
Cloud Consensus Protocols with Optimistic Connectivity

By

Guanzhou Hu

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2025

Date of final oral examination: June 30th, 2025

The dissertation is approved by the following members of the Final Oral Committee:

Andrea C. Arpaci-Dusseau, Professor, Computer Sciences

Remzi H. Arpaci-Dusseau, Professor, Computer Sciences

Michael M. Swift, Professor, Computer Sciences

Tej Chajed, Assistant Professor, Computer Sciences

Xiangyao Yu, Assistant Professor, Computer Sciences

Kassem M. Fawaz, Associate Professor, Electrical and Computer Engineering

© Copyright by Guanzhou Hu 2025

All Rights Reserved

i

To my dearest wife, Jiacheng, for her overflowing love and support.

To my parents, family, and friends, for the grit they planted in me.

ii

Acknowledgments

My five years at UW–Madison have been a wonderful journey through the unknown. At the

scratch line, I was a wide-eyed youth; by the end of this lap, I have grown into a richer soul

with a hint of resolution. I am deeply grateful to everyone who accompanied me during

this chapter of my life.

To my dearest wife, Jiacheng Yu, whose love, care, patience, and unwavering belief in

me carried me through the most rugged trails — I owe you more than words can say. It

was a peaceful Thanksgiving evening in snowy Madison when we first met. A coincidental

encounter blossomed into a hand-in-hand marathon. We had countless dinners at the

Gordon dining hall where you worked as a student culinary assistant; the food was simple,

but always strangely delicious. We stayed up late for classes and meetings; the nights

were stressful, but always soothingly quiet. We witnessed the beauty of the land together,

from Lake Mendota to Niagara Falls, from Copper Peak to Mount Rainier, from Manhattan

skyscrapers to Santa Monica beaches, from Yellowstone to the Grand Canyon. There are a

lot more around the world for us to explore, and I feel incredibly fortunate to have you by

my side, my greatest fellow adventurer, my true love.

To my caring parents, Feng Mi and Wen Hu, and my warmhearted family, whose endless

support fueled my determination — I hold your love and faith in every step I take. Though

my academic path brought me far across the ocean, your love and encouragement remained

ever near. It was your hands that built the foundation of my learning and instilled in me a

humble yet strong character, so I could reach for greater aspirations and bolder dreams. On

the road that lies ahead, I will strive to give back the love and strength you have shown me,

and live with the same courage and generosity you have always offered.

To my thoughtful advisors, Professors Andrea and Remzi Arpaci-Dusseau, whose con-

sistent guidance led me through the darkest mist — I am thankful for the invaluable lessons

I have learned. Your profound expertise in computer systems has deeply strengthened my

iii

knowledge and broadened my vision in this field. Equally incredible is your gentle style of

advising, which allows students to explore their interests without the fear of feeling lost

or stranded. I could not have pushed this far in distributed systems research without your

mentorship, and your teaching will continue to shape me throughout my future career.

To my friends from the Computer Sciences department who adventured along with

me: Kan Wu, Jing Liu, Anthony Rebello, Kaiwei Tu, Yifan Dai, Vinay Banakar, Tingjia Cao,

Xiangpeng Hao, Chenhao Ye, Shawn Zhong, Suyan Qu, Sambhav Satija, John Shawger,

Abigail Matthews, Junxuan Liao, Yiwei Chen, Wenjie Hu, Jinlang Wang, Yuyuan Kang,

Ling Zhang, Ting Cai, Hangdong Zhao, Yeping Wang, Wenxuan Zhao, Ziyi Zhang, Song

Bian, Anjali, Deepak Sirone, Ashwin Poduval, Bijan Tabatabai, Sujay Yadalam, Konstantinos

Kanellis, and Jason Mohoney — I feel utterly lucky to have crossed path with all of you.

The insightful discussions, fruitful collaboration, joyful meals, and unforgettable parties we

have had together will remain etched in my memory as cherished treasure. I wish you all

the best of luck and continued success in your future endeavors.

I gratefully acknowledge Professors Michael Swift, Tej Chajed, Xiangyao Yu, and Kassem

Fawaz for kindly serving on my final defense committee and providing constructive feedback

on this dissertation. I want to thank Angela Thorp and Gigi Mitchell for the excellent service

to the department and doctoral students. I am grateful to James Bornholt and Andy Warfield

for patiently mentoring me during my internship at Amazon and introducing me to the

world of production system challenges. I extend my sincere thanks to my friends outside the

department: WenxinWu, Shenwei Yin, Ke Han, Ao Li, RuoyuWang, Haoyi Zhu, Zirui Zhang,

Aishi Gao, Zikun Xiao, Dianqi Guan, Yitao Ma, Mingyu Wang, Chufan Zhou, Xingze Wang,

Tianze Shao, Zixuan Zhao, Yunhao Zhang, and Yuhong Zhong. I will forever remember the

beautiful moments across the years, and I wish you all the best.

I offer this dissertation as a testament, not only to my Ph.D. research, but also to all the

incredible people who made it possible.

iv

Contents

Acknowledgments ii

Contents iv

List of Tables xi

List of Figures xii

Abstract xvii

1 Introduction 1

1.1 Consensus in the Wild . 3

1.2 The “4D” Challenges of the Cloud Era . 4

1.3 Optimistic Connectivity: A Guiding Principle 5

1.4 Contributions and Outline of Chapters . 8

1.4.1 Crossword: Optimistic Adaptation within a Quorum-Shards Trade-

off for Dynamic Data-Heavy Workloads 9

1.4.2 Bodega: Optimistic Roster Composition Powered by Roster Leases

for Always-Local Linearizable Reads 10

1.4.3 Implementation: Summerset Key-Value Store 11

1.4.4 Beyond Linearizability: A Unified Consistency Spectrum 11

1.4.5 Enforcing Correctness: Testing and Formalization 12

1.4.6 Outline of Chapters . 12

v

2 General Background 14

2.1 State Machine Replication (SMR) . 14

2.1.1 Typical System Architecture . 14

2.1.2 Non-Byzantine Failure Model . 16

2.1.3 Consistency Requirements . 17

2.1.4 Availability Requirements . 18

2.2 Classic Consensus Protocols . 19

2.2.1 Paxos, MultiPaxos, and Variants . 19

2.2.2 Viewstamped Replication (VR) . 22

2.2.3 Raft and Practical Features . 23

3 Crossword: Adaptive Consensus for Dynamic Data-Heavy Workloads 26

3.1 Specific Background . 28

3.1.1 Dynamic Data-Heavy Workloads 28

3.1.2 Classic Consensus Protocols . 30

3.1.3 Erasure-Coded Consensus Protocols 30

3.2 Design . 32

3.2.1 Reed-Solomon (RS) Codeword Space 33

3.2.2 Shard Assignment Policies . 33

3.2.3 Availability Constraint Boundary 35

3.2.4 Performance Tradeoff . 38

3.2.5 Follower Gossiping . 39

3.2.6 Crossword: The Complete Protocol 41

3.3 Implementation . 42

3.3.1 Choosing the Best Configuration 42

3.3.2 Follower Gossiping Implementation 43

3.3.3 Other Practicality Features . 45

3.4 Evaluation . 45

3.4.1 Critical Path Performance . 46

3.4.2 Dynamic Adaptability . 49

vi

3.4.3 Graceful Leader Failover . 50

3.4.4 Unbalanced Assignment Policy . 51

3.4.5 Gossiping-Related Parameters . 51

3.4.6 YCSB with Keyspace Partitioning 52

3.4.7 TPC-C over CockroachDB . 53

3.4.8 RS Code Computation Overhead . 54

3.5 Supplementary Discussion . 54

3.5.1 Erasure-Coded Consensus . 54

3.5.2 Bandwidth-Aware Techniques . 55

3.5.3 High-End Network Hardware . 56

3.6 Optimistic Connectivity in the Form of Adaptive Quorum-Shards Tradeoff . 57

4 Bodega: Always-Local Linearizable Reads via Generalized Roster Leases 58

4.1 Specific Background . 61

4.1.1 Distributed Lease . 61

4.1.2 Previous Work on Read Optimizations 62

4.1.3 Summary of Goals . 65

4.2 Design . 65

4.2.1 The Roster . 66

4.2.2 Normal Case Operations . 67

4.2.3 Roster Leases . 69

4.2.4 Summary of the Bodega Algorithm 73

4.3 Formal Comparison and Proof . 73

4.3.1 Comparison Across Protocols . 73

4.3.2 Proof . 76

4.4 Implementation . 77

4.4.1 Smart Roster Coverage . 78

4.4.2 Lightweight Heartbeats . 78

4.4.3 Other Practical Details . 78

4.5 Evaluation . 79

vii

4.5.1 Normal Case Performance . 80

4.5.2 Detailed Performance Anatomy . 82

4.5.3 Roster Changes and Composition 84

4.5.4 Overall Impact of Failures (Simulation) 86

4.5.5 Macrobenchmark vs. etcd and ZooKeeper 87

4.6 Supplementary Discussion . 89

4.6.1 Potential Extensions . 89

4.6.2 Notable Related Work . 90

4.7 Optimistic Connectivity in the Form of Lease-Protected Roster Composition 91

5 Summerset Distributed Key-Value Store Implementation 92

5.1 Protocol-Generic Replication Testbed . 93

5.2 Implementation Details . 96

5.2.1 Async Rust Programming Structure 96

5.2.2 Modularization and Lock-less Channel-based Synchronization . . . 97

5.2.3 Example Protocol Module . 98

5.3 Supported Protocols and Features . 101

6 Beyond Linearizability: A Unified Consistency Levels Spectrum 103

6.1 Problem Model . 104

6.1.1 Shared Object Pool (SOP) Model . 104

6.1.2 Physical Timeline Workload . 106

6.1.3 Definition of Ordering . 107

6.1.4 Meaning of Consistency . 107

6.2 Ordering Validity Constraints . 109

6.2.1 Convergence Constraints . 109

6.2.2 Relationship Constraints . 112

6.3 Consistency Levels . 116

6.3.1 Linearizability . 118

6.3.2 Sequential Consistency . 119

6.3.3 Causal+ Consistency . 122

viii

6.3.4 Eventual Consistency . 125

6.3.5 Other Consistency Levels . 127

6.4 Availability Guarantees . 131

6.4.1 Symmetric Replicas System Model 131

6.4.2 Meaning of Availability . 132

6.4.3 Availability Upper Bounds . 132

6.5 Summary of Consistency Modeling . 134

7 Enforcing Correctness and Availability 135

7.1 Unified Checker for Jepsen Testing . 136

7.1.1 Checker Logic . 136

7.1.2 Analysis Results . 137

7.2 Formal TLA
+
Specifications . 139

7.2.1 TLA
+
Fundamentals . 140

7.2.2 Practical MultiPaxos Specification 142

7.2.3 Crossword Specification . 144

7.2.4 Bodega Specification . 144

8 Related Work 146

8.1 Distributed Replication and Consensus . 146

8.1.1 Classic Consensus Protocols . 146

8.1.2 Erasure-Coded Consensus . 147

8.1.3 Bandwidth-Aware Consensus Designs 148

8.1.4 Leaderless or Multi-Leader Consensus 149

8.1.5 Leases in Consensus Systems . 149

8.1.6 Other General Consensus Topics 150

8.1.7 Byzantine Fault Tolerance (BFT) . 152

8.1.8 Weaker Consistency Levels . 152

8.2 Optimistic System Design Techniques . 153

8.2.1 Optimistic Concurrency Control (OCC) 153

8.2.2 Optimistic Conflict Resolution Mechanisms 154

ix

8.2.3 Speculative Execution . 154

8.3 Cloud Studies and System Implementations 155

8.3.1 Cloud Workload Studies and Architecture Surveys 155

8.3.2 Representative System Implementations 155

8.4 Testing and Formal Verification . 156

8.4.1 Empirical Testing . 156

8.4.2 Formal Modeling and Specification 157

8.4.3 Formal Verification via Proofs . 157

9 Conclusion and Future Work 159

9.1 Summary . 159

9.1.1 The Principle of Optimistic Connectivity 159

9.1.2 Crossword: Optimistic Quorum-Shards Adaptivity 160

9.1.3 Bodega: Optimistic Composition of Readers Roster 161

9.1.4 Summerset Distributed KV-Store Implementation 161

9.1.5 Unifying the Consistency Levels Spectrum 162

9.1.6 Rigorous Testing and Formal Specification 162

9.2 Future Work . 163

9.2.1 Asymmetric Erasure Coded Consensus 163

9.2.2 General-Purpose Roster Leases for Distributed Systems 164

9.2.3 Smart Policy Making at Runtime 164

9.2.4 Abstractions for Formal Methods and Observability 165

9.3 Lessons Learned . 166

9.4 Closing Remarks . 167

A Appendix: TLA
+
Specifications 168

A.1 TLA
+
Specification of MultiPaxos in SMR Style 168

A.1.1 MultiPaxos SMR-Style Protocol Specification 168

A.1.2 Invariants Specification . 183

A.1.3 Model Checking Parameters . 184

A.2 TLA
+
Specification of Crossword . 185

x

A.2.1 Crossword Protocol Specification 185

A.2.2 Invariants Specification . 197

A.2.3 Model Checking Parameters . 199

A.3 TLA
+
Specification of Bodega . 199

A.3.1 Bodega Protocol Specification . 199

A.3.2 Invariants Specification . 213

A.3.3 Model Checking Parameters . 215

Bibliography 216

xi

List of Tables

3.1 Summary of symbol notations and their meanings. Examples use typical

values assumed throughout this section for Balanced RR assignment policies. . . . 35

3.2 List of status transition actions. Refer to Figure 3.5 for the naming of action

symbols. Differences and additions with respect to classic Paxos are highlighted in

red color. 40

3.3 RS (5,3)-coding computation time and resource usage overhead. See §3.4.8. 54

4.1 Qualitative comparison across protocols assuming the most read-optimized

roster configuration of each protocol. Metrics areWWW: write latency; RRR: read latency

if quiescent; R∗R∗R∗: read latency if there is an interfering write;D∗D∗D∗: read performance

degradation period length. : fault tolerance (without external oracle). : allows

tunable rosters. See §4.3.1 for the explanation of metric values. Cells are shaded

darker if their example numeric values are higher using Fig.4.8(b) GEO setting

numbers. 76

5.1 List of Protocols Currently Implemented on Summerset. LoC: lines of code. 102

6.1 Ordering validity constraints of the selected consistency levels. This table

is a condensed summary of §6.2-§6.3, and is the reasoning behind Figure 6.2. . . . 117

6.2 Availability coarse upper bound of selected consistency levels. Bold levels

are the common levels as marked in Figure 6.2. See §6.4.3 for related discussions. . 133

7.1 Jepsen workflow consistency checker outputs on representative systems.

Conv.: convergence. Rela.: relationship. See §7.1 for explanation of system deploy-

ment modes. 138

xii

List of Figures

1.1 Analogy between traditional optimistic methods about conflicts (left)

andouroptimistic connectivitymethodabout replication progress (right).

In traditional optimistic methods, such as the transaction example on the left, op-

timistic execution may fail due to a validation error (e.g., version mismatch on

x) caused by conflicts with concurrent operations. In optimistic connectivity, opti-

mistic execution may fail due to a timeout (when forming an expected quorum)

caused by unresponsiveness of nodes. See §1.3. 7

1.2 Illustration of a collection of configurations on a performance vs. con-

nectivity requirement space. Blue dots are useful candidate configurations that

unlock higher performance by requiring better connectivity. 8

2.1 Architecture of a replicated state machine. The left-hand side shows an

overview of the service and clients. The right-hand side shows a zoomed-in view of

a server node, also referred to as a server replica; it is a remake of the architecture

figure in Raft literature [271], with protocol-specific annotations removed. See §2.1.1. 15

3.1 Raft replication payload size CDF in modern cloud databases. Profiled by

running a 200-warehouses TPC-C benchmark using the systems’ default benchmark

suite. 27

3.2 RSPaxos or CRaft under failures. Both are vulnerable to temporally close fail-

ures leaving the number of reachable shards < d, even with fallback mechanisms.

See §3.1.3. 32

xiii

3.3 Assignment policy examples. (a) assigns the original data to all servers. (b)
assigns shard i to server i in a diagonal pattern, which is itself also a Balanced

Round-Robin (RR) assignment with shard count c= 1. (c) shows a Balanced RR
assignment with c = 2. (d) shows another Balanced RR with c = 3, which is

equivalent to (a). (e) is an example case of an unbalanced assignment. 34

3.4 Availability constraint boundary and tradeoff lines in the Crossword

configuration space assuming Balanced Round-Robin assignments. See §3.2.3 for

the derivation. 38

3.5 Crossword instance status transition diagram. Solid edges represent transi-

tions on the leader and dashed edges represent transitions on followers. Differences

and additions made by Crossword with respect to classic Paxos highlighted in red.

See §3.2.5-3.2.6. 40

3.6 Demonstration of the replicated log in action across Crossword servers.

Shows an example view over a cluster of 5 servers, S0~S4, with S0 being the leader.

Each slot of the log is a consensus instance. Using a (5,3)-coding scheme. See §3.3.2

for detailed explanation. 44

3.7 Critical path consensus throughput and latency under different deployment

environments and workload sizes. See §3.4.1 for details about the parameters used. 47

3.8 Throughput with varying mean value size, cluster size (i.e., replication

factor), and put request ratio. See §3.4.1 payload size and sensitivity paragraphs. 48

3.9 Latency segments breakdown of time spent in different steps of a bandwidth-

bounded instance. See §3.4.1 performance breakdown paragraph. 49

3.10 Real-time dynamic adaptability of Crossword configuration. See §3.4.2. 49

3.11 Real-time comparison of protocols’ leader failover behavior. See §3.4.3. . 50

3.12 Unbalanced assignment policy advantage in an asymmetric case. RSPaxos
∗

and CRaft
∗
bars mean q= 5 forced. See §3.4.4. 51

3.13 Staleness of follower reads with different deferral gap lengths. See §3.4.5. . . 51

3.14 Bandwidth usage with or without gossip batching , fixing end-to-end user

throughput. See §3.4.5. 51

3.15 Macro-benchmark throughput-latency curves using YCSB-A key trace, TiDB

payload size profile of Figure 3.1, and with keyspace partitioning deployment. See

§3.4.6. 52

xiv

3.16 TPC-C benchmark results over CockroachDB. Transaction types legend: NO

- NewOrder, PM - Payment, OS - OrderStatus, DL - Delivery, SL - StockLevel, with

their ratios in the mix. Agg.: aggregated overall. See §3.4.7. 53

4.1 Frequency of touching a node on the critical path of reads by a client near

server node S4, in a cluster where node S0 is the leader, with infrequent writes in

the workload. S4 has local read capability of the protocol enabled if eligible. The

ideal outcome is 100% of reads served at S4 (which Bodega achieves). 60

4.2 Demonstration of standard lease granting. Left: the guard phase establishes

the first iteration of promise coverage; grantee welcomes the first Renew only if it is

received within the guarded period (C< A’). This allows the grantor to derive a safe

D’ = B’+t
lease

+t∆ even if the RenewReply is lost, such that C’ < D’. Right: the

grantor attempts to extend the promise with a Renew (or to actively revoke it with

a Revoke), but has not yet received the grantee’s reply. The leasing logic assures

that E’ < F’ holds; therefore, if the grantee indeed failed, after timestamp F’ the

grantor can assert the promise is no longer believed by the grantee. Optimizations

for more aggressive expiration exist when replies are successful [254]. 62

4.3 Categorization chart of protocols relevant to linearizable reads. Ideal

properties for local read are marked in green. See §4.1.2 for a walkthrough of each

protocol. 63

4.4 Normal case operations of Bodega. Assume that all nodes agree on the same

example roster: S0 is the leader (golden crown), and S0,2,3,4 are responders for a

key (red-white star) while S1 is not. In the example shown, S3 has not committed

the latest write, while S4 has committed that write. See §4.2.2. 67

4.5 All-to-all roster leases demonstrated. In the example shown, S0,3,4 are each

holding ⩾ majority grants of roster #20; among them, S4 has not yet seen all the

slots up to #20’s safety threshold. S1 is disconnected from the rest and is stuck with

an older roster of #11. S2 is just initiating a new roster of #32. See §4.2.3. 70

4.6 Complete Summary of the Bodega algorithm. See §4.2.4 for description. . 74

4.7 Timeline comparison across protocols on the handling of linearizable

reads in the presence of an interfering write. See §4.1.2 and 4.3.1 for the associated

explanation. 75

xv

4.8 Evaluation environment settings. Orange denotes designated leader node and

Red denotes other responders, if relevant. Edges mark per-pair RTT in milliseconds.

