousands of inexpensive commodity servers & switches each having a small number of ports and requires a low

diameter to be packaged into shipping containers. A BCube network of dimension is recursively constructed out of

BCube s, where servers use gray-coding to form a hypercube. The paper implements a BCube source routing (BSR)

algorithm, which fully utilizes its high aggregate bandwidth of multiple disjoint paths and balances load using adaptive

probing. Evaluation results show that a BCube prototype achieves high throughput for bandwidth-intensive applications

and graceful degradation under server/switch failures.

Jupiter

Link: https://dl.acm.org/doi/pdf/10.1145/2829988.2787508

This paper is a retrospective on the design and deployment of five generations of datacenter network at Google, from

Firehose 1.0 (2005) to Jupiter (2012). The paper elaborated on three main ideas. First, cost-effective scalable networks can

be built using three-stage Close topologies out of commodity switches. Second, a top-down management approach

viewing the datacenter as a static topology and distributing a centralized configuration to all switches proves to be simpler

and more efficient compared to decentralized peer discovery protocols, sharing similarities with SDNs. Third, modular

hardware and software design allows efficient and robust deployment at campus scale.

Routing

BGP Instability

Link: http://conferences.sigcomm.org/sigcomm/1997/papers/p109.pdf

This paper presents a statistical analysis of Internet BGP routing traffic measured at major US BGP exchanges around

1996. Results reveal several interesting characteristics of BGP routing instability. First, the majority 99% of routing traffic is

pathological (i.e., redundant) and does not reflect topological changes. Second, the rest of routing messages, though

having smaller volume, reflect forwarding instability and policy fluctuation and have a significant impact on BGP instability.

Third, detailed analysis shows that instability is well distributed across AS's, and both instability and redundant routing

information exhibit temporal bursts and periodical behavior.

Chord

Link: https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf

The paper presents Chord, a decentralized lookup service based on consistent hashing that is highly scalable and

supports dynamic membership changes. On a consistent hashing address space of size , Chord maintains a finger table

of size per node , pointing to the successor of address , instead of an impractical full list of all

nodes. As a tradeoff, a Chord lookup could contain multiple hops, bounded by in the worst case. Chord

supports concurrent membership changes where nodes are joining/leaving the network and guarantees that the finger

table state on all nodes will eventually converge (except in the case of partitioning) through a periodic stabilization

algorithm. Chord tolerates node failures by having each node store a list of successors instead of just one for

redundancy. Simulation and evaluation results show that Chord can scale to a large number of nodes, support efficient

lookups, and have graceful degradation of availability in the case of node failures and membership changes.

Flow Scheduling

Hedera

Link: https://www.usenix.org/conference/nsdi10-0/hedera-dynamic-flow-scheduling-data-center-networks

This paper presents Hedera, a datacenter network control plane that realizes dynamic flow scheduling for multi-root tree

topology. Datacenter networks should be able to exploit multi-pathing and adapt to dynamic traffic patterns, yet existing

hash-based ECMP/VLB approaches do not respond to congestion. The paper introduces a control plane, which connects a

central scheduler to all the switches, for monitoring and estimating the demand of all flows and twisting their paths for

load balancing. Two example scheduling policies, Global First Fit and Simulated Annealing , are proposed and

evaluated. Results show that Hedera brings better bisection bandwidth than vanilla ECMP with reasonable out-of-band

control overhead.

https://dl.acm.org/doi/pdf/10.1145/1592568.1592577
https://dl.acm.org/doi/pdf/10.1145/2829988.2787508
http://conferences.sigcomm.org/sigcomm/1997/papers/p109.pdf
https://pdos.csail.mit.edu/papers/chord:sigcomm01/chord_sigcomm.pdf
https://www.usenix.org/conference/nsdi10-0/hedera-dynamic-flow-scheduling-data-center-networks

pFabric

Link: https://web.stanford.edu/~skatti/pubs/sigcomm13-pfabric.pdf

The paper presents pFabric, a minimal priority-based datacenter network transport design that decouples flow scheduling

and rate control. pFabric annotates each packet with a priority number that reflects the scheduling goal, such as

remaining flow size for minimizing flow completion time (FCT) or distance to deadline for maximizing number of deadlines

met. pFabric switch implements a very simple scheduling algorithm, which always sends out the highest-priority packet in

queue and always drops the lowest-priority packet when queue is full. pFabric switch controls its sending rate using a

simple TCP/reno-like algorithm, which does not rely on any information about the flows. Simulation results show that,

despite its extreme simplicity and conciseness, pFabric can achieve near-optimal FCT.

