
 Advanced Database Systems

Author: Guanzhou (Jose) Hu 胡冠洲 @ UW-Madison CS764

Teacher: Prof. Xiangyao Yu

Advanced Database Systems

Query Processing & Buffer Management

Join Processing

Radix Join

DBMIN Buffer Management

LeanStore

Access Path Selection

C-Store

Parallel DBMS

Transaction Processing

Granularity of Locks

Isolation Levels

Optimistic Concurrency Control (OCC)

Silo: Modern OCC

B-link Tree

Adaptive Radix Tree (ART)

ARIES Logging

Two-Phase Commit (2PC)

Cloud-Native Databases

Cornus

Aria

Amazon Aurora

Snowflake

FlexPushdownDB

GPU for DB Analytics

Query Processing & Buffer Management

Classical DBMS designs, SQL queries, analytical processing, buffer management, etc.

Join Processing

Link: https://cs-people.bu.edu/mathan/reading-groups/papers-classics/join.pdf

System architecture & assumptions:

Uniprocessor CPU

10s of MBs of main memory, good for both sequential and random accesses; denote memory capacity as

Big block-based disk, good for only sequential accesses

Focus only on equi-join operation of two relations , where

Use fudge factor to account for any overhead amount

Four join algorithms discussed:

Sort-Merge join

Procedure:

1. Transform both relations into sorted runs of average size each. 2 comes from using replacement selection: we first load

 blocks in memory and form a min-heap; instead of just dumping this min-heap as a -sized run, we instead peek at the

next tuple in input buffer -- if it all tuples that have been output, we can bring that tuple into heap to become part of the run

-- in average blocks per run

2. This leads to roughly runs in total. Do a merge by traversing through the runs and picking matching tuples

3. If , then only two phases are needed because which means each run in phase 2 can get at least one

slot in memory, meaning the merge can be done in one pass

Simple-Hash join

Procedure:

https://pages.cs.wisc.edu/~yxy/
https://cs-people.bu.edu/mathan/reading-groups/papers-classics/join.pdf

1. Build a hash table for ; if , then find a subset of buckets that fit in memory and build the hash table only

containing those key ranges, and leave the rest of records for next pass

2. Traverse through sequentially, and for each tuple, lookup the hash table to pick matching tuples

3. Repeat the above two steps until all tuples in have been processed; will get scanned in entirety for multiple times equal to

the number of passes

Good when or is just slightly bigger, meaning the algorithm finishes in 1 or 2 passes and incurs no or little I/O traffic

Otherwise, will incur significant I/O traffic by repeatedly scanning and multiple times

GRACE-Hash join

Procedure:

1. Partition both and into pairs of shards using hash function bucketing, such that for all partitions of ;

requires

2. Load in the first partition of and build the hash table for it; requires roughly . Traverse through the

partition of and pick matching tuples

3. Repeat step 2 for all pairs of partitions

Good when is multiple times larger than , because each table is effectively only written and read once

Not as good as simple-hash join when fits in memory, which does not incur any I/O

Requires , i.e.,

If , phase 1 partitioning itself might require 2 or more passes

Hybrid-Hash join

Combines simple-hash join and GRACE-hash join

Procedure:

1. If , then do exactly simple-hash join; otherwise, do GRACE-hash join --

2. During the phase 1 of GRACE-hash join, there will be memory capacity unused while partitioning ; use that to simultaneously

build the hash table of

If where is small, performance is close to simple-hash join, because is a significant fraction of

and is not written to disk

If , performance is like GRACE-hash join

Other concerns & optimizations:

Handling partition overflow when key space is skew and some buckets will be very large during hashing: just split that partition further

into smaller key ranges

Using Babb array (bitmap filter) to speed up lookups

Applying semi-join: project into only the join attributes, join to , and then join the result back to

useful if full tuples won't fit in memory, but the join is selective and filter out many tuples

Radix Join

Link: https://www.vldb.org/conf/1999/P5.pdf

System architecture & assumptions:

Machines hitting a memory wall, as memory capacity grows slower than CPU speed

Want to optimize for for SRAM-cache/DRAM heirarchy

Cannot simply apply partitioned hash join:

CPU cache has very limited capacity, yet TLB becomes a bottleneck if we have too many partitions

Memory layout of data partitions needs to be carefully design to avoid fragmentation

Radix join algorithm:

Radix partitioning -- In each pass, cluster records based on the lower bits of the integer hash value of key

For pass , use next bits starting from lest-most bit for partitioning

In order to know where in output array to write each record, need to scan the array twice -- first time collect size per partition and

do prefix-sum to get the start index of each partition

Output array has identical structure as input array, meaning no complex memory allocation or fragmentation

Number of partitions per pass is determined by TLB size

Final size per partition is determined by CPU cache size

Do radix partitioning for both relations, then join each pair of partitions using hash join (if partitions are relatively big) or nested-loop join

(if partitions are all very small)

Paper also touches on how non-integer join keys could be dictionary-encoded and stored in columnar format

DBMIN Buffer Management

Link: https://web.stanford.edu/class/cs345d-01/rl/DBBufMgmt.pdf

Classic page replacement policies:

Least-recently-used (LRU)

Most-recently-used (MRU)

First-in-first-out (FIFO)

Last-in-first-out (LIFO)

CLOCK (second-chance FIFO)