See §4.5. 80

4.9 Normalized throughput and read/write latency across different client

locations with different write intensities in the workload. Top row is the GEO

setting, with 10% writes on the left and 1% writes on the right. Bottom row is the

WAN setting, also with 10% writes on the left and 1% writes on the right. Middle

row contains the 0% write (i.e., read-only workload) results of both GEO and WAN

settings. See §4.5.1. 81

4.10 Latency CDFs of end-to-end client requests in the WAN setting across differ-

ent write intensities, focusing on one specific key. See §4.5.2. 83

4.11 Read latency after an interfering write. Each datapoint represents a read

request finishing at the time of its x-value with a latency of its y-value. See §4.5.2. 84

4.12 Throughput vs. write ratio. x-axis is log-scale (same for Fig. 4.13). See §4.5.2. 84

4.13 Throughput vs. payload size. See §4.5.2. 84

4.14 Failure-triggered vs. fast regular roster change. Each datapoint represents a

request finishing at the time of its x-value with a latency of its y-value. See §4.5.3. 85

4.15 Latency vs. increasing coverage of responders. See §4.5.3. 86

4.16 Latency vs. percentage of keys covered by the roster. See §4.5.3. 86

4.17 Throughput vs. number of responders with and without failures (by

simulation). Results collected from simulation with constant node failure rate.

See §4.5.4. 86

4.18 YCSB workloads on Summerset-impl. protocols, etcd, and ZooKeeper.

Top row is with uniform key distribution and bottom row is with Zipfian-0.99 key

distribution. Workload E is skipped because it emphasizes scans. Note that etcd

(stale) and ZooKeeper (both modes) are non-linearizable. See §4.5.5. 88

5.1 Summerset logo. 94

5.2 Summerset KV modular architecture. 94

6.1 Depiction of the versatile Shared Object Pool (SOP) model. See §6.1.1. . . 105

xvi

6.2 Strength hierarchy of the selected consistency levels. Bold ones are the

most common levels. Arrows mean the source level is strictly stronger than the

destination level. 117

6.3 Example of external causality dependency with sequential. See §6.3.2. . 121

6.4 Interpretation of a partial ordering using explicit replicas. See §6.3.3. . . 124

9.1 When we apply formalization methods in a design iteration. See §9.3. . . 166

xvii

Abstract

Consensus protocols play a pivotal role in fault-tolerant distributed systems, with their

most prominent applications found in cloud services that leverage replication to deliver

high availability and strong consistency. Confronting these consensus systems are new

challenges that emerge from modern cloud workloads and infrastructure: geographical

distance, payload density, diversity of workload characteristics and hardware conditions,

and the constant flux that demands adaptability.

Classic consensus protocols, such as MultiPaxos and Raft, fall short in addressing these

challenges. Despite being the de-facto standard implemented in practice, these protocols do

not recognize location affinity and bandwidth pressure, which are problems that arise in

cloud environments but are not modeled in their designs. More importantly, none of the

existing consensus protocols are adaptive to diversity and dynamism; this is due to their

rigid, pessimistic approach to quorum composition and failure handling.

With these issues in mind, we propose optimistic connectivity, a design principle for

cloud consensus protocols. Inspired by optimistic algorithm designs that speculate conflict-

free execution and resolve conflicts upon validation errors, we apply the idea of optimism to

quorum composition. Protocols are allowed to assume arbitrarily large quorums that may re-

quire higher connectivity than simple majority in failure-free cases, while assuring progress

upon timeout errors by selecting conservative configurations. Following this principle, we

design Crossword and Bodega, two consensus protocols that tackle compound cloud-era

challenges; we implement and evaluate both protocols with Summerset, a protocol-generic

replicated key-value store testbed.

In the first part of this dissertation, we present Crossword, an erasure-coded consensus

protocol for dynamic data-heavy workloads, where variable payload sizes create sporadic

bandwidth stress. Crossword integrates erasure coding with consensus and establishes a

runtime per-instance tradeoff between the quorum size and the number of shards assigned

Abstract xviii

per replica, improving performance by adapting with the best configuration. Graceful leader

failover is achieved through a lazy follower gossiping strategy with minimal overhead.

Evaluation shows up to 2.3x throughput over MultiPaxos and Raft under dynamic workloads

and network conditions, and 1.32x aggregate TPC-C throughput for CockroachDB.

In the second part, we present Bodega, a wide-area consensus protocol that can safely

serve linearizable reads locally by any desired replica at any time, significantly improving

read performance. Bodega introduces a new notion of cluster metadata called the ros-

ter, which allows selecting arbitrary local-read-enabled replicas for each key. To achieve

fault-tolerant transitions between rosters, Bodega proposes a novel all-to-all roster leases

mechanism to maintain a consistent roster agreement across replicas with zero critical-

path overhead, generalizing existing all-to-one leasing approaches such as leader leases.

Evaluation shows 5.6x to 13.1x acceleration compared to state-of-the-art Leader Leases

and Quorum Leases on geo-scale clusters, and comparable performance to sequentially-

consistent deployments of etcd and ZooKeeper.

In the third part, we describe our development of Summerset, an open-source, distributed,

replicated, protocol-generic key-value store testbed for concise implementation and fair

evaluation of consensus protocols. Summerset takes advantage of modern asynchronous

Rust programming structures and adopts a modularized architecture, allowing each protocol

to be implemented as a straightforward event loop. Summerset currently consists of 14.6k

lines of infrastructure code and 11 protocol module implementations.

Finally, we contribute to crucial supportive topics that empower our research on replica-

tion systems, including consistency modeling, testing, and formal verification. We unify the

definition of linearizability with weaker consistency levels via a self-contained, practical,

and understandable hierarchy model. The effectiveness of this model is demonstrated with

a Jepsen-integrated consistency checker implementation that reports conformity results

across multiple levels. With TLA
+
, we construct advanced, practice-grounded formal speci-

fications for MultiPaxos, Crossword, and Bodega. All specifications are equipped with

modern replication system features and are thoroughly model-checked.

1

Chapter 1

Introduction

Consensus is at the heart of fault-tolerant distributed computing. At its core, it represents

the problem of achieving a consistent agreement among a group of processes [192]. Without

consensus protocols – algorithms such as MultiPaxos [193] and Raft [271] that solve the

consensus problem – it would be impossible to maintain strong consistency across multiple

independent machines to coordinate their state in the presence of failures. This fundamental

mechanism of establishing fault-tolerant agreement has been the bedrock underpinning

reliable distributed systems for decades [8, 63].

Across all the domains that apply consensus protocols, the most crucial as of today are

cloud replication systems. The global-scale cloud services that support our uninterrupted

digital lives – from personal media to enterprise software – all depend on an “always-up”

data store abstraction that mitigates failures and safeguards accesses to critical data [94].

Behind such an abstraction are consensus-infused replication systems, which coordinate

redundant copies of data across the global cloud infrastructure to provide strongly consistent,

highly available operations [21, 75, 96, 179].

The emergence of new workloads and the expansion of infrastructure have significantly

reshaped the scene of cloud systems over the years. In particular, four key challenges have

become increasingly pronounced in the modern cloud, which we summarize as “4D”: Dis-

tance, Density, Diversity, and Dynamism. First, the immense geographical distance between

globally distributed resources brings network latency and independent failures as first-order

concerns [23]. Second, the growing density of workloads feeding into cloud services causes

high bandwidth pressure between distributed components [24]. Third, the diversity of

2

workload types, scales, and patterns, paired with the heterogeneity of hardware, leads to

complex interactions that no single static solution can universally address [157]. Fourth,

binding all these characteristics together is the pervasive dynamism, where workloads and

resources undergo constant change over time, demanding adaptability [292]. As a crucial

part of the cloud, consensus systems are not exempt from confronting these challenges.

Existing consensus protocols, however, leave these challenges unaddressed or are op-

timized for only a single aspect. Specifically, classic consensus protocols such as Multi-

Paxos [193], VR [268], and Raft [271] are rooted in majority quorums and take a pessimistic

approach about failures. Every consensus payload is always replicated in full and waits for

acknowledgment from a majority quorum of replicas. This conservative behavior, while

preserving fault tolerance at all times, leaves little room for configurability. Performance

improvements can be unlocked if larger, more configurable quorums are involved, allowing

the protocol to transfer less data or spread information more widely. Recent proposals have

explored more extreme quorum compositions optimized for specific deployment scenarios,

such as leaderless consensus for geo-scale replication [67, 171, 244, 253] and erasure-coded

consensus for storage cost saving [258, 348, 377]. Still, these protocols employ static con-

straints and lack runtime adaptability; when situations change, they may underperform

classic protocols or become outright unavailable due to requiring larger quorums.

In this dissertation, we propose optimistic connectivity, a design principle for constructing

adaptive and robust consensus protocols for the modern cloud. We draw inspiration from

optimistic algorithm designs in other fields of research, such as optimistic concurrency

control in transactional database systems [181]. A protocol with optimistic connectivity

operates on multiple configurations, among which some are optimistic configurations that

may yield better performance but do not guarantee successful commit. Unlike traditional

optimistic techniques centered around conflicts and correctness, optimistic connectivity is

speculative about progress instead. A configuration that requires connectivity to a larger

number of nodes has a higher performance upper bound, but may stagnate when failures

strike. In this case, a timeout triggers a smooth transition into a conservative configuration,

assuring continual service.

Following the optimistic connectivity design principle, our main contributions are

Crossword and Bodega, two adaptive cloud consensus protocols that solve compound

cloud-era challenges. Crossword extends erasure-coded consensus with per-instance

tunable choice from a set of quorum-shards configurations to tackle dynamic data-heavy

3

workloads. Bodega introduces a roster of local-read replicas, whose configurations are

protected by a novel all-to-all roster leases algorithm, to achieve arbitrary local linearizable

reads in geo-scale consensus. We implement both protocols and evaluate their performance

advantages on Summerset, a protocol-generic replicated key-value store testbed. To further

support our consensus research, we study consistency level modeling and testing, and

develop advanced formal TLA
+
specifications of proposed protocols.

In the following sections, we take a closer look at how modern cloud replication systems

deploy consensus (§1.1), and discuss the cloud-era challenges more concretely (§1.2). We

then explain the optimistic connectivity design principle in greater detail (§1.3), and provide

an overview of our contributions and an outline of the chapters of this dissertation (§1.4).

1.1 Consensus in the Wild

Consensus protocols, primarily MultiPaxos [193] and Raft [271], are widely deployed in a

variety of contexts across the modern cloud systems landscape. We enumerate representative

examples below to assemble a holistic view.

The most direct form of consensus implementation is found in metadata storage services,

which are replicated key-value stores that expose a linearizable interface, i.e., appearing as a

rarely-failing single-node service to clients. The meaning and significance of linearizability

will become clear in Chapter 2. These services are mainly intended for storing the critical

metadata of larger-scale systems. Examples are etcd [96] for Kubernetes – the container

orchestration platform [296], FireScroll [159] for Redpanda – the message broker [290],

and Physalia [50] for EBS – Amazon’s elastic block storage [14]. Many distributed file and

storage systems also implement a linearizable metadata manager as part of their architecture,

despite not offering this level of replication externally. Examples include the Petal virtual

disks system [209], Google’s GFS/Colossus file systems [111, 142], Alibaba’s PolarFS [57],

and the Ceph distributed file system [351].

Similar to metadata stores are distributed coordination services, which use consensus

internally to support interface APIs for cross-node synchronization. Examples include

Chubby – the distributed lock manager [54], ZooKeeper – the configuration synchronization

service [155], and Kafka [177, 179], RabbitMQ [287], and Redpanda [290] – message queueing

and brokerage systems. Among them, ZooKeeper is notably not linearizable by default

4

(but is sequentially-consistent) due to its relaxed read semantics, although the underlying

primary-backup protocol, ZAB, is similar to classic consensus protocols.

Besides metadata and coordination, consensus is also used by various data storage and

management systems, sometimes in cooperation with other techniques such as partitioning

and erasure coding, to directly support strong replication of data itself. The two primary

categories are object storage and cloud database systems. Object stores include Amazon

S3 [33, 131] and Azure Blob Storage [117] among others. Database systems include Google

Spanner/F1 [75, 313], CockroachDB [339], TiDB [153], and ScyllaDB [307].

Regardless of the application scenario, consensus protocols are ubiquitously implemented

using the state machine replication (SMR) model [305], where nodes compose the service

logic as a state machine and replicate a log of state machine commands; details of this model

are covered in Chapter 2. This dissertation focuses on non-malicious cloud environments

and therefore passes over Byzantine fault-tolerant (BFT) protocols [59, 260, 367]. Discussions

on BFT applications, such as blockchain systems [55, 260, 299], are included as related work.

1.2 The “4D” Challenges of the Cloud Era

As previously noted, the decades of evolution in cloud workloads and infrastructure have

introduced new challenges for replication systems, creating a more complex problem context

than what classic consensus protocols were designed for. We identify four specific aspects:

Distance, Density, Diversity, and Dynamism, collectively abbreviated as “4D”. We expand

on each of the challenges below.

Distance: Geo-Scale Distribution. Modern cloud infrastructure spans a global scale,

with leading cloud providers all distributing hardware resources worldwide [23, 25, 72].

Correspondingly, users of these cloud platforms are scattered around the globe. To maximize

failure isolation and to improve client affinity, it is common for cloud replication systems

to distribute replicas across geographically separated data centers, forming a far-flung

topology. Limited by physical law, latency between two geo-distributed replicas is linear to

their physical distance and can easily reach hundreds of milliseconds [358], making distance

an inescapable design concern.

Density: Workload Heaviness. With the increasing popularity of cloud services and the

ever-growing data volume, workload density has emerged as another concern that was

5

missing in traditional formulations. In data storage systems, this challenge is evident, as

consensus protocols are directly involved in the replication of data [65, 75, 153, 339]. Studies

have reported payload sizes of up to 128MB per request, in contrast to common assumptions

of byte-scale commands. When used for metadata and coordination, this problem may

still occur due to the excessive scale of the coordinated system creating heavy metadata

workloads. For example, managing the scheduling decisions of a hundred-node cluster can

involve coordination workloads well beyond megabyte scale [70]. These heavy workloads

induce pressure on bandwidth, an often overlooked dimension.

Diversity: Heterogeneity Everywhere. The cloud is defined by its profound diversity.

This manifests not only in the heterogeneity of hardware but also in the complexity of

workloads. The varying hardware capabilities at different replica sites cause asymmetry

in network latency and bandwidth, storage performance and capability, memory capacity,

and computation power [22]. Combined with the diversity in client workloads, such as

in read/write imbalance, object affinity, location affinity, and rate variance [157, 292], the

rigidity drawbacks of classic consensus protocols become apparent.

Dynamism: Constant Changes. Finally, the dynamic nature of the shared cloud infras-

tructure intensifies all the aforementioned challenges. Over time, system topologies may

change, workload densities may shift, and asymmetry patterns may evolve [292]. Like-

wise, failures may arise and subside sporadically [56, 61, 154]. This dynamism necessitates

adaptive consensus protocols with runtime adjustment capabilities built in.

1.3 Optimistic Connectivity: A Guiding Principle

To address aforementioned challenges, we propose optimistic connectivity, a guiding principle

for cloud consensus protocol design. We observe that performance advantages exist if a

larger quorum size (or a quorum with dedicated members) can be assumed; however, doing

so carelessly risks availability across failures. Optimistic connectivity demonstrates a way

to break the rigidity of existing consensus protocols and equip them with adaptability, while

retaining fault tolerance. To demonstrate this, we first review existing pessimistic consensus

designs and traditional optimistic methods.

Pessimistic Consensus Protocols. In classic consensus protocols [193, 268, 271], the

quorum size is statically pinned to majority. Specifically, with a cluster of n= 2f+ 1 nodes,

6

f failures are always mitigated during the lifetime of every replication request. In other

words, disconnection with any f replicas would not block the system from making progress.

While this fault tolerance guarantee is crucial, we observe that it is not necessary to leave

room for f failures at all times. Failures are inevitable but still infrequent, and pessimism is

required only when failures actually happen. During normal-case operations, optimistic

quorums should be chosen if they offer performance benefits. For example, if we know that

a particular node S has close-by clients that demand read-heavy traffic, we may choose

to include S in every write quorum in return for local read capability at S, but revoke this

decision when S becomes unresponsive in order to retain write availability.

Traditional Optimistic Methods: Optimism about Conflicts. Optimistic design tech-

niques have been explored in multiple areas of research, with notable examples including

optimistic concurrency control (OCC) algorithms in transactional databases [181], conflict

resolution mechanisms in causally-consistent (or weaker) object stores [84], and CPU spec-

ulative execution [315]. These methods are optimistic about conflicts, or the lack thereof: a

request may be executed speculatively without full synchronization with concurrent op-

erations, hoping that correctness-violating conflicts do not occur. When they do occur, a

validation procedure at the end of the execution identifies conflicts and handles them via

abort, rollback, retry, or active resolution. The left-hand side of Figure 1.1 illustrates an

example of this technique.

This approach is unfortunately not directly applicable to consensus protocols, because

they require problem-specific validation and resolution mechanisms. The only examples

of this form of optimism applied to consensus are, to our knowledge, found in EPaxos

and variants [67, 195, 196, 253, 302, 333], which are leaderless consensus protocols that

validate command dependency histories between fast-path quorums. Outside of this specific

context, optimism is rarely exploited by consensus protocols. Examples are limited to

CheapPaxos [187], which prefers broadcasting messages to fewer nodes, and Saucr [10],

which postpones persistence until failures occur.

Optimistic Connectivity: Optimism about Progress. We observe that optimism can be

applied from a different perspective – quorum composition – which exists universally in

all consensus protocols. At the core of optimistic connectivity is the idea of incorporating

multiple transitionable quorum configurations. Each configuration assumes a certain degree

of connectivity among replicas, e.g., in the form of quorum sizes or designated coverage of

7

Optimistic Methods about Conflicts Optimistic Connectivity

speculatively execute
while recording versions
and staging updates

speculative quorum
config

timeout error ❌

conservative quorum
config

expect 3

expect 2

read x → v; write y = v;

validation error ❌
x is not v but v’ now

abort/rollback
or retry
or resolve, e.g.:

force y = v’;

Figure 1.1: Analogy between traditional optimistic methods about conflicts (left)

and our optimistic connectivity method about replication progress (right). In tradi-

tional optimistic methods, such as the transaction example on the left, optimistic execution may

fail due to a validation error (e.g., version mismatch on x) caused by conflicts with concurrent

operations. In optimistic connectivity, optimistic execution may fail due to a timeout (when

forming an expected quorum) caused by unresponsiveness of nodes. See §1.3.

specific nodes. Correspondingly, it delivers a performance upper bound that scales with the

connectivity requirement in general. A concrete example of such configurations is the set of

read/write quorum size pairs under read-heavy workloads; a larger write quorum requires

reachability to more nodes but delivers better read performance.

In systematic terms, the following conditions should be satisfied in order to exploit

optimistic connectivity effectively.

• Failures that weaken connectivity should be moderately infrequent.

• Transition between different configurationsmust be allowed at runtime in the presence

of failures, such that the protocol can fall back to conservative configurations.

• Higher connectivity should unlock performance improvement opportunities, although

this is not mandatory. To visualize a typical scenario, Figure 1.2 depicts a configu-

ration space of performance versus connectivity requirement. As the connectivity

requirement increases, the best configuration up to that point is considered a candidate

configuration, which the protocol tends to select when connectivity is above that

threshold. Candidates may be different depending on workload characteristics.

8

Connectivity Requirement
(for SMR, inverse to severity of failures)

Pe
rf

or
m

an
ce

: Possible Configuration

: Candidate Configuration

Figure 1.2: Illustration of a collection of configurations on a performance vs. con-

nectivity requirement space. Blue dots are useful candidate configurations that unlock

higher performance by requiring better connectivity.