PIFO

Link: https://dl.acm.org/doi/pdf/10.1145/2934872.2934899

This paper presents a new programmable packet scheduler design using the push-in-first-out (PIFO) abstraction. PIFO

switches allow a packet transaction to be executed upon the enqueuing of each new packet to decide its rank and to put it

at the correct position in queue, while always dequeuing the packet at the head of queue. The simplicity of PIFO primitives

makes it possible to synthesize hardware implementations that operate at line-rate performance. At the same time, by

having a tree of PIFO queues and allowing optional shaping transactions, the PIFO abstraction is powerful enough to

compose most scheduling algorithms, covering hierarchical algorithms and non-work-conserving algorithms.

Load Balancing

CONGA

Link: https://dl.acm.org/doi/pdf/10.1145/2619239.2626316

This paper presents CONGA, a distributed, in-network, congestion-aware load balancing technique for datacenter

networks. CONGA operates in an overlay network, e.g., VXLAN, where all pairs of leaf ToR switches have (maybe virtual)

"tunnels" between them so that each leaf knows the destination leaf of each packet and can carry an additional overlay

header with the packet. As the packet traverses through the spine network, the overlay header is marked to carry the load

on the most congested link on its path, measured in discounting rate estimator (DRE). Receiver maintains a Congestion-

From-Leaf table and seeks opportunity to piggyback the load information to the next packet back to sender. Sender

updates its Congestion-To-Leaf table with the load information and chooses the best uplink for a new flowlet. Evaluation

results show that CONGA maintains low FCT even with significant load invariance.

Duet

Link: https://engineering.purdue.edu/~ychu/publications/sigcomm14_duet.pdf

This paper presents Duet, a data center load balancer design that combines hardware and software muxes to provide low

latency, high scalability, as well as high availability. Duet first leverages idle resources on switches, especially empty entries

in forwarding tables, ECMP tables, and tunneling tables to allow switches to function as low-latency, low-cost hardware

muxes (HMux). VIPs are partitioned across multiple switches, where each switch stores the VIP-DIP mappings for all VIPs

assigned to it. For better scalability and fault tolerance, Duet then adopts a software mux (SMux) cluster as a backup,

storing all VIP-DIP mappings. A greedy VIP assignment algorithm runs periodically and tries to maximize resource

utilization.

Resource Sharing

FairCloud

Link: https://www.mosharaf.com/wp-content/uploads/faircloud-sigcomm12.pdf

The paper presents a formal analysis on the sharing behavior of network links in a cloud setting, where multiple tenants

each have a collection of VMs placed across nodes communicating with each other. The authors propose three

fundamental requirements for network sharing: min-guarantee, high utilization, and network proportionality, and show that

network proportionality is mostly exclusive from the other two requirements, so that it is impossible to have a perfect

sharing policy, exposing a tradeoff space. The paper analyzes the behavior of traditional policies as well as proposes three

new policies: PS-L, PS-P, and PS-N, that further explore the tradeoff space. Simulation results are presented to back up

their formal analysis.

https://web.stanford.edu/~skatti/pubs/sigcomm13-pfabric.pdf
https://dl.acm.org/doi/pdf/10.1145/2934872.2934899
https://dl.acm.org/doi/pdf/10.1145/2619239.2626316
https://engineering.purdue.edu/~ychu/publications/sigcomm14_duet.pdf
https://www.mosharaf.com/wp-content/uploads/faircloud-sigcomm12.pdf

DRF

Link: https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types

The paper explores a problem that was not sufficiently addressed by previous work: fair allocation of multiple resources.

The authors propose a new metric, Dominant Resource Fairness (DRF), that defines max-min fairness across users based on

their dominant resource type. Analysis shows that DRF is sharing incentive, strategy-proof, envy-free, and Pareto efficient.

They implement DRF scheduling in Mesos and show that DRF improves both CPU & memory resource utilization &

fairness under a real Facebook Hadoop workload.

Programmable Networks

Ethane (SDN)

Link: http://cs.brown.edu/courses/csci2950-u/s14/papers/Casado07Ethane.pdf

The paper presents Ethane, a holistic authentication network design that demonstrates the early idea of software-defined

networking (SDN). In Ethane, network access policies are managed by a central controller that installs flow table entries in

dumb switches, in contrast to previous approaches such as using distributed smart switches or dedicated middleboxes.