Random

Many others... -- the optimal replacement policy depends on the data access pattern access pattern in a DBMS is easier to predict than

in e.g. OS or hardware, because of well-defined semantics of SQL queries

Query locality set model (QLSM):

Key idea: decompose SQL queries into simple data access patterns

Each pattern has a heuristically optimal locality set size to be allocated as buffer space for it,

as well as a heuristically optimal replacement policy for it

https://www.vldb.org/conf/1999/P5.pdf
https://web.stanford.edu/class/cs345d-01/rl/DBBufMgmt.pdf

Straight sequential (SS): each page in a file accessed only once

e.g., SELECT on an unordered relation

locality set = 1 page

replacement policy = any

Clustered sequential (CS): repeatedly read chunks, sequential inside each chunk

e.g., sort-merge join with duplicate join keys

locality set = size of the largest cluster

replacement policy = LRU or FIFO (buffer size cluster size), MRU (otherwise)

Looping sequential (LS): repeatedly read entire file sequentially

e.g., nested-loop join

locality set = size of file being scanned

replacement policy = MRU

Independent random (IR): truly random accesses

e.g., index scan through a non-clustered (e.g., secondary) index

locality set = 1 page or unique pages in total

replacement policy = any

Clustered random (CR): random accesses within each chunk

e.g., join between non-clustered, non-unique index as inner relation and clustered, non-unique outer relation

locality set = size of the largest cluster

replacement policy = LRU or FIFO (buffer size cluster size), MRU (otherwise)

Straight hierarchical (SH): single traversal of index; similar to SS

Hierarchical with straight sequential (H/SS): traversal of index followed by SS on leaves; similar to SS

Hierarchical with clustered sequential (H/CS): traversal of index followed by CS on leaves; similar to CS

Looping hierarchical (LH): repeatedly traversing an index

e.g., indexed nested-loop join

locality set = first few layers of the index

replacement policy = LIFO

DBMIN buffer management mechanism:

For each open() file operation, estimate its QLSM

Allocate a set of buffer pages as its locality set

Choose a replacement policy for this set of pages

A query is allowed to run if its locality set fits in free frames

If a frame contains a page not belonging to any locality set, it is managed by a global free list under LRU

If a page is requested and found in memory, but not in the file's locality set, detach it from the global free list and add into the

locality set; this may lead to evicting some page determined by the local replacement policy back to the global free list

If a page is requested and not found in memory, it is first brought into the global free list by a disk I/O, then proceed as above

To allow concurrent queries to share data pages, there's a global buffer table for queries to locate frames in other's locality sets

LeanStore

Link: https://db.in.tum.de/~leis/papers/leanstore.pdf

Modern main-memory database characteristics:

The main memory contains (almost) full content of index structures and all data tuples; persistent storage is mostly for things like logs for

durability concerns

Data is managed at fine granularity, e.g., at tuple-level

No indirection for buffer management: reference data through pointers

LeanStore optimizations:

Pointer swizzling:

Pages residing in main memory are directly referenced using virtual memory address pointers

On-disk pages are still referred to by page ID

Each such pointer/ID is called a swip, with a bit indicating whether it's a pointer (swizzled) or page ID (unswizzled)

Each page has a single owning swip to prevent concurrency problems in-memory data structures must be tree-like

Never unswizzle a page that has a swizzled children when trying to unswizzle a page, loop through all its children pointers -- if

there is a child that is swizzled, unswizzle the child instead

Page cooling:

Randomly add pages to cooling stage, unswizzle them but not replacing them

Colling pages enter a FIFO queue, and a page is replaced it if reaches the end of queue

Upon access, a cooling page is swizzled

Hot pages' access tracking information do not need to be updated upon every access

Optimistic latching & lock coupling:

https://db.in.tum.de/~leis/papers/leanstore.pdf

Epoch-based reclamation: evict a page from cooling stage only if all threads have finished reading it

Access Path Selection

Link: https://courses.cs.duke.edu/compsci516/cps216/spring03/papers/selinger-etal-1979.pdf

IBM System R query optimization:

Cost of an query execution plan I/O cost + computation cost

Goal: enumerate execution plans and pick the one with the lowest cost

Statistics notation:

 #tuples in table

 #pages in table

 fraction of pages in segment that belongs to , can assume 1 if segment belongs to entirely

 #distinct keys in index

 #pages in index

A segment contains disk pages that can hold tuples from multiple relations

A segment scan is basically sequential scan of all pages in segment

An (clustered or non-clustered) index scan utilizes an index to find high-key and low-key positions

Sargable predicates (search-arguments-able predicates) are those that can be passed into RSS and have filtering applied early

Each clause is put in conjunctive normal form (CNF); each term is called a boolean factor

a boolean factor attribute COMPARISON_OP value

These are non-sargable examples:

function(attr) = something

attr1 + attr2 = something

attr + val = something

attr1 > attr2

A predicate matches an index iff.

the predicate is sargable, AND

columns references in the predicate match an initial subset of attributes of indexing keys sequence

Estimation of computation cost -- estimating the selectivity factor of predicate CNF to get :

attr = val : if index exists, ; else,

attr1 = attr2 :

attr > val :

pred1 AND pred2 :

pred1 OR pred2 :

NOT pred :

Estimation of I/O cost -- estimating #page accesses:

Segment scan:

Unique index point matching: 1 data page + several index pages

Clustered index predicate matching:

Non clustered index predicate matching:

Access path enumeration for a query:

A tuple order is an interesting order if it is one that is specified by the query block's GROUP BY or ORDER BY clauses

Each sorted index can give us some tuple order

To find the cheapest access plan for a single relation query, we examine the access paths that produce tuples in each interesting

order, as well as unordered access paths + the cost of sorting the output result

Join ordering: right child is the inner relation

Left-deep tree: for nested-loop join or hash join, left-deep tree allows pipelineing

Right-deep tree

Bushy tree: may produce cheaper plans, but are rarely considered due to explosion of search space

GROUP BY push-down could help reduce join cost:

https://courses.cs.duke.edu/compsci516/cps216/spring03/papers/selinger-etal-1979.pdf

C-Store

Link: https://web.stanford.edu/class/cs345d-01/rl/cstore.pdf

Row store vs. Column store:

Row format is write optimized and suits transaction processing (OLTP)

Column format is read optimized and suits analytical processing (OLAP); easier to compact and compress data; less efficient to update

records

C-Store design:

Shared-nothing architecture with possible replication for redundancy; each node runs two stores, with writes go into the WS and the

columnar RS, with periodic migration

Data model:

A projection is a group of columns sorted on the same attribute(s); An attribute can belong to multiple projections and be sorted in

different orders

Each projection is horizontally partitioned into segments, also called row groups

Each tuple in a projection is associated with a storage key (SK) denoting the logical row it belongs to

In RS, SKs are not explicitly stored and are simply the physical index of record in segment

In WS, SKs need to be explicitly stored

Join indices store the mapping between projections that are anchored at the same table with one-to-one mapping

Data encoding choices:

Run-length encoding (RLE) for self-ordered, few distinct values

Bitmap encoding for foreign references, few distinct values

Delta encoding for self-ordered, many distinct values

No encoding for foreign references, many distinct values

Parallel DBMS

Link: https://people.eecs.berkeley.edu/~brewer/cs262/5-dewittgray92.pdf

Parallel DBMS metrics:

Speedup = small system elapsed time / big system elapsed time; linear

Scaleup = small system elapsed time on small problem / big system elapsed time on big problem; linear

Design spectrum:

https://web.stanford.edu/class/cs345d-01/rl/cstore.pdf
https://people.eecs.berkeley.edu/~brewer/cs262/5-dewittgray92.pdf

Given a query plan, ways to make it parallel:

Pipelined parallelism

Partitioned parallelism

Round-robin

Range partitioning

Hash partitioning

See slide for pros & cons of each: the same old stuff mentioned many times in many courses...

Parallelism within each relational operator

Each operator has a set of input and output ports

Connected through merge operators to keep SQL operators unmodified

Requires data shuffling

Transaction Processing

Transactions, ACID, locking & concurrency control, durability & recovery, etc.

Granularity of Locks

Link: https://web.stanford.edu/class/cs245/readings/granularity-of-locks.pdf

ACID properties of transactions concurrency control:

Atomicity: transaction happens all-or-none

Consistency: app-layer integrity constraints are satisfied (NOT the consistency property in distributed replication)

Isolation: how operations from concurrent transactions are allowed to interleave

Durability: committed transaction's effects must persist across system failures

Problems with traditional locking:

Traditionally, locks only have two modes: exclusive (X) on writes and shared (S) for reads

Consider a database with many tables, each consisting of many tuples, and consider multiple concurrent clients -- the traditional locking

mechanism puts a dilemma on the granularity of locks:

Huge DB lock: simple & efficient, but locks everyone out; good if I'm doing a really bulk operation, bad if I'm only interested in a

small tuple

One lock per tuple: finer-grained, but can easily have too many locks, leading to poor performance

Hierarchical Locking:

Organize resources as a tree (or more generally, a DAG), for example:

Version #1: still only have X and S modes; locking an internal node on X or S implicitly locks all its descendant nodes with the same mode

If I want to scan a file, better hold one S on the file node

If I want to write a few tuples, better hold Xs on the individual tuples

S and X on the same node are not compatible -- attempting to acquire S on a node already having X will fail, and vice versa

Problem: What about conflicting transactions, e.g., one trying to take S on a file and the other trying to take Xs on some tuples within

it? This should not be allowed.

Version #2: introduce intention modes on internal nodes: intention exclusive (IX) and intention shared (IS)

To lock a node with X mode, must traverse the tree from root and lock all ancestor nodes along the path with IX

To lock a node with S mode, must traverse the tree and similarly lock all ancestors with IS

S and IS are compatible -- attempting to acquire S on a node already having IS is ok, and they will share reading permissions of some

children

X and IX are not compatible -- attempting to acquire X on a node already having IX is not ok, because some children must already be

locked in X

IS and IX are compatible -- attempting to acquire IS on a node might just mean attempting to acquire S on a disjoint set of children

from those locked in X; conflicts, if any, will be resolved at deeper level

Problem: Consider a workload that scan a big table while only attempting to update a few tuples along the way. With the current

version, it must either hold a big X lock on the table, or hold many S locks on read-only tuples, which is not ideal.