With the above conditions held, the best-performing configuration can be optimistically

selected based on observed runtime workload and connectivity, making the protocol adaptive

while retaining fault tolerance.

1.4 Contributions and Outline of Chapters

In the rest of this dissertation, wemake the following contributions. 1 We present the design,

implementation, and evaluation of two consensus protocols, Crossword and Bodega, that

apply the optimistic connectivity design principle to solve emerging challenges of scale

and dynamism in cloud consensus systems. 2 We develop Summerset, a protocol-generic

replicated key-value store, as a solid testbed for implementing a wide range of consensus

protocols with modern programming practice and evaluating them fairly. 3 We look beyond

linearizability and propose a concise theoretical model that unifies the definitions of weaker

consistency levels, clearing the surrounding obscurity for system designers. 4 We contribute

to correctness enforcement techniques by implementing a Jepsen-integrated consistency

checker based on our consistency model, and developing practical, model-checked TLA
+

formal specifications for MultiPaxos, Crossword, and Bodega.

We highlight each of our contributions below in §1.4.1-§1.4.5, respectively, and provide

an outline of the rest of the chapters in §1.4.6.

9

1.4.1 Crossword: Optimistic Adaptation within a Quorum-Shards

Tradeoff for Dynamic Data-Heavy Workloads

A rising challenge in cloud replication systems is the wide variability in payload sizes.

The workload for a consensus system may contain instances from as small as a few bytes

to as large as hundreds of megabytes [70, 157]. This creates sporadic bandwidth stress

within the system, where payload transfer dominates the processing time of some of the

replication requests; this is a problem not recognized by existing consensus protocols. We

name such workloads dynamic data-heavy workloads, which reflect the density, diversity,

and dynamism aspects of the cloud.

We present Crossword, a flexible consensus protocol that combines erasure coding

with consensus and applies the optimistic connectivity principle to tackle dynamic data-

heavy workloads. Crossword erasure-codes each consensus instance independently and

distributes erasure-coded shards intelligently to reduce the amount of critical-path data

transfer. In contrast to prior approaches that statically allocate data to servers, Crossword

introduces an adaptive tradeoff mechanism that dynamically balances the number of shards

assigned per follower against the quorum size. This grants Crossword the ability to react

to dynamic workload characteristics and network conditions, while always retaining the

availability guarantee of classic protocols. Furthermore, Crossword ensures a graceful

leader failover behavior through a lazy follower gossiping strategy that imposes minimal

overhead on critical-path performance.

We conduct a thorough evaluation to demonstrate thatCrossword achieves performance

on par with the best among previous protocols – including MultiPaxos [193], Raft [271],

RSPaxos [258], and CRaft [348] – in static environments. Crossword delivers up to 2.3×

throughput compared to MultiPaxos and Raft under dynamic workloads and fluctuating

network conditions, and can autonomously select the optimal shard assignment policy for

each instance at runtime. When integrated with the Raft module of CockroachDB [339],

Crossword improves aggregate TPC-C throughput to 1.32× under five-way replication.

Moreover, we show that the overhead of erasure code computation is negligible when using

proper coding schemes at the scale of typical consensus clusters.

10

1.4.2 Bodega: Optimistic Roster Composition Powered by Roster

Leases for Always-Local Linearizable Reads

It has been standard practice for critical cloud services to expand linearizable replication to

a global scale for maximal fault isolation and better client affinity [21, 61, 75, 338]. However,

establishing geo-scale quorums incurs substantially high latency (in hundreds of millisec-

onds). While unavoidable for write commands, this is suboptimal for read-only commands

when they constitute a primary share of the workloads. If a replica can serve linearizable

reads locally for nearby clients on popular keys, performance can be improved significantly.

This challenge manifests from the distance, diversity, and dynamism of the cloud.

We present Bodega, the first consensus protocol capable of serving linearizable reads

locally from any chosen replica, regardless of concurrent interfering writes. Bodega in-

troduces a new notion of cluster metadata called the roster, a generalization of leadership;

the roster tracks which replicas are selected as responder nodes for local reads on each

key. We apply optimistic connectivity in the selection of responders, achieving superior

read performance in wide-area replication without sacrificing the availability of writes.

Specifically, Bodega proposes a novel all-to-all roster leases mechanism to maintain a

consistent agreement on the roster across replicas. This is a task that existing all-to-one

leasing approaches, namely Leader Leases and Quorum Leases, cannot achieve. Bodega

further employs optimistic holding, early accept notifications, smart roster coverage, and

lightweight heartbeats as optimizations, while imposing no special requirements on write

requests other than a responder-covering quorum.

We evaluate Bodega against a range of existing protocols – including Leader Leases [63],

EPaxos [253], PQR [67], and Quorum Leases [255] – as well as two widely used production-

grade coordination services, etcd [96] and ZooKeeper [155]. Bodega accelerates client read

requests by 5.6x∼13.1x compared to Leader Leases and Quorum Leases on WAN clusters,

under even a moderate degree of write interference. Bodega delivers similar write perfor-

mance with existing approaches, preserves write availability via roster leases, and supports

rapid proactive roster changes for adaptability. Across all YCSB workloads, Bodega achieves

exceptional linearizable replication performance that is on par with sequentially-consistent

etcd and ZooKeeper deployments.

11

1.4.3 Implementation: Summerset Key-Value Store

Over the course of our research on cloud consensus protocols, a unique challenge emerges:

there exists no well-founded testbed for consensus protocol implementation and fair evalua-

tion. Existing research codebases and production systems are optimized for limited scopes

and lack the extensibility to support a full range of consensus protocols for comparison. To

address this situation and to connect our research deeply with practical implementation, we

develop Summerset, a distributed, replicated, protocol-generic key-value store.

Summerset is written in async Rust using tokio [213], the modern asynchronous pro-

gramming framework of Rust, taking full advantage of its memory safety, concurrency

safety, and high performance. Summerset adopts a modularized architecture, where com-

mon system functionalities, such as durable storage, network messaging, and state machine

command execution, are implemented as separate components connected through async

channels. This allows each consensus protocol to be implemented as a single, straightforward

protocol module that uses an event loop to express its algorithm logic.

The infrastructure code of Summerset contains 14.6k lines of Rust. On top of this, we

have implemented 11 replication protocol modules with various levels of complexity, in-

cluding Crossword, Bodega, and their related works. All the microbenchmark evaluations

of Crossword and Bodega are conducted on the Summerset platform. Source code of

Summerset and all protocols implemented are publicly available.

1.4.4 Beyond Linearizability: A Unified Consistency Spectrum

Both Crossword and Bodega conform to linearizability, a strong consistency level that

is essential to cloud replication systems and is a prerequisite assumption of optimistic

connectivity. However, weaker consistency levels exist [51, 190, 343]; understanding their

properties and connections with linearizability is a valuable contribution to distributed

systems research. During our investigation, we discovered that there were no existing

models that unify the definitions of consistency levels from a replication system perspective,

causing ambiguity and confusion to protocol designers and system engineers [16, 20, 92].

To address this obscurity, we develop the Shared Object Pool (SOP) model, a simple and

expressive model that unifies the definition of common non-transactional consistency levels,

including linearizability, sequential consistency, causal+ consistency, eventual consistency,

and more subtle levels in between. The SOP model classifies consistency levels based on the

12

logical ordering constraints imposed on read and write operations as observed by clients.

Two orthogonal types of constraints, convergence and relationship, work in conjunction to

define a consistency level concisely. Convergence dictates the shape of the ordering, which

can be serial (SO), convergent partial (CPO), or non-convergent partial (NPO). Relationship

puts constraints on the relative order between operations, which includes real-time (RT),

causal (CASL), first-in-first-out (FIFO), or none.

Under this model, linearizability is concisely characterized by enforcing a serial real-time

ordering of operations (SO + RT). Weaker consistency levels relax one or both constraints,

and the SOP model therefore clarifies their association with linearizability in a structured

and intuitive manner.

1.4.5 Enforcing Correctness: Testing and Formalization

Besides protocol design and system implementation, correctness enforcement via testing

and formal verification are equally vital components of distributed systems research. We

make contributions to these aspects; specifically, we create a Jepsen-integrated, unified

consistency checker, and develop SMR-oriented, model-checked TLA
+
specifications for

MultiPaxos, Crossword, and Bodega.

With Jepsen [162], a renowned distributed system testing framework, we implement

a consistency checker that applies the SOP model to extend existing checkers beyond

linearizability. We demonstrate the new checker’s capability with six different deployment

modes of three real systems: etcd [96], ZooKeeper [155], and RabbitMQ [287]. The checker

is able to report fine-grained conformity results across four consistency levels.

With TLA
+
[194], the temporal logic specification language, we construct an advanced

formal specification for MultiPaxos that incorporates an explicit termination condition and

reflects actual SMR system implementations with modern features (such as asymmetric

quorums and leases). On top of this, we create specifications for Crossword and Bodega

as well. All specifications are subjected to thorough model checking with no errors.

1.4.6 Outline of Chapters

The rest of this dissertation is organized as follows. Chapter 2 explains general background

knowledge on state machine replication and classic consensus protocols. Chapter 3 presents

Crossword, including specific background, design, implementation, and evaluation results.

13

Chapter 4 presents those of Bodega. Chapter 5 describes the architecture and implemen-

tation details of Summerset. Chapter 6 presents the unified consistency spectrum model.

Chapter 7 describes our consistency checker and presents our formal TLA
+
specifications.

Chapter 8 gives a comprehensive review of related work. Chapter 9 summarizes the disser-

tation, discusses future work, and concludes.

14

Chapter 2

General Background

We provide common background knowledge that underpins all upcoming chapters. We first

describe the detailed problem context of state machine replication (§2.1), then present the

inner workings of classic consensus protocols (§2.2). Background information specific to

each later chapter is included within that chapter.

2.1 State Machine Replication (SMR)

At the heart of fault-tolerant distributed computing lies the challenge of maintaining a

consistent agreement across multiple replicas of a distributed service. To solve this problem,

state machine replication (SMR) has emerged as the fundamental model for fault-tolerant

replication [305], and continues to support real-world distributed systems to this day. This

dissertation assumes the SMR problem context.

In this section, we detail the SMR model with its assumptions and requirements. Specif-

ically, we present the typical system architecture of a replication state machine service

(§2.1.1), define the assumed failure model (§2.1.2), and discuss the consistency (§2.1.3) and

availability (§2.1.4) requirements.

2.1.1 Typical System Architecture

Figure 2.1 depicts the typical architecture of a distributed service backed by a replication

state machine. We build this architecture step by step from the bottom up.

15

Server Node

(Durable) Log

x: 7
y: 0

State Machine

x←3 get x x←7 …y←4

Messaging
with clients
with peers

S0

S1

S2Service

Client

Figure 2.1: Architecture of a replicated state machine. The left-hand side shows an

overview of the service and clients. The right-hand side shows a zoomed-in view of a server node,

also referred to as a server replica; it is a remake of the architecture figure in Raft literature [271],

with protocol-specific annotations removed. See §2.1.1.

Deterministic State Machine. The first step is to ignore replication and consider only

a single-node service. The SMR model is predicated on the abstraction of a state machine,

which is a deterministic program that captures the logic of the service. Formally speaking, a

state machine is an automaton defined by a (typically finite) set of states, a set of operations

(also referred to as commands), and a deterministic transition function [252]. The transition

function dictates how to execute, i.e., apply a given command on a given state to generate

an output and arrive at the next state, which could be the same as the current state.

The determinism of the state machine is crucial: if a program starts in the same initial

state and executes the same sequence of operations, it will always arrive at the same final

state and produce the same sequence of outputs. This is true for most useful fault-tolerant

service semantics. For example, a register can be modeled as a state machine, where states

are the set of possible values, commands are read or write, and the transition function is

one that outputs the current value upon a read and moves to a new value upon a write.

Similar definitions can be given to other programs with various levels of complexity, such

as counters, sets, vectors, hash maps, relational tables, and more.

Throughout the rest of this dissertation, we assume a hash map state machine modeling

a key-value store. The state is a mapping from keys to values of arbitrary type. Commands

are usually composed of Get(key) and Put(key, value) requests, although any arbitrary

commands can be defined, such as read-modify-write. Get(key) outputs the current value

for key and does not update state; it is a read-only command. Put(key, value) updates

the state by mapping key to value, and may or may not output its old value depending on

the context. The green box in Figure 2.1 corresponds to such a state machine.

16

A Group of State Machines. The state machine presented above is hosted on a single

server (also referred to as a node or a replica). When failures strike, the server becomes

inaccessible, and the service turns unavailable to users. To achieve fault tolerance, a group

of redundant servers is required, such that a small number of failures do not disable all

servers, leaving room for continued service.

On the left-hand side of Figure 2.1, we show a cluster of three replicated servers, forming

the so-called service to which clients have access. The number of replicas constituting the

service is called the replication factor. Servers communicate over the network through

message passing. There can be an arbitrary number of clients, each submitting commands

and expecting correct outputs or acknowledgments returned by the service.

What ToReplicate: The Log of Commands. To ensure that the replicas maintain effective

redundancy, they must establish agreement on the evolution of the state machine at all

times. Although technically achievable via constantly exchanging the entire state with each

other, this could be prohibitively expensive due to the size of the state. Instead, the typical

approach in SMR is to let replicas maintain a replicated log of state machine commands,

since the commands are usually much more manageable in size than the entire state and

therefore more practical to distribute.

In Figure 2.1, the blue box represents the connections a server establishes with peers

and clients, and the orange box corresponds to its copy of the replicated log of commands.

The problem of SMR is thereby reduced to the problem of consensus on the content and

order of entries (or called slots or instances) of this log. Each entry may hold one or more

commands. As will become clear in §2.2, a prefix of the log, marked purple in Figure 2.1, are

committed entries where the content and order of commands have been safely decided and

will remain the same across all replicas. These commands are ready to be executed on the

state machine in order, updating the state and generating replies to clients. The determinism

of the state machine guarantees that, once committed at the same positions across replicas,

commands are executed by all non-faulty replicas in that order, achieving correctness and

fault tolerance.

2.1.2 Non-Byzantine Failure Model

With the system architecture made clear, a critical piece of the problem context to be defined

is the failure model assumption. A failure model describes all the possible faults that could

17

happen to the system. A good failure model should capture practical concerns concisely and

exclude harder failures that are beyond concern. We consider the common non-Byzantine

failure model, which comprises two conditions listed as follows [193].

• Fail-stop nodes: Nodes in the cluster can crash, recover, and respond arbitrarily slowly

at any time. It is impossible to distinguish a failed node from a node that is unrespon-

sive or sluggish, since nodes can only track each other’s health via periodic messages

such as heartbeats. Failed nodes may recover at any time and fail again. Persistent

state on a node survives across its crashes. All nodes behave cooperatively and will

not take actions that deviate from the algorithm they are running.

• Asynchronous network: Messages on the network may be lost, duplicated, reordered,

and delivered arbitrarily slowly. This covers cases from single message drops to out-

of-order delivery and total network partitions. The classic FLP result has shown that,

without randomization techniques, it is impossible to derive a consensus algorithm

that guarantees progress under asynchrony. To accommodate this, a relaxed model of

partial synchrony [91] was introduced, where the network is asynchronous at first

but becomes synchronous after an unknown timepoint. Recent discussions about

consensus usually assume to incorporate techniques such as randomized timeouts to

prevent livelocks [269]; therefore, we use these two models interchangeably.

Protocols that can operate with this failure model are referred to as being crash fault tolerant

(CFT), as opposed to Byzantine fault tolerant (BFT) [59]. The latter assumes a stronger failure

model, where nodes can be malicious, behave uncooperatively, and send out conflicting

information; messages can be corrupted. While BFT is essential to certain consensus

applications such as blockchain systems, CFT is the predominant failure model assumed in

cloud system environments; we focus on CFT throughout the rest of this dissertation.

2.1.3 Consistency Requirements

Given the system architecture and failure model assumptions, SMR protocols must conform

to pre-defined requirements on the results of their replication. One part of the requirements

is consistency requirements, which constrain the ordering of commands in the SMR log

across replicas. A stronger consistency level puts more constraints on the result, making the

18

replicated service more versatile, easier to understand, and easier to integrate with other

services through its interface.

For the majority of this dissertation, we assume linearizability, the strongest consistency

level for a key-value service. Linearizability requires that all concurrent clients can use the

replicated service as if it were a single node with atomic operations applied to its state [141].

This linearizable semantic is crucial to a wide range of cloud services [33, 54, 75, 96, 153,

177, 287, 290, 307, 339]. It can be broken down into two conditions listed as follows.

• Serial order: There exists a serial order of commands that all replicas agree upon;

typically, this is simply the command order of the SMR log. Across all replicas of the

log, commands follow the same sequence order, first by the instance (i.e., slot) order

then by the index within the command batch of that instance.

An allowed exception to the serial order is adjacent commutative commands: those

that are independent from each other, such that reordering would not change the

output of any command nor the final state. Examples of commutativity include clusters

of read-only commands, and writes to disjoint keys.

• Real-time order : For all pairs of commands ⟨op1,op2⟩ in the serial order, they honor a

real-time constraint, that if op1 was acknowledged in physical time before op2 was

issued, then op1 must be ordered ahead of op2. This condition captures an intuitive

property: if some command has been acknowledged by the service, and the service

is operating as if a single node, then it must have memorized the command and will

persist its effect for all future commands (possibly from different clients).

In Chapter 6, we define weaker consistency levels and discuss their relationship to lineariz-

ability. Without linearizability, counter-intuitive results may occur, greatly complicating

correctness reasoning and application development on top of the replicated service.

2.1.4 Availability Requirements

The final piece of the SMR problem context is the availability requirements, which may

also be referred to generally as liveness or fault-tolerance requirements. The availability

constraints govern the maximum degree of failures under which the service can still make

progress for new requests, where failures are confined to those allowed by the failure model.

19

Ensuring availability is critical and is among the most fundamental motivations behind

distributed services.

There is no unified method to quantify failures due to the diversity of symptoms. As-

suming CFT, a commonly used metric is the number of failed nodes, which counts all the

ill-running nodes, plus nodes that fail to deliver (some or all) outgoing messages. Classic

consensus protocols can guard against any minority number of concurrent failures without

losing liveness; reasoning behind this result will become clear in §2.2. By convention, we

say that a consensus cluster of n= 2f+1 replicas can tolerate up to f failures.

Consensus protocols should strive to provide the highest possible availability level

and also minimize performance degradation under a tolerable number of failures. If the

availability level cannot satisfy the applications’ requirements, a higher replication factor

would be needed, bringing performance complications.

2.2 Classic Consensus Protocols

To enable strongly consistent and highly available SMR, a collection of classic consensus

protocols has been proposed, studied, implemented, and improved over the past decades.

We present the inner mechanics of these classic protocols, specifically, Paxos and its variants

(§2.2.1), Viewstamped Replication (§2.2.2), and Raft with modern features (§2.2.3).

2.2.1 Paxos, MultiPaxos, and Variants

The basic Paxos algorithm, famously introduced in a technical report by Lamport [192]

through an allegory of a legislative parliament on the Greek island of Paxos, focuses on

reaching agreement across participants on a single value. This is a simpler version of

replication than SMR, referred to as single-decree consensus. The algorithm has since then

become synonymous with the consensus problem and has grown into a variety of protocols

that solve multi-decree consensus, where an SMR log is replicated.

Single-Decree Paxos. The basic Paxos algorithm involves three distinct roles of participants:

proposers, acceptors, and learners. Proposers initiate the consensus process by suggesting a

value. Acceptors form the collective memory of the system; they receive proposals from

proposers and decide whether to accept them. A majority quorum of acceptors must agree

on a value for it to be chosen. Learners are passive processes that learn the outcome of

20

the consensus. When mapped to physical nodes, each node could play one or more roles.

Consensus is established with a two-phase algorithm, summarized below using modified

notations that are consistent with modern literature.

Phase 1 is the Prepare phase. A proposer selects a proposal number b, which must be

greater than any proposal number it has used before and must be unique across the cluster

(by, e.g., appending the participant ID to it). This number is usually called a ballot number.