The Ethane controller maintains a global view of all bindings of switch port to MAC, MAC to IP, IP to host, and host to user

registered in the network. All Ethane switches are just simple switches with a flow table data-plane, each establishing a

secure channel with the controller for control-plane messages. The controller could be replicated for better fault-tolerance

and scalability. A real implementation and deployment of Ethane at Stanford shows that this centralized design is simple,

manageable, and effective, while being able to scale to a reasonably large campus network.

Open vSwitch

Link: https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff

This paper presents the design and implementation of Open vSwitch, a software virtual switch for hypervisors. Open

vSwitch targets a cloud-based virtual networking scenario, where end hosts are numerous VMs and their first-hop

switches are virtual switches provided by the hypervisor software. The paper focuses on three major differences between

virtual switches and traditional switches, and describes how Open vSwitch addresses these differences to provide good

performance, flexibility, and manageability:

1. Virtual switches cannot assume dedicated hardware and must share computation resources with host applications,

therefore Open vSwitch chooses to optimize for common-case lookup operations instead of worst-case guarantees.

This leads to the design of splitting the switch functionality into a userspace component and a kernel datapath

module, and applying flow caching to significantly improve lookup performance for subsequent packets.

2. VMs are numerous, so the network undergoes constant changes of flow states. This leads to the design of using a

hashtable-based tuple space search algorithm for the lookup operation, because it has complexity for updates.

3. For better manageability and easier addition of new switch features, Open vSwitch adopts the SDN approach with the

OpenFlow model.

RMT

Link: https://dl.acm.org/doi/pdf/10.1145/2486001.2486011

The paper presents a practical hardware design of Reconfigurable Match Tables (RMT) in programmable switches for SDN.

RMT extends the current OpenFlow “Match-Action” model to allow arbitrary packet header field definitions, flexible match

table pipeline topologies, and easy addition of new actions. It does so through the following techniques. First, RMT

decouples logical matching stages from physical pipeline stages and allows run-time mapping between the two. Second,

RMT configures memory blocks per stage dynamically across parsing, matching, and actions, and allocates memory at a

fine granularity. Third, RMT defines a minimal yet complete ISA for composing VLIW actions. Analysis shows that RMT

brings high programmability with less than 15% extra cost over current commodity switch hardware.

AccelNet

Link: https://www.usenix.org/conference/nsdi18/presentation/firestone

The paper presents Azure AccelNet, an FPGA-based SmartNIC offloading solution by Microsoft that offers both good

programmability and high, scalable performance. The main goals of AccelNet are to 1) reduce the CPU burden of

increasingly complex host SDN networking stack in VM networking, 2) take advantage of the latency and throughput

provided by SR-IOV NIC hardware, 3) maintain host SDN programmability, and 4) retain serviceability, flexibility, and

https://www.usenix.org/conference/nsdi11/dominant-resource-fairness-fair-allocation-multiple-resource-types
http://cs.brown.edu/courses/csci2950-u/s14/papers/Casado07Ethane.pdf
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://dl.acm.org/doi/pdf/10.1145/2486001.2486011
https://www.usenix.org/conference/nsdi18/presentation/firestone

scalability. AccelNet meets these goals by integrating an FPGA-based SmartNIC on the path between host CPU & NIC and

TOR, which implements a hardware-programmable General Flow Table (GFT) engine that enforces custom data-plane

filtering rules. Control-plane logic remains in the host software stack. Data-plane traffic uses SR-IOV bypassing to NIC,

which relays packets to the FPGA. AccelNet has been deployed at large scale in Azure and has yielded great improvement

in performance while providing the same level of programmability as host SDN and introducing reasonable development

difficulty.

Congestion Control

XCP

Link: https://dl.acm.org/doi/pdf/10.1145/633025.633035

The paper presents eXplicit Control Protocol (XCP), an ECN-based transport-layer protocol that improves the performance,

stability, and fairness of TCP in high-bandwidth and long-latency network. XCP extends ECN to encode three congestion

information fields in the header. In particular, sender puts its current cwnd size and rtt estimation, and fills the

feedback field with a desired increase of rate proportional to the spare network bandwidth. Routers overwrite the

feedback field if it is experiencing congestion to tell the source to adjust its rate proportionally to the level of congestion

measured from queue lengths. The feedback is further divided fairly across packets. Analysis and simulation experiments

show that XCP improves bandwidth utilization for large BDP networks, improves stability against bursts, provides fair, and

decreases packet drops, without introducing too much complexity.