Version #3: introduce a combined optimization mode: shared and intention exclusive (SIX)

For the abovementioned workload, can hold a SIX lock on the table and a few X locks on the tuples to modify

SIX and IS are compatible -- can have disjoint sets of children locked in X and S, respectively, by the two transactions; conflicts, if any,

will be resolved at deeper level

SIX is not compatible with all other modes -- similar reasoning follows

https://web.stanford.edu/class/cs245/readings/granularity-of-locks.pdf

Lock are requested from root to leaf

and released from leaf to root, OR

released at the end of the transaction as an atomic operation

Other issues & extensions to locking:

Semantic locking: you can have more lock purposes than reads and writes; e.g., increments can have its own semantic and be compatible

with other concurrent increments

Lock granting scheduling may be altered to improve parallelism

however, need to avoid starvation (delaying a transaction indefinitely)

Deadlock solutions:

Deadlock detection: maintain a dependency graph (a "wait-for" graph)

Deadlock prevention:

No-Wait -- whenever encountering a conflict, abort

Wait-Die -- a transaction waits if it has higher priority than those in queue, otherwise abort

Wound-Wait -- a transaction preemptively aborts queued ones if it has higher priority, otherwise wait

Lock ordering: everyone acquiring locks in a pre-defined order, e.g., by global memory address

Isolation Levels

Link: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf

Definition of ANSI isolation levels:

Serializable (SR or SER) as if transactions are executed in a serial order

 long read locks + long write locks

Repeatable read (RR) serializability but allowing phantom effects

Range scans under a predicate may not see newly inserted entries committed by others

 long record read locks + short predicate read locks + long write locks

Read committed (RC) repeatable read but allowing fuzzy read

Multiple reads of the same record within a transaction may get different values

 short read locks + long write locks

Read uncommitted (RU) read committed but allowing dirty read

Read may see dirty data of other uncommitted transactions' writes

 no locking on reads + long write locks

No isolation read uncommitted but allowing dirty write

Pretty useless isolation level -- no practical DBMS will provide this level

 no locking on reads + short write locks (or no locking on writes)

Other useful isolation levels:

Cursor stability (CS) using a cursor implementation (pointer to some record during some range scan), the value of record currently

pointed to by the cursor cannot be modified during the period when cursor does not move

RC CS RR

Prevents the lost update phenomena from RC

 read locks held on current of cursor + short predicate read locks + long write locks

Snapshot isolation (SI) transaction reads records versioned at its start timestamp and writes records at its commit timestamp

RC SI, SI RR, SI SER

Allows the write skew phenomena from SER: transactions can see a snapshot that does not reflect the latest updates and thus end

result is not serializable

SI requires read snapshot to reflect all the changes that committed before transaction starts (i,e,, real-time constraint), which is not

necessarily enforced by SER

Serializability + real-time constraint == strict serializability (i.e., transactional linearizability)

If commits before starts, must precede in the serial order

Can be implemented naturally in a multi-version concurrency control (MVCC) database

Two-phase locking (2PL) is the canonical way of ensuring desired isolation:

Definition:

Growing phase -- acquiring locks, no releasing

Shrinking phase -- releasing locks, no acquiring

Serialization point is when after all locks are acquired but before any release

Strict 2PL == 2PL + all X locks released after transaction commits

i.e., transactions only hold long locks (release all at once at the end of transaction) ensures serializability

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf

Alternatively, using vanilla 2PL, could trigger cascading aborts of all transactions that observed dirty writes; this requires tracking

effort and also does not defend against fuzzy reads, etc.

Optimistic Concurrency Control (OCC)

Link: https://www.eecs.harvard.edu/~htk/publication/1981-tods-kung-robinson.pdf

Different concurrency control schemes:

Pessimistic concurrency control (locking) resolves conflicts eagerly

Locking overhead could be high, even for read-only transactions

More vulnerable to deadlocks

Limited concurrency due to congestion and holding long locks

Optimistic concurrency control (OCC) ignores conflicts during execution and resolve conflicts (through validation) at commit time

OCC may lead to high abort rate under high concurrency, since conflicts do not always mean non-serializable history, but OCC will

abort the transaction to let it retry (while if using locking, just some other writing transaction might be slightly blocked and delayed)

OCC has no native support for prioritizing transactions to ensure their commit

Polaris protocol

May also fall back to 2PL if a transaction has aborted for too many times

Timestamp ordering (T/O) does time-traveling to try to put a committing transaction at an appropriate timepoint

Multi-version concurrency control (MVCC) supports snapshot isolation

Classic OCC algorithm:

3 phases: Execution - Validation - Commit

Execution phase (originally named read phase) buffers writes locally; operations:

tcreate : create a new record

twrite : write to local write set, no visible modification to global database yet

tread : read from either local write set or global database; maintain read set

tdelete : mark deletion in local delete set, no deletion from global database yet

Commit phase (originally named write phase) makes all modifications global, reflects them to global state

Validation phase determines whether the transaction can commit or must abort, by checking if there are concurrent transactions that

have conflicts with me that will lead to violation of isolation level (assuming serializability here)

Transaction is assigned a transaction number when it enters the (critical section of) validation phase

This number, which is as presented below, determines the global serialization order

Atomically fetches from (and increments) a global counter

Serial validation:

At transaction start, grab a

At validation, grab a and check for set intersections

Things wrapped by a pair of means a critical section that must be protected by a lock

Improved serial validation:

Move part of validation out of critical section to improve parallelism: for those that committed before I started validation, can

validate against them outside of critical section

https://www.eecs.harvard.edu/~htk/publication/1981-tods-kung-robinson.pdf

Parallel validation:

Both validation work and commit phase happen outside of critical sections, with the help of maintaining an set

Need to validate on both read set and write set for because the commit phase is now unprotected from critical

section; we need to protect against:

interleaved blind writes in commit phase

data race on same record in commit phase

 length of critical section is independent of the number of validating transactions

 may lead to unnecessary aborts, due to conflict with an aborted transaction or with someone that's during its commit phase

Silo: Modern OCC

Link: https://dl.acm.org/doi/pdf/10.1145/2517349.2522713

Set-intersection-based validation vs. version-number-based validation:

In classic OCC, timestamp allocation and critical section locking could become scalability bottleneck on modern multicore machines

By assigning a version number + lock bit field to each record, Silo enables fine-grained latching and removes the central timestamp

allocation bottleneck

Transaction-ID (TID) word:

Each record in Silo database contains an extra column of a 64-bit TID word

Lock bit acts like a latch

Sequence number is a version number chosen by the worker thread to be:

 TID sequence number of any record seen in the transaction

 the worker's most recently chosen TID sequence number

Epoch number is for parallel durability logging purposes

Each write operation during a transaction will lock the record by atomically setting the lock bit and updating the sequence number

Each read operation could do either thing to ensure reading out consistent bytes atomically:

Guard the read with trying to hold the latch

Optimistic latching (Silo's approach)

Silo's complete validation & commit protocol:

r.lock_bit = 1

r.update_value()

r.update_seq_number()

r.lock_bit = 0

1

2

3

4

do

 tid0 = r.read_TID_word()

 RS[r.key].value = r.value

 tid1 = r.read_TID_word()

while (tid0 != tid1 or tid0.lock_bit == 1)

1

2

3

4

5

https://dl.acm.org/doi/pdf/10.1145/2517349.2522713

First lock the write set in sorted memory address order to prevent deadlocks

Validation fails if any read record is:

modifed since earlier read in execution phase

currently locked by another transaction

It does have to re-read the TID field of every read record, which may be sub-optimal for range queries

Phantom protection mechanisms;

With 2PL, phantoms can be prevented by gap locks, i.e., a lock on a gap between index records

Next key lock = index node lock + gap lock before the record

In Silo, phantoms are checked by validating the versions of accessed index nodes (+ possibly next nodes)

B-link Tree

Link: https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf

B-tree vs. B+-tree vs. B*-tree:

B-tree:

Every node is wide and contains to keys (except root), i.e., each node is at least half full

All leaf nodes are at the same depth level

 is typically large, so fan-out can be large and a lookup traverses a small number of levels

Values (or value pointers) stored in all levels

B+-tree:

B-tree, but values (or value pointers) stored only in leaf nodes

Leaf nodes are linked together to speed up range scans

B*-tree:

B+-tree, and each node is at least full

In this paper -- each internal node has a high key appended on the right (upper bound on keys)

Concurrency challenge: these data structures do not natively support concurrent operations

Mostly due to the split action when a node is full

A concurrent insert may split a node and hence mislead a concurrent search to think that a key does not exist, even though it exists

but is just in the newly-split right sibling node

Traditional lock coupling mechanism:

A node is unsafe if it is full (i.e., contains keys)

Lock coupling (aka. lock crabbing):

1. lock parent node

2. access parent, search for desired child pointer

3. lock child node

4. If child node is safe, release parent node

5. If child node not safe, split it immediately then release parent node

 root node and higher-level nodes are locked for every operation, becoming a scalability bottleneck

Lock coupling could also be done optimistically: associate each node's lock bit with a version number; after reading child node version,

validate that parent node version has not changed

B-link tree -- add internal node link pointers to allow search to find the right node:

Modifications to B*-tree:

Each internal node has a link pointer to its right sibling as well

Appends a high key to each node, indicating the upper bound of key ranges of the right-most child

Split procedure:

https://www.csd.uoc.gr/~hy460/pdf/p650-lehman.pdf

Lock node to split

Create new sibling , point it to current sibling

Change 's link pointer to

Lock 's parent , insert new child pointer to

Search procedure: if not found in target node but sees that its high key is actually smaller than the search key, it means some split has

happened to this node -- follow the link pointer to the right sibling (may repeat)

In split, how to know who's 's parent?

Remember the path walked down the tree during lookup

If the parent has been split, will know that by checking high key, so follow its link pointer now to find the real parent node

this is the only short period of time when an operation could hold 3 locks simultaneously (, 's original parent, 's real parent)

Adaptive Radix Tree (ART)

Link: https://db.in.tum.de/~leis/papers/ART.pdf

Radix tree (aka. digital tree or prefix tree or trie):

Path to leaf node implicitly stores the key of length bits (each edge associated with some bits value)

Span: the number of bits associated to each node for it to determine the next child

Each internal node is then an array of pointers

Extra space required to store internal nodes

Larger span reduced height, but also exponential growth in tree size

Adaptive radix tree (ART) ideas:

Using adaptive node type according to the number of non-empty slots within it

Examples below assumes span , so each key segment has at most 256 possible values

Node4 & Node16

key array = array of 4/16 slots, each bits long storing the key segment if non-empty

pointer array = array of 4/16 child pointers corresponding to the key array index