The proposer broadcasts a Prepare(b) message to acceptors and expects at least a majority

number of replies. Each acceptor, when receiving the message, checks if b is greater than

that of any previous proposal it has responded to; say the largest ballot seen was b ′. If b<b ′,

the acceptor must ignore the proposal, because it has made a promise to some proposer that

it would not accept any proposals numbered lower than b ′. If b > b ′, the acceptor responds

with a PrepareReply(b,b ′,v ′), where v ′ is the value of the highest-numbered proposal

previously seen, i.e., that of ballot b ′; v ′ and b ′ could be null to indicate that this acceptor

has never seen any proposals before. A PrepareReply serves two purposes: 1 it represents

a promise made by this acceptor that it would never accept any proposals numbered lower

than b, and 2 it lets the proposer know about the most up-to-date value v ′ on this acceptor,

which affects how the proposer selects a value in the next phase (because v ′ might have

already been decided and must be selected).

Phase 2 is the Accept phase and happens if the proposer successfully receives at least a

majority quorum of replies in phase 1. The proposer now needs to select a value v to propose,

but the selection of v is not free of constraints. If any of the replies contained a non-null b ′

and v ′, the proposer must select the value v ′ associated with the highest b ′ found among

replies. This step is at the core of Paxos’s correctness, because it ensures that a majority-

accepted value is always preserved and never overwritten. If none of the replies contain a

previous proposal, the proposer is free to select any value for v. Once selected, the proposer

broadcasts a Accept(b,v) message to the same quorum of acceptors. Each acceptor, when

receiving the message, checks if it has not already made promises to any higher-numbered

proposal; this could happen when there are concurrent proposals in progress. If not, it safely

accepts the proposal and notifies any learners with an AcceptNotice(b,v) message.

A learner knows that a value is chosen by consensus when it has received notifications

for the same ballot from at least a majority number of acceptors. That ballot and value are

then said to be committed.

21

MultiPaxos for SMR. While the basic single-decree Paxos algorithm is elegant and correct,

the SMR problem in practice requires reaching agreement for a contiguously growing log

of commands. Running the two-phase algorithm for every consensus instance, that is, for

every slot of the log, can be inefficient. To address this issue, MultiPaxos [193] has been

developed as a multi-decree variant of Paxos for SMR, and has become the default variant

that the name “Paxos” refers to.

Essential to MultiPaxos is the idea of using the Prepare phase to settle for a distinguished

proposer, who acts as a leader of the system and can subsequently complete instances using

only an Accept phase if there are no competing leaders.

Assume a replication cluster where all nodes play all three Paxos roles, and assume values

are state machine commands. A node may attempt to step up as a leader by broadcasting a

Prepare(b) message, where b is a unique, higher-than-seen ballot number, just as in basic

Paxos. The difference lies in how acceptors interpret and reply to this message. When an

acceptor receives the prepare message and passes the ballot number check, it replies with a

“covering-all” promise in the form of PrepareReply(b,[(b ′
1
,v ′

1
),(b ′

2
,v ′

2
), . . .]), where the

list batches together the highest ballot and value seen for all slot indices of its log. This is

interpreted as a batched promise, that the acceptor would not accept any lower-numbered

proposals for all slots up to infinity.

On the proposer side, once a majority number of valid prepare replies have been re-

ceived, it has been implicitly “elected” as a leader. It begins the Accept phase for each slot

individually, starting at the first non-committed slot (according to its own knowledge of

commit progress). For each slot, when selecting the value to propose, it must consider the

corresponding slot entry information across all replies, and use the highest-previous-ballot

value if any. If no replies contain a previous proposal for the slot, the proposer is then free

to propose any value for that slot, typically by listening for the next request(s) from clients.

In failure-free cases and if other nodes are not attempting to become a leader when knowing

one, this proposer’s leader status should be robust.

Leader and Heartbeats. With MultiPaxos, once a leader has been established, clients can

send commands to the leader and achieve consensus with a single Accept phase initiated

at the leader, assuming no failures. Non-leader replicas should proactively redirect client

requests to the believed leader to help clients find the leader.

In a practical implementation, nodes periodically exchange heartbeats with peers to

22

keep track of each other’s health status [63]. Heartbeat messages serve multiple purposes,

including but not limited to 1 sharing the identity of the latest leader, 2 communicating

the commit progress from leader to other nodes, and 3 keeping track of the current leader’s

health by refreshing a step-up timer on the receivers. When a sequence of heartbeats from

the leader fails to arrive at a node, its step-up timer times out, and the node attempts to

initiate a Prepare phase with a new ballot number to become a new leader. The timeout

interval lengths should be randomized across nodes to overcome the livelock issue discussed

in §2.1.2. Note that having competing leaders never violates the correctness of Paxos.

When a node learns that all slots up to an index have been committed, those commands

can be executed on the state machine in order, generating results to be replied to clients.

Other Paxos Variants. Other direct variants of the Paxos protocol have been proposed to

address problems with smaller scopes. Fast Paxos [196] allows clients to broadcast values to

acceptors directly using a modified fast-path quorum size. Cheap Paxos [187] discusses a

thrifty operationmodewhere the proposer only communicates with f+1 acceptors in failure-

free cases, reducing messaging overhead. Generalized Paxos [195] exploits commutativity

between commands and allows non-conflicting commands to be ordered concurrently. Disk

Paxos [105] studies the case where processes have access to a pool of shared, persistent

disks besides message passing. More advanced variants are discussed in individual chapters,

or with other related work in Chapter 8.

2.2.2 Viewstamped Replication (VR)

Viewstamped Replication (VR), first described by Oki and Liskov [268], is a protocol that

introduces activemembership management, also known as reconfiguration, to mitigate leader

failures. This technique has later become standard practice in consensus implementations.

At the core of VR is an algorithm that is similar to MultiPaxos, but differs on how leadership

is maintained.

Views and View Changes. A view is a period of time during which there is a single,

designated leader. Views are numbered sequentially. During normal operation within a

view, the system operates identically to the repeated Accept phase of MultiPaxos.

When replicas suspect the leader has failed, a view change is triggered to switch to a

higher-numbered view with a different designated leader, and with a possibly different

23

(but majority-overlapping) group of nodes. The leader of a view is typically determined

algorithmically, e.g., the replica with the lowest ID.

Nodes send StartViewChange messages autonomously upon timeouts, and carry with

the message a complete copy of information about their log. The new leader takes charge

when it has received a majority quorum of StartViewChange messages. It examines the

carried logs and constructs a new, up-to-date log for itself, which must be ensured to

contain all the committed entries in commit order. Once done, the new leader broadcasts a

StartView message carrying the newly constructed log to update other nodes’ logs, and

the new view begins.

Primary-Backup Replication is a general terminology that sometimes can be used in-

terchangeably with consensus, but otherwise refers to leader-based protocols with weaker

consistency or fault-tolerance assumptions [155, 171, 202]. VR is occasionally categorized

as a primary-backup protocol due to its strong notion of leadership during normal-case

operation. Because of views, no two nodes can be considered leader at the same time, making

the leader in each view analogous to a “primary” node. This differs from the decentralized

nature of basic Paxos. Nonetheless, we refrain from using the primary-backup terminology

due to the surrounding obscurity.

2.2.3 Raft and Practical Features

Raft is a newer protocol that resembles VR using more rigorous definitions. First presented

by Ongaro and Ousterhout [271] as a more understandable alternative to Paxos-based

protocols, Raft has since gained popularity in practical system implementations due to

the clear presentation of the protocol and the easy-to-follow implementation guide using

remote procedure calls (RPCs). Studies have proven the duality between MultiPaxos and

Raft [347], meaning that the two protocol styles share the same underlying theory and that

optimizations can be ported between them.

The Raft protocol splits the SMR problem into two explicit subproblems: leader election

and log replication. The former decides on an explicit leader across the cluster, similar to

the view change in VR but with a voting procedure. The latter handles the normal-case

replication of commands, similar to operations within a single view in VR.

Explicit Strong Leadership. At any given time, every server in a Raft cluster is in one of

three states: leader, follower, or candidate. The system operates in a sequence of numbered

24

terms similar to VR’s views, each beginning with a leader election. All log entries record the

term number they were replicated in. When a follower times out receiving messages from

the current leader, it converts to a candidate and starts an election through RequestVote
RPCs; timeout intervals are randomized as in §2.2.1. A server grants its vote to a candidate

if its log is not more up-to-date than the candidate’s, where up-to-date is defined by first

comparing the term of the last entry, then comparing the length of the logs. A candidate

wins the election and becomes the leader for the corresponding term if it has received at

least a majority of the votes. Upon election splits (due to concurrent elections), timeouts

should be triggered again and new elections are started.

To maintain coherence of terminology, we use the word follower to also refer to non-

leader replicas in MultiPaxos and our proposals throughout Chapter 3 and 4.

Implicit Batching and Heartbeats. Within a term, the replication of log entries from the

leader to followers happens through AppendEntries RPCs. These RPCs implicitly batch all

pending log entries at the leader, with each entry containing a client request. This contrasts

with classic MultiPaxos, where batching typically happens by grouping multiple client

commands received over an interval into a single log slot. AppendEntries RPCs also serve

as heartbeats carrying their usual information; an empty entries list is sent out when no

new entries need replication past a heartbeat interval.

Log Compaction and Snapshots. Raft has native support for snapshotting, a feature that

previous protocols did not rigorously define. Without snapshotting, the SMR log grows

unbounded over time, rendering the protocol unsustainable in practice. The idea behind

snapshotting is that the total size of the full state is typically bounded; for example, in a

key-value store, the total size of all key-value pairs is large but limited. The SMR log can

therefore be truncated at some index that is older than all replicas’ execution progress,

creating a snapshot that contains the entire state up to that point as well as the last index

and term of the truncated log.

Raft allows servers to take snapshots autonomously and independently. However, when

a follower is lagging behind and the leader has compacted entries beyond the follower’s

progress, InstallSnapshot RPCs are required to transfer the snapshot to the follower,

such that replication can continue; this is referred to as a state-sending snapshot.

To summarize, we have presented the problem context of state machine replication and

explained the in-depth mechanics of classic consensus protocols, including MultiPaxos, VR,

25

and Raft. These together form a solid foundation, on top of which we make our contributions

to tackle new challenges in the cloud.

26

Chapter 3

Crossword: Adaptive Consensus for

Dynamic Data-Heavy Workloads

Due to the common assumption that consensus workloads carry small payloads (e.g., ~100

byte state machine commands [96]), network transport delay has long been considered the

major bottleneck in consensus protocols [193]. Previous consensus protocols were thus

mainly designed to reduce message round-trip rounds [193, 196, 268, 271] and minimize

the communication delay within a round-trip [107, 108, 166, 195, 244, 253, 264, 333], largely

neglecting the bandwidth constraints on the critical path. Unfortunately, the density of

cloud workloads is now invalidating this assumption for consensus protocols deployed in

data-intensive cloud services.

Data-Heavy Workloads Create Bandwidth Stress. As modern distributed systems place

increasingly heavier workloads onto consensus protocols, bandwidth constraints can no

longer be neglected. For example, cloud databases [75, 153, 307, 313, 339] use MultiPaxos or

Raft to replicate redo/undo actions, each carrying KBs or even MBs of data per operation.

When consensus instances carry large payloads, broadcasting them over the network and

persisting them durably stresses the bandwidth aspect of the system.

Diverse and Dynamic Payload Sizes Complicate the Challenge. The problem of

data heaviness is further amplified by the diversity in payload sizes on a single replication

deployment, and the constant change of workload and hardware conditions during runtime.

To demonstrate this concretely, Figure 3.1 shows a payload size profile of the Raft module

in two modern cloud databases, TiDB [153] and CockroachDB [339], running the TPC-

27

4KB 32KB 64KB 290KB 63MB

0.5
1.0

CD
F

~45% are 4KB
~ ~

TiDB
CockroachDB

Figure 3.1: Raft replication payload size CDF in modern cloud databases. Profiled by

running a 200-warehouses TPC-C benchmark using the systems’ default benchmark suite.

C benchmark [215] with 200 warehouses under five-way replication. We can see that a

considerable portion of the payloads are large (⩾ 4KB) and span a wide range of up to 290KB

and 63MB, respectively. The higher-range requests are those that contain dense record

updates by operations such as new order creation, with CockroachDB having a higher

setting of batched entries limit than TiDB. Small payloads are likely to be delay-bounded,

while large payloads in a bandwidth-limited environment necessitate optimizations that

reduce payload size.

Erasure-Coded Consensus. Previous research has integrated consensus protocols with

erasure coding [152, 291], allowing the leader node to transform the payload into shards,

each having a fractional size of the original. These protocols, including RSPaxos [258],

CRaft [348], and their variants [165, 293, 361, 377], reduce bandwidth pressure by sending

exactly one erasure-coded shard to each follower. However, on the downside, existing

protocols all provide a degraded availability guarantee, exhibit ungraceful leader failover,

and provide no flexibility in reaction to dynamic workloads and hardware conditions.

Our Approach with Optimistic Connectivity. We embrace the erasure-coded consensus

design and apply our principle of optimistic connectivity. Specifically, instead of fixing the

number of coded shards assigned per server to one, we treat it as a new dimension in the

design space. We establish an availability-preserving tradeoff between the number of shards

assigned per server (c) and the minimum accept quorum size (q). Using this intuitive but

powerful result, we propose Crossword, a bandwidth-adaptive consensus protocol that

operates dynamically on the set of valid [c,q] configurations, reducing the data transfer

volume in bandwidth-constrained cases and minimizing the quorum size in delay-dominant

scenarios. Such adaptability allows Crossword to tune for optimized performance under

various combinations of workload scales and system conditions. Moreover, Crossword

employs a follower gossiping mechanism to keep followers up-to-date without interfering

with critical-path operations, permitting graceful handling of leader failover.

28

Overview of Contributions. In this chapter, we present the following contributions. 1

We recognize the increasing significance of dynamic data-heavy consensus workloads, and

demonstrate the insufficiency of previous protocols under such workloads. 2 We propose

Crossword, the first consensus protocol to our knowledge that establishes a runtime-

dynamic tradeoff between data volume and quorum size using erasure coding; Crossword

retains the availability guarantee and graceful failover behavior of classic protocols. 3

We implement Crossword and five related protocols on Summerset, our protocol-generic

replicated key-value store, in a sum of 26.9k lines of async Rust. 4 We evaluate Crossword

comprehensively to show that Crossword matches the best performance among previous

protocols in static scenarios, and outperforms MultiPaxos/Raft by up to 2.3x and RSPax-

os/CRaft by up to 1.9x under dynamic mixed workloads. Crossword recovers promptly

after leader failover and sustains a consistent performance gain under macro-benchmarks.

Integration with CockroachDB [339] delivers 1.32x higher throughput to 200-warehouses

TPC-C under 5-way replication.

The rest of this chapter is organized as follows. §3.1 provides detailed background

knowledge and motivation. §3.2 derives and presents the design of the Crossword proto-

col. §3.3 describes our implementation in Summerset and CockroachDB. §3.4 shows our

experimental setup and presents comprehensive evaluation results. §3.5 provides additional

discussion on related work and relevant topics. §3.6 summarizes and highlights how the

idea of optimistic connectivity is concretized via adaptive choices along the quorum-shards

tradeoff in erasure-coded consensus.

3.1 Specific Background

We provide background context specific to dynamic data-heavy workloads and discuss the

insufficiency of existing solutions under such workloads.

3.1.1 Dynamic Data-Heavy Workloads

Previous consensus protocols are predominantly designed to minimize the impact of network

delay. Precisely speaking, their performance metrics are the number of message rounds;

empirical evaluations mostly assume byte-scale payloads [59, 193, 195, 196, 253, 271, 367].

These metrics make sense when data sizes are small and delay is the dominant bottleneck.

29

However, this assumption is no longer accurate as modern distributed systems generate

dynamic data-heavy workloads where payload sizes span a wide range, causing bandwidth

stress for some (but not all) instances. We give examples below.

(a) Cloud Databases. Cloud HTAP databases implement consensus protocols to provide a

strongly-consistent storage layer abstraction to the SQL layer. F1/Spanner [75, 313] uses

Paxos to maintain a consistent mapping of tablet data. CockroachDB [339], TiDB [153],

ScyllaDB [307], and rqlite [301] use Raft to replicate user transactions, key-value updates,

or the database redo/undo log itself. These workloads drive consensus protocols with up to

MBs of data per instance.

(b) Object Storage. Consensus protocols have seen extensive usage in object/key-value

storage systems, including research proposals [45, 324] and industrial standards widely

deployed in the public cloud [21, 48, 65, 84]. Recent studies have reported large value sizes

ranging from 10KB to 128MB in these systems [58, 104].

(c) Metadata of Large-Scale Systems. Many systems rely on consensus to manage critical

metadata, either directly within the architecture [96, 111, 142, 159] or through an external

coordination service [54, 155, 179, 290]. As the scales of modern systems increase, metadata

workloads themselves become considerably heavier. For example, an Apache Storm study

reported that ZooKeeper becomes a significant bottleneck as scheduling decisions exceed

1MB as the cluster grows beyond 100 nodes [70].

(d) Request Batching. Batching is a ubiquitous technique used in systems expecting

high levels of concurrency [63]. In the context of consensus, batching collects multiple

client requests into a single instance, typically at millisecond-scale intervals, to prevent

overloading the system with excessive coordination overhead. The presence of batching

amplifies payload sizes, as now a consensus instance carries all client requests that arrive

during one batching interval.

Current Workarounds. Some systems separate data off to a weakly-consistent multi-

version data store [21, 111, 142, 239, 346] or opt in for chain replication [101, 295, 324], both

sacrificing latency by a multiplicative factor for improved throughput. A bandwidth-aware

consensus protocol can retain one-round latency and potentially remove the need for these

workarounds. Further discussions can be found in §3.5.2.

Implications of Dynamic Data-Heavy Workloads. Under data-heavy workloads, a

30

third performance factor comes into play, which is the size of data to be transferred to and

persisted by each node on the critical path. Assume a network link and a storage device both

offer 400Mbps bandwidth for a consensus job. The lower-bound time to pass a single 1MB

payload would be
1MB

400Mbps
× 2≈ 43ms not including any overheads, which is comparable to

wide-area RTTs.

Real workloads impose more complexity as they are a dynamic mix of light/heavy work-

loads (as shown in Figure 3.1) and can change substantially over time [318]. Furthermore,

network and storage hardware conditions may fluctuate and be delay-bounded, bandwidth-

constrained, or a mixture of both over time. The significance of the bandwidth pressure

varies greatly across different situations.

3.1.2 Classic Consensus Protocols

We have presented the inner workings of classic consensus protocols, such as Multi-

Paxos [63] and Raft [271], in §2.2 in detail. As part of the defensive, pessimistic design

in their algorithms, classic protocols always operate with full replication of the command

payload and with majority quorums. As shown in §3.1.1, this pessimism and rigidity become

suboptimal in the presence of dynamic data-heavy workloads.

In this dissertation, we primarily follow MultiPaxos-style narration when presenting our

approach and related work, with the only exception of calling non-leader nodes as followers

to maintain coherence of terminology. All the design decisions are directly applicable to

Raft variants due to their inherent duality [347]. For this chapter, we use data or payload to

refer to the state machine commands contained in a consensus instance.

3.1.3 Erasure-Coded Consensus Protocols

In search for data size reductions within consensus, erasure coding comes into sight. For

decades, erasure coding has been widely applied to networks [40, 150], storage [152, 180,

218, 220, 279, 309], and memory hardware [221]. Erasure coding builds upon parity-based

algorithms to enable reconstruction of missing pieces of data, or even correction of corrupted

data, at the cost of information redundancy that is fractional to the original data size.

Reed-Solomon (RS) code is a standard type of erasure code [291]. It splits data into d

shards and uses Galois fields to compute an adjustable number of p parity shards of the

31

same size, forming a codeword of n= d+p shards; by convention, this is an (n,d)-coding

scheme. The original data can be reconstructed with either ⩽ p shards erased, or with

⩽ t = p
2
shards corrupted. The maximum total number of shards in a codeword when

using standard 8-bit Galois fields is bounded by 2
8−1= 255, although typically a smaller

number is used in storage systems; the split between data versus parity shards can be chosen

arbitrarily. We are interested only in the erasure recovery aspect of RS coding as we assume

non-Byzantine failures for now. Other algorithms, such as LRC [152, 168, 275], exist but

sacrifice recoverability (for faster reconstruction under single failures).