DCTCP

Link: https://people.csail.mit.edu/alizadeh/papers/dctcp-sigcomm10.pdf

The paper presents Data Center TCP (DCTCP), a new ECN-based congestion control protocol that adjusts congestion

window size proportionally to the extent of congestion. DCTCP is simple and builds upon standard ECN/AQM

mechanisms, such as RED, where routers mark the CE bit of a packet if its queue is above certain threshold and the

receiver conveys the CE bit back to the sender through ECN-ACKs. The sender maintains a sliding-window estimation of

level of congestion, , where is the fraction of CE-marked packets over a window and gg is a

constant parameter. It then adjusts its congestion window size proportionally to , instead of simple AIMD. Analysis

results show that DCTCP maintains low queue occupancy, guarantees low latency for interactive flows without sacrificing

throughput, and improves stability.

Network Monitoring

OpenSketch

Link: https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu

The paper presents OpenSketch, a software-defined network measurement architecture that supports a wide variety of

measurement tasks and runs efficiently on commodity switch hardware. Previous flow-based measurement solutions

such as NetFlow consume too many resources, while sketch-based measurement solutions are too ad-hoc. OpenSketch

adopts the SDN idea from OpenFlow and splits measurement tasks into control plane and data plane. The switch

implements a 3-stage programmable pipeline: hashing, classification (matching), and counting, which the authors prove to

be general enough to support most measurement sketches and is also supported by current commodity hardware. The

software controller provides a measurement library for operators to write simple measurement programs and auto-

generate desired sketches and resource allocation policies. A prototype based on NetFPGA shows that OpenSketch

consumes little memory space and produces <2% error rate across five measurement tasks.

Minions (TPP)

Link: https://dl.acm.org/doi/pdf/10.1145/2619239.2626292

The paper presents Tiny Packet Programs (TPP), a new architectural design for fine-grained network monitoring by

injecting tiny custom programs to be executed per-packet per-hop. On the hardware side, a TCPU is added to each Match-

Action stage of the data plane pipeline, which is able to execute TPP programs written in a minimal set of 6 instructions,

carried by each packet. The instructions have access to both the packet header and the switch memory. On the software

side, end host prepends packets with a TPP header that contains the TPP program and the space for storing queried

information, collects those information for packets received, and analyzes them for desired metrics.

End-Host Network Stack

https://dl.acm.org/doi/pdf/10.1145/633025.633035
https://people.csail.mit.edu/alizadeh/papers/dctcp-sigcomm10.pdf
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/yu
https://dl.acm.org/doi/pdf/10.1145/2619239.2626292

PicNIC

Link: https://dl.acm.org/doi/pdf/10.1145/3341302.3342093

The paper presents PicNIC, an end-host virtual NIC solution that improves performance predictability and isolation across

VMs. The paper focuses on the fundamental tradeoff between bandwidth utilization (efficiency) and performance

predictability (isolation) in a virtualized network. Prior work mostly focused on rate-limiting techniques in the fabric and

did not investigate end-host issues -- a bursty flow from a misbehaving VM could negatively impact the goodput, delay,

and loss rate experienced by other VMs due to contention on end-host resources.

PicNIC proposes a software virtual NIC design that addresses end-host contention issues. For each VM, PicNIC guarantees

a min- and max-bandwidth envelope SLO, a latency distribution SLO, and a minimal loss rate (if the VM is within its

bandwidth envelope). The design of PicNIC can be split into three constructs: 1) CPU-fair weighted fair queues (CWFQs) on

the receiver side that divide the ingress engine's compute capacity in proportion to VMs bandwidth SLOs, 2) receiver-driven

congestion control that computes the rate limit of each sender, and 3) sender-side admission control that shapes traffic and

puts backpressure to guest VMs' transport layer.

Snap

Link: https://research.google/pubs/pub48630/

The paper presents Snap, a microkernel-oriented userspace network stack developed by Google. Snap runs as a

standalone userspace process implementing end-host network stack modules, which were previously supplied by a

monolithic kernel. Applications do network I/O through IPC with the Snap process, instead of doing syscalls.

Internally, the Snap process maintains groups of engines, where each engine is a single thread function providing certain

network functionality required by the applications. Snap intensively uses resource accounting mechanisms e.g.

MicroQuanta to ensure fair execution across engines, as well as kernel-bypassing techniques to offload processing & data

to NIC hardware. As a result, Snap brings both high development velocity, easier maintenance, as well as good

performance, without losing centralized control.

https://dl.acm.org/doi/pdf/10.1145/3341302.3342093
https://research.google/pubs/pub48630/