Search can be accelerated using SIMD comparison instructions

Node48

key array = 256 slots, storing indices into the child pointer array if that segment value exists

pointer array = array of 48 child pointers

Why? Because when we have more than 16 keys, a linear search through the key array becomes slower -- better just use the

segment value as index (paying slightly higher space usage)

Node256

Simply a flat array of 256 slots, storing child pointer if non-empty

Collapsing internal nodes to reduce redundant information stored

Lazy expansion: remove internal path to single leaf

Expand it on-demand if a conflicting key arrives

Requires complete key to be stored somewhere at the leaf

Path compression: merge one-way node into child node

Requires remembering the key segments on the path to merged node in the child node

https://db.in.tum.de/~leis/papers/ART.pdf

Pessimistic: child node simply allocates an extra buffer for holding the compressed partial key

Optimistic: child node only stores the length of compressed partial key -- upon access, use that length to consult any leaf

node (which stores complete key) in the subtree to get the partial key prefix

Hybrid: use constant array to store partial key, switch to optimistic approach if array overflows

Lazy expansion can be viewed as a special case of path compression, where the child node is a leaf

ARIES Logging

Link: https://cs.stanford.edu/people/chrismre/cs345/rl/aries.pdf

Durability requirements of DBMS:

The database must recover to a valid state across crashes

Committed transactions must persist

Uncommitted transactions must be rolled back

Write-ahead logging (WAL):

A log on persistent storage is the ground truth of the database state

Any operation that changes state, before reflecting it in-place, must have been durably appended as an entry in the log

In some main memory DBMS, the disk contains only the log (+ some checkpoints to avoid replaying the entire history after a crash)

What should be logged for an update depends on the buffer management policy:

Stealing --

No steal: dirty pages stay in DRAM until the transaction commits; those frames holding dirty pages cannot be evicted half way

(stolen by other transactions)

Steal: dirty pages can be flushed to disk before transaction commits

 requires UNDO logging before each update

Forcing --

Force: all dirty pages must be flushed at the time of transaction commit

No force: dirty pages can stay in memory after the transaction commits; allows e.g. batching I/O

 requires REDO logging before each update

If both UNDO and REDO logging are required for an update, they may be combined as a single log entry

Deriving ARIES logging design:

Version #1: baseline design

Data structures:

Log entry (LSN), txnID, pageID, REDO/UNDO data ; log sequence number (LSN) is the offset of log entry in log address

space

Data page collection of tuple data

(Active) transaction table (TT) set of txnID s

Operations:

Write -- append REDO/UNDO log entry to log, then update the data page

Commit -- append COMMIT entry to log

Recovery -- after crash, do two passes:

1. Forward scan entire log:

REDO all entries

Build the TT -- adding in a txnID upon the first time encountering a new transaction's log entry; removing one after

seeing a commit

2. Backward scan entire log: UNDO all entries of uncommitted transactions in TT

Limitations:

REDO process redoes everything, even those entries that have already been reflected in data pages

UNDO process scans entire log again, while many of the early entries do not belong to uncommitted transactions

There's no checkpointing mechanism, meaning we need to always start from the beginning of time

Version #2: add a version number to each data page

Goal: avoid applying actual REDO if its action has already been reflected on the data page

Data structures:

Data page page LSN + collection of tuple data

https://cs.stanford.edu/people/chrismre/cs345/rl/aries.pdf

Operations:

Write updates page's pageLSN to record the latest log entry whose effect has been reflected on the data page

REDO phase only actually applies REDO action if entry's LSN > page's pageLSN

Version #3: link log entries of the same transaction

Goal: avoid back-scanning all log entries trying to identifies those belonging to uncommitted transactions

Data structures:

Log entry (LSN), txnID, pageID, REDO/UNDO data, prevLSN

Transaction table (TT) set of txnID, lastLSN s

Operations:

Write injects the prevLSN of the last log entry belonging to the transaction into every newly-appended log entry

REDO phase maintains lastLSN for each transaction in TT based on the last update of the transaction

UNDO phase then only needs to go through TT, and for each active transaction, start from its lastLSN and follow the

prevLSN s to undo its entries

Version #4: add checkpointing mechanism

Goal: avoid starting from the beginning of time for the first scan

Data structures:

Dirty page table (DPT) set of pageID, recLSN s

Operations:

Add an Analysis phase --

Builds the TT

Also builds the DPT: seeing an update entry to a page puts the page into DPT if not already in DPT, and sets the dirty

page's recLSN , indicating the first log entry (after the last checkpoint) since when the page becomes "dirty"

Periodically checkpoint both TT and DPT into log, and clear them after such checkpoint

REDO phase starts from the smallest recLSN in DPT

Version #5: adopting compensation log records (CLRs)

Goal: in cases of transaction aborts or recursive crashes, avoid undoing an UNDO recursively

Data structures:

CLR Log entry (LSN), txnID, pageID, REDO/UNDO data, prevLSN, undoNxtLSN

Operations:

Writing an UNDO entry injects a undoNxtLsn pointing to the log entry right before the one that this UNDO is trying to cancel

During UNDO phase, do not re-apply UNDO if seeing an CLR, instead just jump to its undoNxtLSN

Overall big picture:

1. Analysis phase -- starting from the last complete checkpoint, scan forward and re-build the TT and the DPT

2. REDO phase -- starting from the smallest recLSN in DPT, scan forward and apply REDO entries if the entry's LSN > the page's

pageLSN

3. UNDO phase -- go through the TT, and for each transaction in TT, starting from its lastLSN entry, jump backward by following

prevLSN 's and apply UNDO entries by appending a new CLR entry to log (if seeing CLR during undoing, jump to CLR's undoNxtLSN)