Erasure coding introduces less redundancy than full-copy replication, but it alone does

not grant any ability to maintain consistency. Existing systems rely on a coordinator

responsible for managing the distribution of shards [152, 168, 279]. However, opportunities

to combine it with replication exist. Several proposals have been made to integrate it

with consensus; we describe two representative protocols and discuss their drawbacks and

incompleteness, which motivated our work.

RSPaxos [258] is the first protocol equipping consensus with erasure coding. Suppose a

cluster of n servers where n is odd. To start a new instance, an RSPaxos leader divides the

payload into d =m = ⌈n
2
⌉ shards where m represents the size of a simple majority, and

appends p= n−m parity shards to form a codeword of n shards. It then transfers shard i

to follower i and lets it persist that shard. Doing so reduces bandwidth consumption and

storage cost to nearly
1

m . Note that the leader still has the complete command in memory.

When collecting replies, however, a simple majority quorum is no longer enough to

assert an instance as safe and alive. If the leader fails after acknowledging the client, a new

leader may not be able to reach d shards to reconstruct the data and execute the instance,

hanging the system forever. As a compromise, RSPaxos specifically provides a degraded

fault-tolerance level of f= ⌊p
2
⌋ while waiting for a larger quorum size ofm+ ⌈p

2
⌉. This is a

significant weakening to availability. For example, with 5 nodes, RSPaxos offers tolerance

of only 1 node failure with a fixed quorum size of 4.

CRaft [348] and variants [165, 377] apply the same idea to Raft and behave identically on

the critical path. To alleviate the degraded availability guarantee, CRaft introduces a fallback

mechanism to switch to full-copy replication when a failure is detected. However, this does

not fully solve the availability issue, as failures that happen before the completion of the

fallback still lead to unavailability. Figure 3.2 demonstrates this using the RS codeword

32

 0 1 2 3 4

S0
S1
S2
S3
S4

✓

✓

✓

✓

Client

replied

💥
💥

✓?? ?✓

Original data (d) Parity (p) Unable to reconstruct

Figure 3.2: RSPaxos or CRaft under failures. Both are vulnerable to temporally close

failures leaving the number of reachable shards<d, even with fallback mechanisms. See §3.1.3.

space notation we introduce in §3.2.1. Leader S0 commits an instance according to an S0~S3

quorum, and the message to S4 is lost. If S0 and S1 both fail, a new leader cannot reach d

shards to reconstruct the acknowledged instance, effectively still offering f = ⌊p
2
⌋, i.e., 1

node failure with a 5-node cluster.

Drawbacks of Previous Coded Consensus Protocols. The aforementioned protocols

open an interesting design space but have three drawbacks, rendering them incomplete

for practical use. 1 They sacrifice the availability guarantee and offer a reduced fault-

tolerance level. 2 They cannot handle leader failover gracefully, since followers do not see

the complete payload and hence cannot execute commands in committed instances. This

makes them lag infinitely behind the leader in execution progress; a leader failover thus

triggers significant reconstruction traffic to reassemble those instances on any new leader. 3

They always use a disjoint shard assignment scheme and cannot adapt with delay-optimized

configurations when desirable. This missing flexibility is crucial when payload sizes and

network environments are dynamic, and when fail-slow stragglers appear.

3.2 Design

We present the design of Crossword, an adaptive consensus protocol that extends previous

solutions with flexible erasure code shard assignment policies, preserving availability and

enabling tradeoffs between delay- and bandwidth-friendly configurations. Crossword

employs gossiping to keep followers up-to-date, enabling graceful leader failover with

minimal impact on critical-path performance.

33

3.2.1 Reed-Solomon (RS) Codeword Space

We start by recognizing that the mappings from erasure code shards to server nodes need

not be disjoint and symmetric, i.e., shard i to node i. Instead, the mappings can be chosen

from a 2-dimensional space. To visualize this, we introduce a new per-instance notation

called an RS codeword space. Refer to the left half of Figure 3.2 for an example RS codeword

space with a (5,3)-coding scheme across 5 servers.

An RS codeword space is a 2-dimensional grid. Each row represents a server and lays

out the shards of a conceptual RS codeword with data shards on the left. Each column

corresponds to one particular shard of the codeword that could be replicated on any of

the servers. We label shards starting with index 0 from left to right and name the servers

similarly from top to bottom. For a given instance, this notation identifies the shards

distributed across server nodes after erasure coding. The coding scheme does not require

the total number of shards to equal the number of servers.

With the codeword space notation, we can mark which shards must be replicated onto

which servers for a given instance. Specifically, we say that shard i is assigned to server s

if we require server s to receive shard i and durably remember its content. A shard could

be assigned to multiple servers, meaning that all those servers should receive and persist

the same bytes. A shard could also be assigned to no servers. A parity shard has the same

power as a data shard, because RS coding ensures the original data can be reconstructed

from any d shards.

3.2.2 Shard Assignment Policies

Having an RS codeword space creates new possibilities in how shards can be assigned to

servers. When a Crossword leader initiates the accept phase of a new instance (whose

payload is a batch of client requests received in the last batching interval), it computes the

RS codeword for that payload and decides which subset of shards to assign to each follower.

We call such a decision a shard assignment policy.

An assignment policy depicts which specific chunks of bytes in the erasure-coded payload

need to be carried in the critical-path Accept messages to each follower. Accordingly, those

are the bytes that each follower must persist before replying with a positive vote. We use

the word “assign” to capture both meanings. An assignment policy also includes what the

leader itself must persist, though this involves no network traffic. Note that the leader is

34

S0
S1
S2
S3
S4

(a)MultiPaxos

& Raft

(classic consensus)

(b) RSPaxos

& CRaft,

also B. RR, c= 1

(c) Crossword,

Balanced RR,

c= 2

(d) Crossword,

Balanced RR,

c= 3

(e) Crossword,

Unbalanced case

example

Figure 3.3: Assignment policy examples. (a) assigns the original data to all servers. (b)
assigns shard i to server i in a diagonal pattern, which is itself also a Balanced Round-Robin

(RR) assignment with shard count c= 1. (c) shows a Balanced RR assignment with c= 2. (d)
shows another Balanced RR with c= 3, which is equivalent to (a). (e) is an example case of an

unbalanced assignment.

assumed to have the complete payload codeword in its main memory, though this is not

explicitly shown in the codeword space and assignment policy notation. Also, note that an

assignment policy is solely restricted to one individual instance and is independent of other

instance slots of the log.

We visualize an assignment policy by marking assigned cells with a darker color and

solid border in the RS codeword space, leaving unassigned cells with a lighter color and

dashed border. Figure 3.3 demonstrates interesting examples of assignment polices in a

5-node cluster. A valid shard assignment policy has to satisfy certain constraints, which we

derive in §3.2.3; some policies (e.g., assigning zero shards to all replicas) are useless. We

describe below several assignment policies we find interesting.

Previous Protocols. Classic protocols and previous coded consensus protocols described in

§3.1 can be represented as special cases of shard assignment policies. MultiPaxos [193] and

Raft [271] map to Figure 3.3(a), where all data shards are assigned to all the servers. In other

words, a full copy of the original payload is replicated onto all servers, and parity shards

are not used. RSPaxos [258] and CRaft [348] map to Figure 3.3(b). They are on the other

extreme, where only one disjoint shard is assigned to each server in a diagonal pattern.

Balanced Round-Robin (RR) Assignments. To generalize over 3.3(a)–3.3(b) and bridge

the gap between the two extremes, one needs a category of assignment policies that follow

a consistent pattern. The key intuition is to spread the assigned shards to cover as many

columns as possible in the codeword space, so that the number of reachable shards is

maximized in the presence of failures. Specifically, consider assigning to server s the shards

35

s ∼ s+c rounding back to 0 if necessary, where c ∈ [1,m]. We call this category Balanced

Round-Robin (RR) assignment policies with a shard count parameter c. Figure 3.3(c) shows

such an assignment policy with c= 2. Notice that 3.3(b) is also a Balanced RR assignment

with c= 1. Figure 3.3(d) gives a c= 3 assignment equivalent to 3.3(a), except that a shifting

subset of shards instead of the same set of data shards is assigned to each server. §3.2.3

shows why this unified family of assignment policies is useful for our adaptability and

availability goals.

Unbalanced Assignments. The assignment policies mentioned above are balanced, mean-

ing servers are assigned the same number of shards. It is also possible and potentially useful

to make unbalanced assignments, where servers receive different numbers of shards. Fig-

ure 3.3(e) gives an example of this based on a (8,5)-coding scheme. Unbalanced assignments

share similarities with weighted voting [112] (but with linearizability constraints) and cannot

be described by a single numeric parameter. Latest work has recognized asymmetric failure

probabilities in replication [102], where Crossword could offer an effective solution. We

found that Balanced RR policies meet our main goals and, hence, leave deeper exploration

of unbalanced ones as future work.

Notation Meaning Example

n Cluster size 5

m Simple majority size 3

d Number of data shards 3

p Number of parity shards 2

c Balanced RR shard count per server 3 or 2 or 1

q Balanced RR expected quorum size 3 or 4 or 5

f Tolerable node failures 2

Table 3.1: Summary of symbol notations and their meanings. Examples use typical

values assumed throughout this section for Balanced RR assignment policies.

3.2.3 Availability Constraint Boundary

We derive the necessary constraints on shard assignment policies that categorize which

of them maintain a desired availability guarantee. We start with a general definition and

derive a constraint formula that can bound any assignment policy. We then narrow the

scope to Balanced RR assignments and present a more concise constraint.

36

To discuss the usefulness of an assignment policy, we denote the set of Accept replies

received from followers as an acceptance pattern. A reply from follower s in an acceptance

pattern essentially conveys the following statement: “s votes yes to the ballot of this Accept
message and has durably remembered the shards it carried.” We implicitly include the leader

itself in an acceptance pattern; one can think of it as the leader replying instantly to itself.

Constraints in the General Form. Suppose an acceptance pattern ap is observed by the

leader during its wait on Accept replies. How can we determine when it is safe (both in

terms of correctness and availability) to commit this instance? To answer this, we define

the following metrics on ap. Let:

• Nodes(ap) denote the number of replies in ap, i.e., how many server nodes have

replied (including the leader).

• Cover(ap) denote the shard coverage of ap, which is the number of distinct shards

that the replies cover. For example, suppose a Balanced RR assignment with c= 2 as in

Figure 3.3(c), and suppose ap contains replies from servers S0, S1, and S4; Cover(ap)

is 4 because shards 0, 1, 2, and 4 are covered by at least one reply, while shard 3 is not.

The Nodes(ap) metric is essentially what classic consensus protocols use when making

commit decisions. In particular, it is safe for them to commit an instance if at least a majority

of nodes have replied, i.e.,

Nodes(ap)⩾m. (C1)

This constraint remains necessary in the presence of sharding, as the majority quorum

intersection property is still required to establish consistency.

One may attempt to assert that it is safe to commit as long as Cover(ap) reaches the

number of data shards d. However, this may violate the availability guarantee as shown

in §3.1.3 and Figure 3.2. When each follower holds fewer than d shards, losing the leader

may decrease the number of reachable shards below d, preventing the new leader from

reconstructing the payload. To capture potential failures, a more sophisticated metric on

ap is needed. Let:

• SubCover(ap,f) denote the subset coverage of ap, which is the minimum coverage

among all subsets of ap with f replies removed, where f is the target number of

tolerable failures.

37

It is straightforward to see that, to preserve the desired level of availability, i.e., to allow

progress when at most f servers fail, the following constraint must hold besides C1:

SubCover(ap,f)⩾ d. (C2)

For classic consensus protocols, this trivially holds, because any single server is assigned d

shards, meaning any set of f+ 1 replies satisfies this condition. For RSPaxos and CRaft, i.e.,

Figure 3.3(b), one can also validate that they offer a fault-tolerance level f= 1 when waiting

for a quorum of Nodes(ap) = 4 replies in a 5-node cluster by plugging in d=m= 3. For

more general assignment policies, this constraint can be programmatically checked by the

leader when an Accept reply is received.

Specific Form for Balanced RRAssignments. Since we focus on Balanced RR assignment

policies, we give a more concise form of constraints for them. For an acceptance pattern ap,

denoteq=Nodes(ap), which is the quorum size. q obviously cannot be larger than the total

number of servers. Recall that each server is assigned c shards in an overlapping Round-Robin

fashion using an (n,m)-coding scheme. One can see that SubCover(ap,f)⩾ q− f+c−1

is always satisfied, with the equal sign taken when all replies are from adjacent servers.

This gives a combined constraint of:

n⩾ q⩾m ∧ q− f+c−1⩾m. (C3)

The protocol must retain the same fault-tolerance as classic protocols, i.e., f=n−m, giving:

n⩾ q⩾m ∧ q+c⩾ n+1. (C4)

Figure 3.4 visualizes the derived availability constraint C4 for Balanced RR assignments

with four different cluster sizes. In each subfigure, every point (q,c) in the grid maps to a

potential configuration for a given consensus instance, where the protocol uses a Balanced

RR assignment policy with c shards per server and commits upon receiving q replies. The

set of valid configurations satisfying the desired availability guarantee form the colored

region surrounded by solid lines. Notice that MultiPaxos and Raft (black squares) are at the

bottom-left corner of the region because they always assign a full copy of the original data

to all servers and expect a simple majority. RSPaxos and CRaft (red crosses) are outside of

38

2 3 |Quorum| (q)
1
2
3

Shards per
server (c)

if bw
limited

n=3, f=1▬

if high RTT var.

3 4 5
q

1
2
3
4
5

Shards per
server (c)

if bw
limited

n=5, f=2▬

if high RTT var.

4 5 6 7
q

1
2
3
4
5

Shards per
server (c)

if bw
limited

n=7, f=3▬

if high RTT var.

5 6 7 8 9
q

1
2
3
4
5

Shards per
server (c)

if bw
limited

n=9, f=4▬

if high RTT var.

Classic Paxos/Raft RSPaxos/CRaft Crossword configs Region of tolerance=f Tradeoff decisions

Figure 3.4: Availability constraint boundary and tradeoff lines in the Crossword

configuration space assuming Balanced Round-Robin assignments. See §3.2.3 for the derivation.

the region (except for when n= 3) due to always assigning exactly one shard per server and

waiting for a compromised quorum size ofm+ ⌈p
2
⌉ that results in degraded availability.

3.2.4 Performance Tradeoff

Among the set of valid configurations in Figure 3.4, those on the bottom boundary line

(satisfying q+ c = n+ 1) are particularly interesting. Configurations above this line in

the availability constraint region deliver strictly worse performance; for any quorum size

q, one should pick the smallest number of shards c per server. We call these candidate

configurations and highlight them with circular dots.

Across the candidate configurations, there exists a tradeoff between the quorum size and

the number of shards assigned to each server. Choosing a smaller c reduces the size of data

to be transferred to and persisted on each follower at the cost of requiring more Accept
replies, and vice versa. The tradeoff decisions will be affected by both the runtime hardware

environment and the payload size of the instance. On the one hand, a small payload on a

high-RTT, jittery network favors smaller q, because slower replies take substantially longer

to wait for. On the other hand, a large payload on a bandwidth-constrained network favors

smaller c, since the time saved by streaming less data overshadows the fluctuation in arrival

times of replies.

Crossword is a consensus protocol that operates along the line of candidate configura-

tions. For each instance, it picks the best configuration among the candidates according

to the instance’s payload size and the real-time hardware conditions. We describe a sim-

ple linear regression-based method as the default heuristic for choosing configurations in

§3.3.1; more sophisticated solutions such as using simulation and hardware performance

39

counters are possible [232], as well as simpler heuristics such as payload size thresholds or

user-supplied hints.

3.2.5 Follower Gossiping

Besides bandwidth-awareness and adaptability, another goal of Crossword is to retain the

graceful leader failover of classic consensus. After a leader’s failure, a newly elected leader

should be able to quickly recover all committed state and start serving incoming requests.

This is not the case in RSPaxos and CRaft because, during normal-case operation, followers

always receive a partial piece of the codeword and cannot assemble committed commands.

To overcome this, Crossword employs lazy follower gossiping to let followers exchange

their knowledge of shards without interrupting the critical leader-to-follower path.

Status Transition Diagram. We summarize servers’ actions in a consensus instance as a

transition diagram in Figure 3.5. For now, ignore the “Committed w/ Partial Data” status

and related transitions. A MultiPaxos instance may undergo the following status transitions:

Null (i.e., empty instance), Preparing (only after leader changes), Accepting, Committed (i.e.,

chosen and ready to be learned), and Executed (i.e., commands applied and clients replied).

We use edges to represent actions that a server will do to the instance, triggered by certain

conditions; actions labeled with prime are those carried out by the leader, while others are

by followers. On the critical path, the following actions happen to an instance: [an’ , an, ck’ ,
e’]. The Preparing status and failure-related actions only appear after a leader failover.

Committed with Partial Data and Gossiping. Crossword introduces a new status,

“Committed w/ Partial Data”, that could appear on followers and newly elected leaders.

Correspondingly, we rename "Committed" to “Committed & Data Known”. On the critical

path on a follower, unless it receives m shards (e.g., when using a Balanced RR assignment

policy of c =m), it takes the cg transition and schedules gossiping with other followers.

During gossiping, followers share their assigned shards to fill others’ missing ones through

peer-to-peer traffic. When a follower receives enough shards, it takes the g transition, which

allows the contained commands to be executed on the follower.

Follower gossiping happens entirely among followers in the background, and the gos-

siped shards stay purely in followers’ memory. The gossiping of an instance can happen

arbitrarily late after its commitment; in practice, some delay is desired, as will be discussed

in §3.3.2. Note that a newly elected leader may see instances in the “Committed w/ Partial

40

cg

ck’

an’

ap’
eap

fa’ e’
Preparing

Null

Accepting

Committed &
Data Known

Committed w/
Partial Data

Executedp’ p
an

ck
fr’

fp’

g

fc’

Figure 3.5: Crossword instance status transition diagram. Solid edges represent transi-

tions on the leader and dashed edges represent transitions on followers. Differences and additions

made by Crossword with respect to classic Paxos highlighted in red. See §3.2.5-3.2.6.

Trigger on leader Action by leader

p’ client request, unprepared broadcast Prepare
ap’ decide the prepared value broadcast Accept, each a subset of shards

an’ client request, ballot already prepared broadcast Accept, each a subset of shards

ck’ reach commit condition commit instance

e’ instance committed execute contained commands, ack client

fp’ new leader after failover redo with a higher ballot

fa’ new leader after failover redo with a higher ballot

Trigger on followers Action by followers

p receive Prepare send Prepare reply

ap receive Accept send Accept reply

an receive Accept send Accept reply

ck leader committed, payload fully known commit instance

e committed, full payload is known execute contained commands

New gossiping-related transitions

fc’ new leader after failover do reconstruction reads

fr’ enough shards received re-assemble the payload

cg leader committed, payload partially known commit instance, schedule gossiping

g enough shards gossiped re-assemble the payload

Table 3.2: List of status transition actions. Refer to Figure 3.5 for the naming of action

symbols. Differences and additions with respect to classic Paxos are highlighted in red color.

Data” status at the end of its log; in this case, special actions fc’ and fr’ reconstruct those
instances synchronously.

Benefits of Follower Gossiping. Follower gossiping essentially moves the replication of

a significant portion of payloads off the leader-to-follower critical path and turns it into a

41

flexible, asynchronous, follower-to-follower background task. This brings three benefits. 1

We gain critical-path improvements while retaining graceful leader failover behavior (§3.4.3).

2 Reconstruct messages make use of follower-to-follower bandwidth whenever idle and

carry batched payloads of each gossiping cycle, improving data transfer efficiency (§3.4.5).

3 Followers prioritize processing critical-path messages over gossiping messages, allowing

improved performance even in cases when follower-to-follower bandwidth is sporadically

saturated in a keyspace-partitioned system (§3.4.6).

3.2.6 Crossword: The Complete Protocol

We wrap up the design of Crossword and condense it into well-defined extensions to

classic MultiPaxos, highlighted in red in Figure 3.5. Below is a summary of the differences.

• an’ : To initiate an instance, leader computes the RS codeword of the payload (or glues

together pieces pre-computed by clients) and adaptively assigns to each follower a

subset of shards through Accept messages. (§3.2.2, §3.2.4)

• ap’ : In the prepare phase, a corner-case occurs if the leader finds < d shards with the

highest ballot number among⩾m Prepare replies; in this case, the leader safely uses

the next client command batch as the prepared value since that payload could not

have been chosen. If ⩾ d shards are found, that payload is used as in classic Paxos.

• ck’ : Upon receiving an Accept reply, leader checks constraints C1 and C2, or the

simplified formula C4 for Balanced RR assignments, to decide whether to commit the

instance given the received replies. (§3.2.3)

• cg and g: Followers gossip about each other’s missing shards of committed instances

in the background. (§3.2.5)

• fc’ and fr’ : If a newly elected leader sees partially committed instances at the end of

its log, it broadcasts reconstruction reads for those instances to grab enough shards

for re-assembly. Execution of newly committed commands cannot proceed until the

reconstructions are done. (§3.2.5)

Based on this per-instance diagram, Crossword assembles a multi-decree SMR protocol, as

MultiPaxos does over Paxos. The same design can also be applied to Raft-style protocols,

similar to CRaft [348] over vanilla Raft.

42

3.3 Implementation

We provide details of our implementations of Crossword.

The Summerset Replicated KV-store. We implement Crossword on Summerset, a

distributed, replicated, and protocol-generic key-value store, as a fair codebase for imple-

menting and evaluating consensus protocols. Summerset is built with async Rust/tokio,
and adopts a lock-less channel-based architecture. We do not stack our implementation

directly atop codebases from previous work [101, 253], as we found that 1 they were not

extensible enough and 2 their language runtime overheads were noticeable, leading to

unfair disadvantages. We describe the Summerset codebase in detail in Chapter 5.

The codebase contains 12.7k lines of code as infrastructure. We have implemented six

protocols (with individual lines of code reported): Chain Replication (1.1k), MultiPaxos (2.3k),

Raft (2.3k), RSPaxos (2.5k), CRaft (2.6k), andCrossword (3.4k). All protocol implementations

have passed extensive unit tests and fuzz tests.

CockroachDBRaft Integration. We have also implemented a Go prototype of Crossword

in CockroachDB v24.3.0a, a production OLTP database [339], by patching its sophisticated

Raft package with ~1.6k lines of changes. This version reuses CockroachDB’s production-

quality infrastructure and contains all the core Crossword mechanisms, but does not

include the regression-based config chooser mentioned below; instead, we use payload size

thresholds as simple guides.

3.3.1 Choosing the Best Configuration

Per-instance configurations can be chosen based on any appropriate heuristics, e.g., pay-

load sizes or user-specified hints. Crossword adopts a simple linear-regression-based

performance monitoring approach as a good default to adaptively select among Balanced

RR assignment policies. The leader bookkeeps a sliding window (over 2 seconds) of two

statistics—data size and response time—of internal message rounds with each follower.

The messages include Accept messages and periodic heartbeats; heartbeats are messages

carrying zero-size payload that track server health.

Linear Regression of Size-Time Mappings. With the response time statistics, the leader

maintains an ordinary least squares model [355] for each follower, updated at 200 ms

intervals. Each model uses datapoints in the current sliding window, with message data

43

sizes (v) treated as x-axis values and response times (t) as y-axis values, with the highest 5%

discarded as outliers. Doing so produces a per-follower linear estimate of recent performance:

ts(v) = ds+
1

bs
· v, where s is the follower, ds is an overall delay estimate (the learned

intercept), bs is an overall bandwidth estimate (the reciprocal of the learned slope), v is the

payload size, and ts(v) is the overall response time given payload size v. Computing such

ordinary least squares incurs negligible overhead.

This linear model captures an end-to-end latest estimation of the time to send a message

with data size v to the follower, let it persist v amount of data, and receive its reply. At

any given time, the leader has access to a set of linear estimates {t1, . . . ,tn−1}, one per

each follower. When choosing a configuration for a new instance with payload size vp,

the leader enumerates choices of c ∈ [1,m] allowed by Balanced RR assignments, and for

each c, computes the set Tc = {t1(
vp
c), . . . ,tn−1(

vp
c)}. The (q− 1)-th smallest value in Tc

represents the time to wait for the last reply with a quorum size of q, and hence determines

the estimated completion time of the Accept phase. The leader chooses the [c,q] pair that

yields the smallest estimated completion time.

Limitations. Performance monitoring and estimation is a complex topic [232]. The simple

linear-regression-based approach worked well for us, but has limitations. 1 It produces

the best choice among Balanced RR policies and currently does not automate unbalanced

assignment policies, where the space of candidate configurations is considerably larger. 2 It

does not react to sharp fluctuations within small time frames (e.g., less than 1 second). More

sophisticated methods can be applied [232] but are outside of the scope of this dissertation.

3.3.2 Follower Gossiping Implementation

Several interesting technical details reside in the implementation of follower gossiping.

Figure 3.6 visualizes an example runtime state of the replicated log across 5 Crossword

servers. On the right-most end are instances on their critical path, whose operations have

been covered in previous sections. This section covers how Crossword enables followers

to push their execution forward for committed instances through follower gossiping.

ACrossword leader embeds the shard assignment of an instance in its Acceptmessages.

The embedding is a compact array of bitmaps representing the RS codeword space: assigned

cells are marked as 1 and others as 0. Thesis assignment policies do not need to be made

durable on any node; they are just a decision made by the leader and a hint for followers to

44

Gossiping done
& executed

Gossiping
ongoing

Deferral
gap

Accept phase
in progress

S4

⋯

⋯

⋯ ⋯

⋯

⋯

~

critical
path

⋯ ⋯

Acc

Executed
Committed
Accepting

Durable
shard
Mem-only
shard

Message

S1

S0

-

Figure 3.6: Demonstration of the replicated log in action across Crossword servers.

Shows an example view over a cluster of 5 servers, S0~S4, with S0 being the leader. Each slot of

the log is a consensus instance. Using a (5,3)-coding scheme. See §3.3.2 for detailed explanation.

find the best gossiping peers. Across failures, the actual shards found durable on followers

are the ground truth of state.

Using this information, each follower s checks its peers starting with s+ 1 rounding

back to 0 (skipping the leader), and maintains a monotonically growing set of expected shard

indices, which initially contains only the shards that s itself holds. For each peer checked,

the follower enqueues a Reconstruct message containing a set of shard indices to request

from that peer and adds those indices into the expected set. This loop ends when the size of

the set reaches d. Reconstruct messages are batched across multiple instances for better

bandwidth utilization. Upon receiving a Reconstruct, a follower sends back the shards it

knows within the requested set if it has committed an instance.

Introducing a Deferral Gap. Followers trigger gossiping for partially-committed instances

periodically at ~20 ms intervals. However, attempting to gossip immediately for a just-

committed instance is not ideal, because it is likely that followers not in the committing

quorum have not yet fully received their assigned shards from leader. Crossword introduces

a configurable deferral gap that specifies the accumulated size of payloads to skip at the

end of a follower’s log when attempting gossiping. The deferral gap defaults to a 400KB

threshold; it helps restrict gossiping to instances that everyone has likely committed. In the

case of stragglers, a follower skips requesting shards from a peer entirely if it has not heard

of its Reconstruct reply for 10 gossiping cycles.

45

3.3.3 Other Practicality Features

We also implemented other common consensus protocol features, listed below.

Heartbeats. A Crossword leader broadcasts heartbeats at ⩾20 ms intervals. Heartbeats

carry the leader’s latest committed slot index to notify followers of this information asyn-

chronously. A follower attempts to step up as a new leader if it has not received a valid

heartbeat from the current leader for a randomly chosen timeout between 300-600 ms.

Followers reply to the leader’s heartbeats to help the leader track their health status as well;

in the case of follower failures, the number of healthy followers bounds the largest q we

should choose from possible configurations.

Snapshots. Crossword servers autonomously take periodic snapshots of executed in-

stances of their log to avoid unbounded growth of log length. Thanks to follower gossiping,

followers can take snapshots without requesting state-sending snapshot messages from the

leader [271], which RSPaxos and CRaft required (but did not implement [258, 348], and

neither did we for them).

Leases for Read-only Commands. As is common practice [54, 63], we implement simple

time-based read leases for all five protocols by assuming an upper bound of clock drift, e.g.,

a few seconds, across servers. When holding the lease, the leader serves read-only Get
commands locally without placing them into the next instance.

3.4 Evaluation

We evaluate Crossword and previous consensus protocols on Summerset to answer the

following questions:

• How well does Crossword perform under various network environments and work-

load payload sizes? We show that Crossword matches the best among previous

protocols in static scenarios, and outperforms classic protocols by up to 2.3x in diverse

cases. (§3.4.1)

• Can Crossword adapt dynamically and promptly to payload size shifts and hardware

condition changes? We show that Crossword adapts to both changes promptly with

performance-optimal configurations. (§3.4.2)

46

• Can Crossword handle leader failover gracefully? We show that Crossword returns

to normal performance level with a small, bounded reconstruction delay. (§3.4.3)

• Can Crossword take advantage of unbalanced assignments to handle asymmetric

performance scenarios? We show a 1.4x improvement over classic protocols in a

hardcoded unbalanced scenario. (§3.4.4)

• What effects do gossiping-related parameters have? We show how the deferral gap

affects follower read staleness and how gossip batching brings bandwidth usage

reduction. (§3.4.5)

• Does Crossword work under realistic macro-benchmarks with keyspace partitioning

and in CockroachDB? We show that Crossword achieves higher maximum through-

put and lower latency than classic protocols under a YCSB macro-benchmark, and

delivers 1.32x aggregate TPC-C throughput in CockroachDB. (§3.4.6 and §3.4.7)

• How much overhead does computing RS code incur? We observe negligible overhead

in both computation time and CPU/memory resource usage. (§3.4.8)

Experimental Setup. We use CloudLab [90] machines running Linux kernel v6.1.64 as

our testbed. We use a cluster of c220g2-type machines with 40 CPU cores and 160GB

memory each. The network connection between each pair of nodes is 1Gbps bandwidth

and 4ms average delay, which is representative of a regional replication system [358]. For

some experiments, we also include results on a more wide-area setting spanning multiple

CloudLab datacenters, with an average of 200Mbps bandwidth and 30ms delay between

nodes. All the server and client processes are pinned to disjoint CPU cores. Clients are

launched on the same set of machines and are distributed evenly across machines. Servers

apply 1ms-interval request batching.

3.4.1 Critical Path Performance

We compareCrossword against previous protocols using 5 servers and 15 closed-loop clients

running microbenchmarks. We examine both regional and wide-area network environments

as described in the setup. We generate 50% Gets which carry only 8B keys and are served by

the lease-holding leader locally, plus 50% Puts whose payload sizes are varied: 8B, 128KB,

and a half-half mix of the two. To add realistic variations to the workloads, for every Put

47

MultiPaxos Raft Crossword RSPaxos (f=1) CRaft (f=1)

Th
ro
ug

hp
ut

(re
qs
/s
)

La
te
nc
y

(m
s)

0
1340
2680

0
10
20

(a) Region, 8B

0
335
670

0
35
70

(b) Region, 128KB

0
760

1520

0
20
40

(c) Region, mixed

Th
ro
ug

hp
ut

(re
qs
/s
)

La
te
nc
y

(m
s)

0
285
570

0
30
60

(d)WAN, 8B

0
105
210

0
165
330

(e)WAN, 128KB

0
205
410

0
60

120

(f) WAN, mixed

Figure 3.7: Critical path consensus throughput and latency under different deployment

environments and workload sizes. See §3.4.1 for details about the parameters used.

request, a client will sample a value size from a normal distribution with the given size as

mean and 10% of it as standard deviation. Throughput is aggregated over all clients, and

latency is averaged per request; the tips of arrows mark P95 latency.

The results presented in Figure 3.7 yield several observations. 1 In 3.7(a) and 3.7(d),

payloads are small and bandwidth is relatively abundant, favoring configurations with

smaller quorum sizes, i.e., MultiPaxos/Raft. Crossword performs as well as them and

delivers better throughput than RSPaxos/CRaft by 1.9x. 2 In contrast, 3.7(b) and 3.7(e)

favor fewer shards per server, and thus Crossword performs as well as RSPaxos/CRaft

and outperforms MultiPaxos/Raft by 2.0x. 3 In 3.7(c) and 3.7(f), Crossword outperforms

all four others by up to 2.1x thanks to its adaptability in choosing the best per-instance

configuration according to payload size. 4 For all cases, latency numbers match the inverse

of bandwidth numbers due to the closed-loop nature of clients.

Varying Payload Size in Finer Grains. Figure 3.8(a) varies the mean value size from 8B

to 256KB, while keeping other settings the same as in the regional setting. Crossword

matches MultiPaxos on the left end and outperforms both when payloads are around the

48

MultiPaxos Crossword RSPaxos

8B 128B 1K 4K 16K 64K 128K 256K
0

2000

Tp
ut

. (
re

qs
/s

)

(a)Mean value size

n=3 n=5 n=7 n=9
0

1000

Tp
ut

. (
re

qs
/s

)

(b) Cluster size (replication factor)

10% 50% 100%
0

2000

(c) Put request ratio

Figure 3.8: Throughput with varying mean value size, cluster size (i.e., replication

factor), and put request ratio. See §3.4.1 payload size and sensitivity paragraphs.

bandwidth-constraining threshold, which appears to be ~4KB in our setup. With ⩾ 64KB,

Crossword tends to prefer c= 1 and approach RSPaxos, while both outperform MultiPaxos

by larger ratios (>4x).

Sensitivity to Cluster Size and Put Ratio. Figure 3.8(b) and 3.8(c) verify the effectiveness

of Crossword across four different cluster sizes and three different Put request ratios

under the regional setting. Results show that Crossword consistently delivers improved

performance of up to 2.3x over MultiPaxos and 1.4x over RSPaxos for all cluster sizes.

Crossword brings larger improvement to higher Put ratios, since all Gets are treated in

the same way across all protocols.

Performance Breakdown. To further dissect the differences between configurations, we

present in Figure 3.9 a breakdown of the response time of an average instance carrying

64KB payloads. In this case, Crossword chooses c = 1 and brings 71% reduction to the

time spent in leader-to-follower Accept messages and durability. As a tradeoff, a larger

reply quorum is required, introducing a slight overhead to that segment. Computing the RS

code incurs negligible overhead.

We also observe that in this experiment, outside of snapshots, Crossword and RSPax-

os/CRaft consume 913MB of space for the durable log, while MultiPaxos/Raft consume

1467MB. This shows a minor side benefit of log storage space reduction on the log by 38%.

49

0 10 20 30
Elapsed time (ms)

MultiPaxos & Raft

Crossword & others

due to bw save due to
more replies
to wait for

RS coding computation
Leader→follower Accept msg
Writing to durable WAL
Follower→leader AcceptReply
Commit & execution

Figure 3.9: Latency segments breakdown of time spent in different steps of a bandwidth-

bounded instance. See §3.4.1 performance breakdown paragraph.

0 20 40 60 80 100
Time (s)

0

250

500

750

1000

Th
ro

ug
hp

ut
 (r

eq
s/

s) Data smaller Bw drops Bw frees 2 nodes lag

[c=1,q=4]
[c=3,q=3]

[c=1,q=5]

[c=3,q=3]
[c=1,q=5]

[c=3,q=3]

Crossword
MultiPaxos
Raft
RSPaxos (f=1)
CRaft (f=1)

Figure 3.10: Real-time dynamic adaptability of Crossword configuration. See §3.4.2.

3.4.2 Dynamic Adaptability

To demonstrate Crossword’s runtime adaptability to both workload size shifts and network

environment changes, we trace the real-time aggregated throughput of 15 closed-loop clients

on a 5-node cluster while changing relevant parameters along the way. For runtime network

performance changes, we use tc-netem, a Linux kernel built-in traffic control queuing

discipline for network emulations [224]. Clients initially run 100% Put workloads with 64KB

payloads. Throughput values are profiled at 1-second intervals and presented in Figure 3.10.

The four changes in order are: 1 average payload size reduces from 64KB to 4KB, 2 network

bandwidth drops from 1Gbps to 100Mbps per link, 3 network bandwidth returns to 1Gbps

per link, and 4 two nodes in the cluster experience lag with 10x worse delay and bandwidth.

The changes happen at 15 seconds apart from each other. MultiPaxos and Raft always use a

[c= 3,q= 3] configuration, while RSPaxos and CRaft always use [c= 1,q= 4]. Crossword

adapts to the best configuration among valid ones and matches the best performance among

the rest of the protocols at all times.

50

0 20 40 60 80
Time (s)

0

250

500

750

1000

Th
ro

ug
hp

ut
 (r

eq
s/

s)

Leader fails New leader fails

small
gossip

gap

small
gossip

gap

[c=1,q=4]
[c=1,q=5]
[c=1,q=4]

[c=3,q=3]

[c=1,q=4]

[c=2,q=4]

[c=3,q=3]
fb=ok

[c=3,q=3]

unavail.

Crossword
MultiPaxos
Raft
RSPaxos (f=1)
CRaft (f=1, fb=ok)

Figure 3.11: Real-time comparison of protocols’ leader failover behavior. See §3.4.3.

3.4.3 Graceful Leader Failover

To show the performance impact of leader failover to all five protocols, we trace the real-time

aggregated throughput of 15 closed-loop clients making 64KB requests to a 5-node cluster

in Figure 3.11, while crashing the leader node at 15 and 55 seconds. To make failover gaps

easier to observe, for this experiment specifically, we increase the heartbeat timeout on

followers to 1.5 seconds and turn off snapshotting for all protocols. We annotate the figure

with in-use configurations and indicators for failover unresponsiveness durations.

We make the following observations. 1 Classic protocols MultiPaxos and Raft recover

from leader failover instantly; the only sources of delay are the heartbeat timeout and the

leader election round. 2 Crossword exhibits similar graceful failover behavior with ~2x

longer gap; the additional delay is introduced by the reconstruction time of not-yet-gossiped

instances at the end of the new leader’s log. Also, note that after the first failover, Crossword

operates with a [c= 2,q= 4] configuration—the best choice then. 3 RSPaxos experiences

significantly longer downtime after the first failover due to the inevitable reconstruction

work to fill the new leader’s log with complete data. In practice, this downtime is bounded by

the interval between expensive state-sending snapshots, or could be otherwise unbounded

if the system does not employ such snapshot mechanisms. RSPaxos returns to the original

throughput level due to keeping c = 1; this leads to it being totally unavailable after a

second failure. 4 CRaft shows an even longer downtime after the first failure due to the

additional work of falling back to full-copy replication, after which it comes back to the

same throughput level as Raft. We make the second failure late enough so that fallback is

successful (fb=ok). The same pattern repeats after the second failure.

51

f=2 f=1
0

500

Tp
ut

. (
re

qs
/s

)

MultiPaxos
Raft
Cw (bal.)
Cw (unbal.)

RSPaxos*
CRaft*
RSPaxos
CRaft

Figure 3.12: Unbalanced assignment policy advantage in an asymmetric case. RSPaxos
∗

and CRaft
∗
bars mean q= 5 forced. See §3.4.4.

3 10 100
Time between writes

(ms, log-scale)

0
50

100
∞

Δ
#v

er
. ~ RSPaxos

Cw (200)
Cw (100)
Cw (0)
MultiPaxos

Figure 3.13: Staleness of follower reads

with different deferral gap lengths. See §3.4.5.

L-F0%
30%
60%

F-F0%
30%
60%

MultiPaxos
Cw (no batch)
Cw (default)

Figure 3.14: Bandwidth usage with

or without gossip batching , fixing

end-to-end user throughput. See §3.4.5.