Two-Phase Commit (2PC)

Link: https://dl.acm.org/doi/10.1145/7239.7266

Distributed transactions & Atomic commit protocol (ACP):

Data is partitioned; partitions are processed by different servers

Two traditional architecture: shared-nothing vs. shared-disk

A distributed transaction accesses data across multiple partitions

An atomic commit protocol ensures that all partitions reach the same commit/abort decision of a transaction

 Cannot simply let each node log & commit independently

Two-phase commit (2PC):

Key idea: assign a coordinator node to each transaction, serving as the ground truth of the decision

Partition holders that execute the transaction are called subordinates or participants or workers

The coordinator does not have to be a standalone node; it could be one of the participant nodes

Algorithm phases:

1. Phase 1 -- Prepare phase

1. Coordinator sends PREPARE message to participants

2. Participants execute the transaction, logging any changes made to its partition, plus:

If the execution is successful, logs PREPARED

If anything goes unsuccessful and the participant thinks this transaction should abort, logs ABORT

3. Participants reply to the coordinator with the result as a vote

If prepared, reply VOTE YES

If to abort, reply VOTE NO

2. Phase 2 -- Commit phase

https://dl.acm.org/doi/10.1145/7239.7266

1. Coordinator gathers vote replies

If all votes are YES , the coordinator logs the decision of COMMIT

If any vote is NO , the coordinator logs the decision of ABORT

Either way, the coordinator can reply back to the client of this transaction after the logging

2. Coordinator sends final decision (either COMMIT or ABORT) to participants

If the decision is YES , send to all participants

If the decision is NO , only needs to send to participants that voted YES

3. Participants send back ACK reply upon receiving the final decision

4. Once all ACK s are received, the coordinator can now forget about any in-memory state about this transaction

Vanilla 2PC requires 2 logging delays + 1 network RTT before the transaction's result is sent back to the client caller

Failure situations in 2PC -- use timeouts to detect failures:

Participant timeout waiting for PREPARE : self abort

Coordinator timeout waiting for a VOTE reply: decide abort

Participant timeout waiting for final decision: contact the coordinator or peer participants

If the coordinator indeed failed after phase 1 but before sending out any final decisions, 2PC may block indefinitely until the

coordinator recovers

This is the well-known blocking issue of 2PC; see 3PC for an alternative design that has no blocking, but pays the expensive cost of

having one more phase

Coordinator timeout waiting for an ACK reply: contact participants periodically

Optimizations to vanilla 2PC protocol:

Presumed Abort (PA):

Always assume that, if no log record is found for a transaction, the decision is abort

Therefore, it is safe for participants to send back ABORT before logging it, and safe for coordinator to return back to caller

before logging the ABORT decision

Read-only participants do not need to log anything and simply just needs to reply VOTE READ

Completely read-only transactions finishes in just 1 network RTT with no logging at all

Presumed Commit (PC):

Force logging a COLLECTING on the coordinator before phase 1 starts

Then, no need for participants to reply ACK at the end of phase 2

Not as useful as PA; also, PC & PA are incompatible with each other

Cloud-Native Databases

This section is about recent research progresses in designing distributed database systems that naturally exploit nice features of the cloud. I

will only include the abstract of each paper.

Cornus

Link: https://dl.acm.org/doi/10.14778/3565816.3565837

Two-phase commit (2PC) is widely used in distributed databases to ensure atomicity of distributed transactions. Conventional 2PC was

originally designed for the shared-nothing architecture and has two limitations: long latency due to two eager log writes on the critical path,

and blocking of progress when a coordinator fails.

Modern cloud-native databases are moving to a storage disaggregation architecture where storage is a shared highly-available service. Our

key observation is that disaggregated storage enables protocol innovations that can address both the long-latency and blocking problems. We

develop Cornus, an optimized 2PC protocol to achieve this goal. The only extra functionality Cornus requires is an atomic compare-and-swap

capability in the storage layer, which many existing storage services already support. We present Cornus in detail and show how it addresses

the two limitations. We also deploy it on real storage services including Azure Blob Storage and Redis. Empirical evaluations show that Cornus

can achieve up to 1.9X latency reduction over conventional 2PC.

Aria

Link: https://dl.acm.org/doi/10.14778/3407790.3407808

https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://dl.acm.org/doi/10.14778/3565816.3565837
https://dl.acm.org/doi/10.14778/3407790.3407808

Deterministic databases are able to efficiently run transactions across different replicas without coordination. However, existing state-of-the-

art deterministic databases require that transaction read/write sets are known before execution, making such systems impractical in many

OLTP applications. In this paper, we present Aria, a new distributed and deterministic OLTP database that does not have this limitation. The

key idea behind Aria is that it first executes a batch of transactions against the same database snapshot in an execution phase, and then

deterministically (without communication between replicas) chooses those that should commit to ensure serializability in a commit phase. We

also propose a novel deterministic reordering mechanism that allows Aria to order transactions in a way that reduces the number of conflicts.

Our experiments on a cluster of eight nodes show that Aria outperforms systems with conventional nondeterministic concurrency control

algorithms and the state-of-the-art deterministic databases by up to a factor of two on two popular benchmarks (YCSB and TPC-C).