3.4.4 Unbalanced Assignment Policy

Crossword also supports unbalanced assignment policies. To demonstrate potential benefit,

we use tc-netem to set up a static yet asymmetric network environment across 5 nodes

where followers S1 and S2 have 1Gbps bandwidth connected to the leader, S3 has 400Mbps,

and S4 has 100Mbps. We run the same 64KB-value workload and configure Crossword

to use an assignment policy that assigns 5 shards to each of S1 and S2, 3 shards to S3, and

1 shard to S4. Figure 3.12 shows that Crossword (unbalanced) establishes a better match

between the amount of assigned load and the link bandwidth, delivering a higher throughput

of ~1.4x over MultiPaxos/Raft and balanced policy. The default settings of RSPaxos/CRaft

yield better throughput with lower fault-tolerance of f= 1.

3.4.5 Gossiping-Related Parameters

We evaluate the impact of two gossiping-related factors: the gossip gap length and the effect

of gossip batching.

Follower Read Staleness with Gossiping Gaps. Systems that apply multi-versioning

to objects may allow a follower to serve reads locally with the newest value it knows. The

replies are not linearizable but sequentially-consistent, possibly stale versions [20, 190].

52

0 10 20 30 40
Throughput (k reqs/s)

0

250

500

750

La
te

nc
y

(m
s) Chain Rep.

MultiPaxos
Raft
RSPaxos (f=1)
CRaft (f=1)
Crossword

Figure 3.15: Macro-benchmark throughput-latency curves using YCSB-A key trace,

TiDB payload size profile of Figure 3.1, and with keyspace partitioning deployment. See §3.4.6.

Figure 3.13 shows the average staleness of follower reads (measured as the version

difference from the latest value at leader) on an object of 8B size (thus least favorable to

Crossword), varying the frequency of writes. MultiPaxos consistently delivers close-to-zero

staleness, while RSPaxos cannot support such follower reads. We force Crossword to use

a c= 1 configuration to expose its worst-case staleness, and try three different gossiping

gap lengths. A larger gossiping gap leads to higher staleness if writes are frequent; a gap

length of zero converges to MultiPaxos but would lead to premature gossiping attempts as

discussed in §3.3.2. We default to a reasonably small gap length of 400KB.

Effectiveness of Gossip Batching. Figure 3.14 presents the network bandwidth utilization

percentage of leader-to-follower links (L-F) and follower-to-follower links (F-F) under a 64KB-

value workload. Utilization is profiled by accumulating the total size of messages transferred

divided by the link’s bandwidth, while fixing end-to-end user throughput to the same as

MultiPaxos. Crossword moves
2

3
of the payloads into background F-F communication, and

can further reduce F-F bandwidth usage by 13% through batching all gossips of each ~20ms

cycle into a single round of Reconstructs.

3.4.6 YCSB with Keyspace Partitioning

We run a macro-benchmark using YCSB-A with Zipfian distribution [74] to generate a

trace of key accesses out of 1k keys; we treat each request as a generic Put and sample

a payload size from the TiDB workload profile presented in Figure 3.1. We partition the

keys into 5 disjoint ranges and run one consensus group per partition on the same set of

5 regional cluster machines with rotating leaders (i.e., machine i serves as the leader of

partition i and a follower in the other 4). This architecture matches how data systems deploy

consensus [45, 153, 339]. We include a Chain Replication implementation [295].

53

0

0.7

1.4

Th
ro

ug
hp

ut
(k

 tx
ns

/s
) Agg. tput.:

 [2.52k, 3.33k, 2.45k]

NO-45% PM-43% OS-4% DL-4% SL-4% Agg.
0

405

810

La
te

nc
y

(m
s)

Vanilla
Crossword
1-Shard

Figure 3.16: TPC-C benchmark results over CockroachDB. Transaction types legend:

NO - NewOrder, PM - Payment, OS - OrderStatus, DL - Delivery, SL - StockLevel, with their

ratios in the mix. Agg.: aggregated overall. See §3.4.7.

Figure 3.15 presents the throughput-vs-latency curves measured by varying the number

of clients. We make the following observations. 1 When total system bandwidth is not

saturated (lower-left part of each curve), Chain Replication exhibits the highest latency due

to its chain propagation structure; Crossword outperforms other protocols, matching the

results in §3.4.1. 2 All protocols (except Chain Replication) exhibit throughput limitations.

Crossword delivers higher maximum throughput than MultiPaxos due to follower gos-

siping being transparently postponed in hot partitions in favor of critical-path messages.

RSPaxos/CRaft have an even higher throughput limit because they simply have no gossiping.

Chain Replication has not hit its throughput limit due to its chain structure, but latency

would ramp up further as load increases.

3.4.7 TPC-C over CockroachDB

To demonstrate the end-to-end performance improvement that Crossword brings to a

database system, we run TPC-C over CockroachDB [339] v24.3.0a across 12 nodes in the

regional setting, with 200 warehouses input, 5 replicas per table key-range, and 400 concur-

rent workers. We compare its vanilla Raft implementation with our Crossword patch and

a 1-shard-forced configuration (that mimics CRaft). We keep default Cockroach settings

except for turning off leader/leaseholder rebalancing and transactional write pipelining

features, for both compatibility with our patch and more deterministic results. We pick

4KB/8KB as payload thresholds for choosing c= 2/c= 1 configurations, respectively.

Figure 3.16 shows the throughput (in txns/s), per-txn latency (in ms), and P95 latency

(tips of arrows). Crossword brings up to 44% speedup to read-write transactions (NO,

54

PM, and DL) and less improvement to read-only transactions (OS and SL). Throughput

follows similar relative improvement with per-txn latency, but the absolute numbers are

adjusted by their percentage in the workload mix. Crossword brings 1.32x higher aggregate

throughput. The 1-shard configuration leads to unchanged (and sometimes slightly worse)

performance due to wasteful sharding for small payloads.

3.4.8 RS Code Computation Overhead

We verify that the overhead of computing RS code is negligible in the overall span of a

consensus instance. Table 3.3 presents the time taken to compute (5,3)-coding on inputs of

different sizes using SIMD on 32 CPU cores (including memory allocation and serialization

overheads) and the overall per-request CPU/memory usage overhead at the leader. Even for

1MB, this takes no longer than 1ms. Compared to the latency values in Figure 3.7, computing

RS code contributes < 1% and introduces negligible CPU/memory overhead (besides the

memory space for parity shards).

3.5 Supplementary Discussion

In this section, we enumerate related work and discuss their insufficiency for dynamic

data-heavy workloads or their orthogonality to Crossword. We also discuss the effects

and opportunities brought by recent high-end network hardware.

3.5.1 Erasure-Coded Consensus

RSPaxos [258] is, to our knowledge, the first proposal on integrating erasure coding with

consensus. It assigns exactly one shard to each server to minimize network and storage

costs; as a sacrifice, it offers a weaker availability guarantee in all cases. CRSRaft [293] and

adRaft [294] apply the same idea to Raft. CRaft [348] is a recent proposal that falls back to

Payload size 4KB 16KB 64KB 256KB 1MB 4MB

Time taken 1µs 4µs 16µs 77µs 1ms 6ms

CPU usage 1.25% 1.24% 1.24% 1.26% 1.25% 1.26%

Memory usage 1.6KB 6.4KB 25.6KB 102.4KB 409.6KB 1.6MB

Table 3.3: RS (5,3)-coding computation time and resource usage overhead. See §3.4.8.

55

full-copy replication upon failures; it operates identically on the critical path and hence still

offers a weaker fault-tolerance level. ECRaft [361] andHRaft [165] propose smoother fallback

mechanisms by gradually replenishing shards on healthy nodes. FlexRaft [377] achieves a

similar goal by altering the RS-coding scheme. All of these variants do not fully address

degraded availability, shard assignment rigidity, and ungraceful failover. Pando [338] is

a higher-level, WAN-optimized, coded replication protocol that emphasizes a latency-to-

storage-cost tradeoff, which is a different goal from ours (run-time dynamism); it assumes a

topology with frontends, uses a pre-deployment planner to assign quorum memberships,

and does not yet support reconfigurations. Racos [372] applies erasure coding to Rabia [273],

a leaderless randomized consensus protocol, to reduce leader load.

3.5.2 Bandwidth-Aware Techniques

We discuss general bandwidth-aware design techniques and system architectures.

Address Space Partitioning. Gaios [45] is one of the first systems that deploy Paxos in

a scalable manner to support data storage. It does so by partitioning the address space of

keys into disjoint regions and assigning them to Paxos groups. Each group spans multiple

servers and each server can host multiple agents of different Paxos groups; the placement

of groups is managed by a separate fault-tolerant service. This design has been adopted by

modern systems [75, 134, 153, 164, 227, 339], oftentimes as Raft groups. Recent work also

demonstrates using auto-sharding [4] to further extend their flexibility. In such architectures,

Crossword can easily be applied to each of the consensus groups.

Master/Metadata Replication. Distributed storage systems may split data and metadata

into two separate layers: a weakly-consistent, possibly erasure-coded data store and a

strongly-consistent, consensus-backed metadata service [21, 111, 239, 346, 360, 379]. This

design, termed master replication, provides a workaround for uniformly data-heavy work-

loads but comes with three drawbacks. 1 It entails at least two rounds of operations for

any request, one through the data store and the other through the metadata service (in

strict order), bringing higher latency especially for smaller payloads. 2 To provide overall

linearizability, it requires a multi-versioned data store with carefully-timed garbage collec-

tion so as to ensure all the in-use data references held by the metadata service stay valid.

This increases system complexity even when unnecessary. 3 It does not help when the

metadata themselves are heavy [70, 375], in which case Crossword still applies. Overall,

56

we believe erasure-coded consensus provides an attractive alternative of less error-prone

designs, because a flat deployment of consensus achieves the same guarantee in one round

and imposes no special requirements on the storage layer.

Pipelining and Chain Replication. Pipelining is a technique for building throughput-

optimized systems. Several works have demonstrated applications of this technique in the

context of consensus and replication. Chain Replication [295, 324] is a classic protocol

offering consistent high-throughput replication by organizing replicas as a one-directional

chain. RingPaxos [245], ChainPaxos [101], and others [12, 68, 381] apply similar ideas to

derive higher throughput and to simplify membership management. These protocols are

purely bandwidth-optimized but have two significant downsides. 1 They amplify latency

by a multiplicative factor. 2 They are particularly vulnerable to stragglers and performance

asymmetry along the chain.

Data Relaying or Dissemination. Several works including PigPaxos [68], S-Paxos [44],

and Autobahn [115] explored data relaying or block dissemination techniques that relieve

contention at the leader by making payload transfer multi-hop or asynchronous, albeit still

on the critical path. These techniques could be combined with Crossword’s gossiping path

to further improve scalability under constant high load.

3.5.3 High-End Network Hardware

Hardware advancements in recent years have pushed forward the deployment of 40/100GbE

or higher-bandwidth network devices. Unfortunately, they offer limited help to replication.

1 These network interfaces and interchange devices are usually deployed in intra-datacenter

networks and have limited availability in wider area [22]. 2 Replication is only one part

of a system; it often shares the network infrastructure with other data-heavy application

logic [111, 153, 296, 339, 382]. 3 Payload sizes keep growing into the MBs or even GBs.

Bandwidth constraints are unlikely to be fully eliminated by newer generations of hardware.

We believe protocol-level improvements prove useful.

As multi-NIC servers become more popular [22], Crossword will bring higher gains,

because background follower gossiping can take advantage of separate NICs and impose

zero interference with critical-path messages.

57

3.6 Optimistic Connectivity in the Form of Adaptive

Quorum-Shards Tradeoff

To summarize, we present Crossword, an adaptive consensus protocol for dynamic data-

heavy workloads by integrating erasure coding with flexible shard assignment policies,

retaining the availability guarantee and failover behavior of classic consensus.

Crossword is a tangible realization of the optimistic connectivity design principle.

Given the cluster size, the set of configurations is the set of all valid shard assignment

policies. Optimistically choosing a policy that distributes fewer shards per server helps

alleviate the bandwidth stress for data-heavy instances, but requires higher connectivity

in order to conform to the availability boundary. Assignment policies are tunable for each

instance independently, granting fault tolerance and adaptability.

We envision that dynamic data-heavy workloads will be a rising challenge facing lineariz-

able replication systems; we take Crossword as a first step towards optimal and practical

solutions that address the bandwidth constraint and dynamism imposed.

58

Chapter 4

Bodega: Always-Local Linearizable

Reads via Generalized Roster Leases

In cloud replication systems, simple access semantics are critical. In particular, linearizability

is a strong consistency level they strive to provide: for interrelated requests, clients must

observe a real-time serial ordering, as if they are talking to a single node [141, 149]. As

presented in §2.1.3, with a linearizability interface, scalable services can be readily built

atop consensus systems [16, 33]. However, delivering high performance in linearizable

systems, even for read-only requests, remains a daunting challenge when deployed in the

ever-expanding cloud environment.

Local Linearizable Reads in the Geo-Scale Cloud. In the cloud era, systems replicate

critical data across multiple geographically-distinct availability zones [23, 25, 72], to guard

against correlated failures caused by power outage, fire, natural disaster, or operator error [56,

61, 126, 340]. By spreading replicas globally, robustness is achieved, but at the cost of

performance due to the inevitable wide-area quorum round trips [208].

The physical distribution of replicas yields an opportunity to serve read requests locally

from a client’s nearest replica. Reads usually comprise a majority of the workloads [24, 74,

272, 278]. Achieving local reads can greatly reduce read latency (from 20~300 ms WAN RTT

down to single digits for nearby clients) and drastically increase overall throughput. This,

however, is not a straightforward task.

Existing Solutions Fall Short. Existing consensus protocols have demonstrated a variety

of effective wide-area optimizations, but none, to our knowledge, supports coherently

59

fast linearizable reads for workloads containing even small amounts of interfering writes.

Leaderless protocols [67, 171, 195, 244, 253, 302] allow near quorums but not local reads.

Others explore flexible quorums [124, 140, 147, 202, 338], utilize special hardware or client-

side validation [17, 89, 110, 217, 285, 323, 366], or exploit API semantics favoring writes [101,

107, 108, 234, 269, 277, 295, 379].

Read leases (described in detail later) [28, 43, 63, 64, 120, 254, 255] are so far the most

compelling, but existing lease-fused protocols are only effective either at the stable leader

or during quiescent periods without interfering writes. In cloud deployments, dynamism

and non-uniformity are the norm. A consensus read protocol will unlikely deliver good

performance if it has tight location restrictions or is easily interrupted by writes.

Self-Containment Necessitates Leases. A primary challenge of designing consensus

protocols for critical workloads is that the protocols must be self-contained, i.e., they cannot

depend on external services to deliver essential information about the current role of nodes.

Self-containment is needed for several reasons. First, to provide local linearizable reads, the

consensus protocol must know whether or not the local data is the most recent; contacting

an external service to obtain this information would defeat the purpose of local reads.

Second, given that fault tolerance must be provided, having external dependencies would

reduce its guarantees to those of the external services [177, 290, 339]. Third, as minor goals,

self-containment avoids the complexity of deploying, tuning, and scaling extra dependencies.

Within the design space of self-contained protocols, we observe that leases are a vital

and powerful primitive. They carry timed promises that naturally tolerate faults through

expiration [120], while only requiring bounded clock drifts (typical in today’s cloud envi-

ronments [110, 156, 210, 246]). This opens the gateway to local linearizable read protocols.

Leases Were Not Fully Exploited. Existing lease-infused protocols, however, do not

employ the most suitable types of promises for local reads, and thus cannot fully realize

their potential. As a motivating example, Figure 4.1 shows a 5-site cluster where S0 is the

leader (and S4 is a local-read-enabled replica, if eligible), and reports the frequency of servers

being touched by read requests from a client near S4. The workload contains 99% reads and

only 1% writes, which favors existing approaches. Classic consensus (MultiPaxos) requires

a majority accept quorum around S0. Leader Leases only protect stable leadership, so S0 can

reply to reads directly, yet the delay between client and S0 persists. Quorum Leases allow

nodes to grant read leases to follower peers, but prevent them from accepting writes while

60

S3

S4S0

S2

S1
near

S4
MultiPaxos LeaderLs QuorumLs Bodega

0%

50%

100%

P(
no

de
 to

uc
he

d)

S0 S0 S0 S0S1 S1 S1 S1S2 S2 S2 S2S3 S3 S3 S3S4 S4 S4 S4

never
local

only at
leader

when
quiescent

always
local ✓

Figure 4.1: Frequency of touching a node on the critical path of reads by a client near

server node S4, in a cluster where node S0 is the leader, with infrequent writes in the workload.

S4 has local read capability of the protocol enabled if eligible. The ideal outcome is 100% of

reads served at S4 (which Bodega achieves).

holding leases, rendering them vulnerable to even small amounts of concurrent writes to

the key. As a result, a significant portion of reads are redirected to the leader S0.

Our Approach with Optimistic Connectivity. We introduce the notion of a roster: a

generalized cluster metadata that dictates not only leadership but also an assignment of

local-read-enabled replicas (called responders) for arbitrary keys. The roster opens up the

opportunity to apply the design principle of optimistic connectivity, where read-heavy

nodes can be optimistically marked as responders, offering local reads on proper keys at

the price of being included in their write quorums. To enable safe and seamless changes

between rosters, we introduce roster leases, a novel all-to-all generalization of leader leases,

deployed off the critical path to protect the agreement on the roster with no observable

overhead. Roster leases stay valid in the absence of failures or proactive changes.

With roster leases, we present Bodega, a consensus protocol capable of serving lin-

earizable reads locally anywhere at any time. Bodega assures that writes never commit

before reaching all of the key’s active responders. A responder that holds a majority of

leases can thus serve reads directly if it knows the latest value will commit. When unsure, it

optimistically holds the read locally until enough information is gathered, optionally utilizing

early accept notifications to accelerate the hold. The roster may be changed manually by

users, automatically according to statistics, or in reaction to failures. In Figure 4.1, Bodega

is able to handle all reads by the client locally at S4.

Overview of Contributions. In this chapter, we present the following contributions. 1 We

introduce the notion of roster and propose Bodega, a consensus protocol equipped with a

novel all-to-all roster leases algorithm plus various optimizations, enabling local linearizable

reads anywhere in a replicated cluster at any time during normal operation. 2 We provide

61

a thorough comparison across linearizable read approaches. 3 We implement Bodega and

seven related protocols/variants on Summerset, our protocol-generic replicated key-value

store, in a sum of 28.2k lines of async Rust. 4 We evaluate Bodega comprehensively against

previous works and two production coordination services, etcd and ZooKeeper, on 5-site

CloudLab clusters. Our evaluation shows that Bodega speeds up client read requests by

5.6x∼13.1x versus previous approaches under slight write interference, delivers comparable

write performance, supports proactive roster changes in two message rounds as well as self-

contained fault tolerance via leases, and matches the performance of sequentially-consistent

etcd [96] and ZooKeeper [155] deployments across all YCSB variants.

The rest of this chapter is organized as follows. §4.1 provides detailed background

knowledge and discusses existing solutions to linearizable reads. §4.2 presents design of

Bodega. §4.3 gives a formal comparison across protocols and a concise proof. §4.4 describes

our implementation of Bodega in Summerset. §4.5 shows our experimental setup and

presents comprehensive evaluation results. §4.6 provides additional discussion on potential

extensions and related work. §4.7 summarizes and highlights how the idea of optimistic

connectivity is concretized via lease-protected composition of the roster.

4.1 Specific Background

We provide background on the distributed lease technique, discuss existing solutions, and

derive our goals for Bodega.

4.1.1 Distributed Lease

Leases are a common distributed system technique [120]. They may be deployed as user-

facing APIs through distributed locks [54] or TTL-tagged objects [96], or as protocol-internal

optimizations; we focus on the latter.

A lease is, conceptually, a directional limited-time promise that a grantor node makes to

a grantee. It relies on bounded clock speed drift between the two ends, that is, over a given

physical expiration time tlease elapsed, the two nodes’ clocks do not deviate more than a

small t∆. This is typically true in today’s cloud environments [110, 156, 210, 246]; note that

it does not assume synchronized clock timestamps [28, 75, 222].