Amazon Aurora

Link: https://dl.acm.org/doi/10.1145/3035918.3056101

Amazon Aurora is a relational database service for OLTP workloads offered as part of Amazon Web Services (AWS). In this paper, we describe

the architecture of Aurora and the design considerations leading to that architecture. We believe the central constraint in high throughput

data processing has moved from compute and storage to the network. Aurora brings a novel architecture to the relational database to

address this constraint, most notably by pushing redo processing to a multi-tenant scale-out storage service, purpose-built for Aurora. We

describe how doing so not only reduces network traffic, but also allows for fast crash recovery, failovers to replicas without loss of data, and

fault-tolerant, self-healing storage. We then describe how Aurora achieves consensus on durable state across numerous storage nodes using

an efficient asynchronous scheme, avoiding expensive and chatty recovery protocols. Finally, having operated Aurora as a production service

for over 18 months, we share the lessons we have learnt from our customers on what modern cloud applications expect from databases.

Snowflake

Link: https://dl.acm.org/doi/10.1145/2882903.2903741

We live in the golden age of distributed computing. Public cloud platforms now offer virtually unlimited compute and storage resources on

demand. At the same time, the Software-as-a-Service (SaaS) model brings enterprise-class systems to users who previously could not afford

such systems due to their cost and complexity. Alas, traditional data warehousing systems are struggling to fit into this new environment. For

one thing, they have been designed for fixed resources and are thus unable to leverage the cloud's elasticity. For another thing, their

dependence on complex ETL pipelines and physical tuning is at odds with the flexibility and freshness requirements of the cloud's new types

of semi-structured data and rapidly evolving workloads. We decided a fundamental redesign was in order. Our mission was to build an

enterprise-ready data warehousing solution for the cloud. The result is the Snowflake Elastic Data Warehouse, or "Snowflake" for short.

Snowflake is a multi-tenant, transactional, secure, highly scalable and elastic system with full SQL support and built-in extensions for semi-

structured and schema-less data. The system is offered as a pay-as-you-go service in the Amazon cloud. Users upload their data to the cloud

and can immediately manage and query it using familiar tools and interfaces. Implementation began in late 2012 and Snowflake has been

generally available since June 2015. Today, Snowflake is used in production by a growing number of small and large organizations alike. The

system runs several million queries per day over multiple petabytes of data.

In this paper, we describe the design of Snowflake and its novel multi-cluster, shared-data architecture. The paper highlights some of the key

features of Snowflake: extreme elasticity and availability, semi-structured and schema-less data, time travel, and end-to-end security. It

concludes with lessons learned and an outlook on ongoing work.

FlexPushdownDB

Link: https://dl.acm.org/doi/abs/10.14778/3476249.3476265

Modern cloud databases adopt a storage-disaggregation architecture that separates the management of computation and storage. A major

bottleneck in such an architecture is the network connecting the computation and storage layers. Two solutions have been explored to

mitigate the bottleneck: caching and computation pushdown. While both techniques can significantly reduce network traffic, existing DBMSs

consider them as orthogonal techniques and support only one or the other, leaving potential performance benefits unexploited.

In this paper we present FlexPushdownDB (FPDB), an OLAP cloud DBMS prototype that supports fine-grained hybrid query execution to

combine the benefits of caching and computation pushdown in a storage-disaggregation architecture. We build a hybrid query executor

based on a new concept called separable operators to combine the data from the cache and results from the pushdown processing. We also

propose a novel Weighted-LFU cache replacement policy that takes into account the cost of pushdown computation. Our experimental

evaluation on the Star Schema Benchmark shows that the hybrid execution outperforms both the conventional caching-only architecture and

pushdown-only architecture by 2.2X. In the hybrid architecture, our experiments show that Weighted-LFU can outperform the baseline LFU by

37%.

GPU for DB Analytics

Link: https://dl.acm.org/doi/abs/10.1145/3318464.3380595

There has been significant amount of excitement and recent work on GPU-based database systems. Previous work has claimed that these

systems can perform orders of magnitude better than CPU-based database systems on analytical workloads such as those found in decision

support and business intelligence applications. A hardware expert would view these claims with suspicion. Given the general notion that

database operators are memory-bandwidth bound, one would expect the maximum gain to be roughly equal to the ratio of the memory

bandwidth of GPU to that of CPU. In this paper, we adopt a model-based approach to understand when and why the performance gains of

running queries on GPUs vs on CPUs vary from the bandwidth ratio (which is roughly 16× on modern hardware). We propose Crystal, a library

of parallel routines that can be combined together to run full SQL queries on a GPU with minimal materialization overhead. We implement

individual query operators to show that while the speedups for selection, projection, and sorts are near the bandwidth ratio, joins achieve less

speedup due to differences in hardware capabilities. Interestingly, we show on a popular analytical workload that full query performance gain

from running on GPU exceeds the bandwidth ratio despite individual operators having speedup less than bandwidth ratio, as a result of

limitations of vectorizing chained operators on CPUs, resulting in a 25× speedup for GPUs over CPUs on the benchmark.

https://dl.acm.org/doi/10.1145/3035918.3056101
https://dl.acm.org/doi/10.1145/2882903.2903741
https://dl.acm.org/doi/abs/10.14778/3476249.3476265
https://dl.acm.org/doi/abs/10.1145/3318464.3380595