62

C’

Grantor

Grantee

D’

Guard Guard
Reply

A

B

Renew

C A’
tguard -tΔ

D B’
tguard +tΔ

Renew
Reply

tlease -tΔ

tlease +tΔ
D’

tlease +tΔ

D’ is here
if missing

RenewReply
C’

Renew
(or Revoke)

E

D’ F’

E’

tlease +tΔ

tlease -tΔ

Invariant: C’ < D’ ⇒ E’ < F’

Figure 4.2: Demonstration of standard lease granting. Left: the guard phase establishes

the first iteration of promise coverage; grantee welcomes the first Renew only if it is received

within the guarded period (C < A’). This allows the grantor to derive a safe D’ = B’+t
lease

+t∆
even if the RenewReply is lost, such that C’ < D’. Right: the grantor attempts to extend the

promise with a Renew (or to actively revoke it with a Revoke), but has not yet received the
grantee’s reply. The leasing logic assures that E’ < F’ holds; therefore, if the grantee indeed

failed, after timestamp F’ the grantor can assert the promise is no longer believed by the

grantee. Optimizations for more aggressive expiration exist when replies are successful [254].

Standard One-to-One Leasing. The procedure of activating one lease between two

nodes consists of an initial guard phase and repeated endow (i.e., renew) phases, depicted

in Figure 4.2. The guard phase (left half) establishes the first iteration, and the endow

phases (right half) keep it refreshed periodically [120, 254, 255]. The goal is to maintain this

invariant: the grantor-side expiration time is never earlier than the grantee-side. A lease

is considered held by the grantee when its clock has not surpassed tlease−t∆ after the last

endowment received. The grantor can proactively deactivate the lease with a Revoke or, in

the case of unresponsiveness, wait for tlease+t∆ without endowing to let it safely expire.

See the subcaption of Figure 4.2 for a walkthrough of the standard leasing procedure.

4.1.2 Previous Work on Read Optimizations

Figure 4.3 presents a coarse-grained categorization of previous approaches to linearizable

reads. The following sections discuss them in the general order from right to left.

4.1.2.1 Classic Protocols and Leader Leases

Protocols such asMultiPaxos [193], VR [268], and Raft [271] are the de-facto standards

implemented in the wild [75, 96, 153, 330, 339]. We have described these protocols in detail

in §2.2. While stale read options exist [63, 269], normal reads are treated obliviously just

like other commands.

63

Vertical Paxos
Hermes
Pando

Megastore

required (data-oriented) no (self-contained)

MultiPaxos
VR
Raft

& variants

External membership oracle?

quorum
around leader

(classic)

Leader Leases
on top of

MultiPaxos,
Raft, etc.

locally
at leader

Mencius
EPaxos

SwiftPaxos
PQR

quorum with
near replicas
(leaderless)

locally
at nearest
responder

Linearizable reads served via …?

Quorum Leases

breaks leases

Bodega

Write interference?

mitigated

Figure 4.3: Categorization chart of protocols relevant to linearizable reads. Ideal

properties for local read are marked in green. See §4.1.2 for a walkthrough of each protocol.

Leader Leases [63] are a commonly deployed optimization to establish stable leadership.

All nodes grant lease to the most recent leader they are aware of (including self) after

invalidating any old lease given out. If a leader S is holding ⩾m leases, it can safely assert

that it is the only such leader in the cluster, i.e., the stable leader. Therefore, S (and only S)

can reply to read requests locally using the latest committed value, knowing that no newer

values could have been committed.

4.1.2.2 Leaderless Approaches

Leaderless (or multi-leader) protocols distribute the responsibilities of a leader onto all nodes,

improving scalability and latency under wide-area settings by allowing a fast-path quorum

nearer to the clients. However, they are sensitive to command interference and often make

local reads infeasible without degrading back to a leader-based protocol.

Mencius [244] assigns the leader role in Round-Robin order across nodes based on slot

index. This mainly benefits scalability.

EPaxos [253, 333] exploits the idea of inter-command commutativity and dependencies

fromGeneralized Paxos [195] and allows any node to act as the command leader for nearby

clients. Nodes attach to each command its dependency set; without concurrent conflicting

proposals, consensus can be reached on the fast path of PreAccepts by a (super-)majority

quorum. Conflicts in proposed dependencies require a second phase to resolve. Local

reads are inherently hard to achieve in such a protocol without degrading to a leader-based

protocol on keys of interest [333].

64

SwiftPaxos [302] builds upon EPaxos and improves its slow path to 1.5 RTTs (vs. 2 RTTs)

by re-introducing a dictating leader in the slow phase.

PQR [67, 124] applies EPaxos-like leaderless optimization to only reads and not writes.

Clients broadcast read requests directly to the nearest majority of servers. If all replies

contain the same latest-seen value, all in committed status, then this value must be a valid

linearizable read result. Otherwise, the client starts a repeated rinse phase, retrying on

arbitrary servers until the value becomes committed.

4.1.2.3 Enhanced Read Leases

Several works explored enhancements to read leases beyond stable leadership, enabling local

reads in a broader scope.

Megastore [28] is a database storage layer that grants read leases to all replicas by a

standalone coordinator. These leases carry the promise of not permitting any writes to

covered keys. When writes arrive, leases are actively revoked (requiring an extra round-

trip to all replicas) and local reads at followers are disabled until leases are re-granted.

Megastore leases cover either all replicas or none; they also require external coordination

and experience long downtimes during concurrent writes.

Quorum Leases [254, 255] extend leases to configurable subsets of replicas. Leases are

granted by replicas themselves, removing the need for an external coordinator. Upon writes,

revocation actions are merged with the natural Accept messages and their replies, avoiding

extra round-trips for writes in failure-free cases. Quorum Leases improve the configurability

and write performance aspects of Megastore, but insufficiencies with reads remain. 1 Lease

actions remain on the critical path, leading to frequent interruptions from writes. 2 When

fast-path local reads fail during lease downtimes, they are redirected to the leader or retried

indefinitely by clients, leading to suboptimal slow-path latency. 3 Assignment of grantees

is configurable but only through normal consensus commands, making failure cases hard to

reason about and implement.

4.1.2.4 With External Coordination

Protocols listed below are notable examples that assume external coordination.

65

Hermes [171] is a primary-backup replication protocol inspired by cache coherence pro-

tocols. It allows reads to be completed by individual nodes assuming that writes reach all

nodes and are resolved synchronously with respect to each other (similar to CPU shared

cache invalidation). Hermes inherits its architectural assumption from Vertical Paxos [202],

requiring an external membership manager for reconfigurations upon failures.

Pando [338] is a WAN-aware, erasure-coded protocol that emphasizes cost efficiency. It

allows statically tunable read-write quorums, which are configurable ahead-of-time before

deployment. It assumes a network topology with frontends and relies on an external service

for membership management.

4.1.3 Summary of Goals

After reviewing existing solutions, we summarize the desired properties of a linearizable

read protocol as our design goals:

• Self-contained: no dependencies on external metadata oracle.

• Local reads anywhere: enable local linearizable reads at arbitrary, runtime-configurable

subsets of replicas as appropriate.

• Local reads at any time: keep reads localized during concurrent interfering writes,

minimizing degradation time and maintaining good slow-case latency.

• Configurable: tunable dynamically at runtime and against arbitrary ranges of keys.

• Non-intrusive: designed atop classic consensus, introducing marginal performance

impacts on writes and retaining availability under any minority number of failures.

Via these goals, Bodega delivers superior performance compared to aforementioned ap-

proaches. We will show them both theoretically (§4.3) and experimentally (§4.5).

4.2 Design

In this section, we present the design of Bodega, an always-local linearizable read protocol.

66

Design Outline. We derive a complete design in three steps: 1 define the notion of roster,

2 design optimal normal case operations, assuming replicas agree on the same stable roster,

and 3 introduce all-to-all roster leases, the enabler behind the fault-resilient agreement on

the roster.

For clarity, we adhere to Paxos-style terminology throughout this chapter. All the

optimizations are applicable to Raft-style protocols due to their fundamental duality [347].

4.2.1 The Roster

We start by introducing the core concepts behind Bodega: responder status and the roster.

A node is a responder for a key if it is expected to serve read requests on that key locally

without actively contacting other nodes. A roster is the collection of each node’s desired

capabilities at a certain time; specifically, it dictates:

• The node ID of the current leader node.

• For each (range of) key(s): the node IDs of its responders.

The roster is a generalization of leadership from classic protocols: besides the one special

leader role, we now have special responder roles for selected keys. The leader can be

implicitly treated as a responder for all keys, and different keys can additionally mark

different nodes as responders.

The optimal choice of responders for each key depends on various factors: 1 client

locations and proximity, 2 workload read-heaviness and skewness, and 3 cluster topology

and status (e.g., if a node is exceptionally distant or lagging). This work focuses on the

mechanisms supporting the roster rather than the policies for tuning it; we recognize that

the latter could be an intriguing study on its own.

The system starts from an empty roster with a null leader ID and an empty responder

set for the entire keyspace. Every newly-proposed roster is associated with (and identified

by) a unique ballot number, forming a ⟨bal, ros⟩ pair, where bal is the ballot number formed

by concatenating a monotonically increasing integer b with the proposing node’s ID r to

ensure uniqueness. Rosters of different ballots may contain the same content, but are still

considered different rosters. Roster changes may happen due to explicit requests by users,

automatic tuning from statistics, or mandatorily in reaction to failures.

67

write

local read

near S4

near S3
hold
until

S0
S1

S4

S3S2
near S1

no

local
read

Figure 4.4: Normal case operations of Bodega. Assume that all nodes agree on the same

example roster: S0 is the leader (golden crown), and S0,2,3,4 are responders for a key (red-white

star) while S1 is not. In the example shown, S3 has not committed the latest write, while S4 has

committed that write. See §4.2.2.

4.2.2 Normal Case Operations

We first describe normal case operations, using Figure 4.4 as a demonstrative example. In a

5-node cluster, S0 is the leader (depicted by the crown) and S2,3,4 are additional responders

(depicted by the red star symbols) for a specific key k. Assume, in this section, that this is

the latest roster all nodes know and consider stable according to leases. Nodes use their

known roster to assure that writes to k would never commit before reaching all of its active

responders. A responder can therefore serve reads directly if it knows the latest value of k

will commit; when unsure, optimizations exist, as we will present next.

4.2.2.1 Writes

Writes follow the same leader-based process as in MultiPaxos (Figure 4.4 blue arrows), except

for an updated commit condition. Normally, a write to key k can bemarked as committed and

acknowledged once ⩾m AcceptReplys are received. We impose an additional constraint

that it must also have received replies from all the responders for k, according to the leader’s

current roster.

Requiring a write quorum that covers all responders is an unavoidable penalty that any

local linearizable read algorithm must pay. Luckily, without far-off responders, this penalty

is marginal as wide-area consensus systems usually already prefer a leader with relatively

uniform distances to other replicas, and the write must anyway reach a majority. This aligns

with previous observations [255] and our evaluation results (§4.5). Distant responders could

still be appropriate for certain workloads, depending on users’ bias on read performance.

68

4.2.2.2 Reads

Clients send read requests on key k to the closest responder server for k (Figure 4 green

arrows). It is common for clients of wide-area systems to be co-located with some replica;

for example, consensus is usually part of an outer system, e.g., a database, where requests

come directly from participating sites, but this is not a requirement. Servers that expect

read-heavy workloads from nearby clients should, in general, be marked as responders for

the corresponding keys.

When a server S (with a stable roster) takes a read, there are three cases. 1 S is the leader,

in which case S simply finds the highest committed slot in its log that contains a write to k

and returns the value. The leader does not need to worry about in-progress writes [63]. 2

S is neither a leader nor a responder for k (e.g., S1 in Fig. 4.4), in which case S rejects the

read and promptly redirects the client to another server, preferably a close-by responder or

the leader. 3 S is a non-leader responder. In this case, S looks up the highest slot in its log

that contains any write to k. If none found, return null. If the found slot is in committed

status, S immediately replies with the value (e.g., the read at S4 in Fig. 4.4). Otherwise, S

cannot yet determine whether that value will surely commit or will be overwritten due to

impending failures (e.g., the read at S3). Returning this pending value risks linearizability

violation; therefore, S optimistically holds the read.

Optimistic Holding. The holding mechanism is optimistic in that it expects S and its

connection with the leader to remain healthy and for the slot to be committed soon. In

failure-free cases, S may need to wait as long as up to one RTT to be notified that an

interfering write has committed (from when S receives the Accept from the leader and

replies to it, to when S receives the Commit notification), or as short as instantly. Note that

even with a constant stream of writes, held reads will not be blocked indefinitely: they are

released as soon as their associated slot turns committed. The responder does not make any

active communication to query for the commit status.

A responder S optimistically holds a local read by adding it to a pending set attached

to the corresponding slot. Upon receiving the commit notification for a slot, S releases the

pending reads and replies with the committed value. To handle cases where the leader fails

to notify S promptly, clients start an unhold timeout when sending local read requests; if the

timeout is reached, clients proactively issue the same request to another responder or the

leader (with the same req ID, which is safe since reads are idempotent) and use the earliest

69

reply. A good timeout length is longer than the usual RTT between S and the current leader.

Early Accept Notifications. While optimistic holding already delivers outstanding local

read performance, Bodega introduces a further optimization that reduces average holding

time: followers not only reply to Accepts on key k to the leader, but also broadcast notifica-

tions to k’s responders. Once a responder S has receivedm notifications (counting self), it

can assert that a pending slot will surely commit even across minority failures. A similar

optimization exists for BFT writes [60]; Bodega applies it to local reads and allows selective

notifications to only k’s responders. On average, this halves the expected holding time for

interfered local reads.

4.2.3 Roster Leases

So far, we have assumed a consistent roster across the cluster without showing how it is

achieved. The idea is to exchange roster leases in an all-to-all manner, between at least

a majority of nodes and all nodes that may be responders for some key. When holding a

majority number of leases, responders know that the roster is stable, and the leader (as an

implicit responder) also knows the identity of all responders and will not commit writes

without notifying them.

Lease Primitive Leader Leases Roster Leases

Pattern one-to-one all-to-one all-to-all

Safe #grantors 1 m m

Must to whom - leader responders

The table above summarizes the key characteristics of lease mechanisms. We present how

Bodega deploys off-the-critical-path roster leases to establish a stable roster elegantly and

efficiently. We use Figure 4.5 as an illustration when needed.

Lease-related States. Besides the SMR log and the ⟨bal, ros⟩ pair, we let every node S

act as both a lease grantor and a grantee, effectively creating an all-to-all lease granting

pattern (recall §4.1.1 for how a standard one-to-one lease grant primitive works). This means

S maintains the following additional data structures: 1 two lists of grantor-side timers

Tguarding, p and Tendowing, p per peer node P; 2 two corresponding sets {}guarding and {}endowing

for tracking which peers are S currently guarding/endowing to; 3 two lists of grantee-side

timers Tguarded, p and Tendowed, p per peer P; 4 two sets {}guarded and {}endowed for tracking the

70

S4
#20

x4

S3
#20

x4
S2
#32

x1

S1
#11

x1
S0
#20

x4

#20
#32

near S1

near S2

< 3

near S4

near S3

thresh#20
unreached

Figure 4.5: All-to-all roster leases demonstrated. In the example shown, S0,3,4 are each

holding ⩾ majority grants of roster #20; among them, S4 has not yet seen all the slots up to

#20’s safety threshold. S1 is disconnected from the rest and is stuck with an older roster of #11.

S2 is just initiating a new roster of #32. See §4.2.3.

guards/endowments S currently holds; 5 a list of safety slot numbers threshp, that specifies

the highest slot S has accepted from each peer P.

4.2.3.1 Roster Leases Activation

We first describe how roster leases are activated. Consider node X wants to announce a

new roster ros
′
; this could be due to, e.g., stepping up as new leader (by setting X as the

leader in ros
′
) or other reasons covered in §4.2.3.2. X composes a unique, higher ballot bal

′

by concatenating (b+1) with its node ID, where b is the higher part of the current bal. X

then broadcasts the ⟨bal ′, ros ′⟩ pair to all nodes including self.

For any node S upon receiving a ballot bal
′
higher than ever seen, it first ensures all old

leases are safely revoked or expired (discussed later in §4.2.3.2). Then, it moves on to ⟨bal ′,
ros
′⟩ and starts a initiate_leases(bal ′) procedure, where it begins granting leases for

the new roster to all peers asynchronously in parallel.

To each peer P, the procedure obeys standard lease granting: S and P first complete the

guard phase, exchanging a sequence of Guard, GuardReply, Renew, and RenewReply, and
utilizing proper timers along the way. If all goes well, S should have P in its {}endowing and

have Tendowing properly extended; it repeats renewals periodically to keep the S-to-P lease

refreshed. Similarly, P should have S in its {}endowed and have Tendowed kicked off properly.

Whenever a Tintent, p times out for any intent among the four, the peer is removed from the

corresponding set {}intent, leading to a retry of the guard phase or a proposal of a new roster.

71

After transitioning to ros
′
, if S sees itself being the leader of ros

′
, it conducts the usual

step-up routine of redoing the Prepare phase for non-committed slots of its log.

Stable Condition and Safety Thresholds. As shown in §4.1.1 and above, a node P is

considered granted a lease by S when S ∈ P’s {}endowed set. Assume P itself is always in the

set. The size of this set, |{}endowed|, indicates the number of lease grants P currently holds.

When |{}endowed| ⩾m, then P knows at least a majority number of nodes in the cluster has

the same latest ⟨bal, ros⟩ as P and that at most one such roster exists; this is called the stable

roster of the cluster and is a necessary precondition for all optimizations described in §4.2.2.

For example, in Figure 4.5, the local reads at S1 and S2 are rejected due to an insufficient

lease count.

This condition alone is not enough, though. When a node directly inspects its log

and uses the highest slot index for local reads, it is assuming that its log is up-to-date and

contains all the recently accepted instances; this is normally true, but could be violated

when a fell-behind node joins a new roster. To address this, a node should be informed of

other peer’s acceptance progress when transitioning to a new roster.

We let Guard messages from S to P carry an extra number, which is the highest slot

number that S has ever accepted. P stores the number in its thresh list. A node permits local

reads only if it has committed all the slots up to the m-th smallest slot number in its thresh

list; otherwise, it might not have observed the latest committed writes yet. S4 in Figure 4.5,

for example, has not reached this condition.

In summary, all the stable leader and local read operations of §4.2.2 are preceded by the

following stable condition check:

|{}
endowed

|⩾m (4.1)

∧ ∃ size-m subset E⊆ {}
endowed

:

committed all slots up to threshp,∀p ∈ E

If the check fails, the operation falls back to classic consensus as if it is a write, which does

not require this check.

72

4.2.3.2 Revocation and Expiration

Most roster lease activations happen when there are ongoing old leases in the system.

Broadly speaking, a roster change may be triggered by one of the following reasons.

• Node initiates a new roster in reaction to suspected failures, removing failed nodes

from special responder roles.

• Node autonomously proposes a new, more optimized roster according to collected

workload statistics and hardware conditions.

• Node receives an explicit roster change request from a user.

In either case, before initiate_leases(), a node S always invokes the revoke_leases(bal)
procedure synchronously to ensure that all the leases it is granting or holding with the

older ballot bal are safely revoked and removed. To do so, S clears its {}guarding set and

broadcasts Revoke messages carrying the old ballot. Whenever a node P receives a Revoke
with matching ballot from S, it removes S from the {}guarded and {}endowed sets and replies

with RevokeReply.
S either receives a RevokeReply from P promptly (common fast case) or has to wait for

expiration timeout (failure case), after which it removes P from {}endowing. Note that, unless

failures occur and force a wait on expiration, a roster change completes swiftly within two

message rounds: one for the revocation and the other for the initiation guards.

4.2.3.3 Piggybacking on Heartbeats

Heartbeats are ubiquitous in modern distributed systems; many systems already deploy

all-to-all heartbeats for tasks such as health tracking [96, 155, 253, 287]. This opens the

opportunity to enable roster leases without any common-case overheads, by piggybacking

lease messages onto existing periodic heartbeats. Bodega piggybacks all the Renew and

RenewReply messages onto heartbeats, and uses a proper heartbeat interval thb_send such

that leases are refreshed in time. Heartbeat messages also carry the sender’s ⟨bal, ros⟩ pair
to let receivers discover roster changes.

Each node has per-peer timers Theartbeat, p which are used for detecting failures from

peers; a peer is considered down if no heartbeats were received from it for thb_fail. A rule of

73

thumb for choosing good timeout lengths for a cluster is:

avg. RTT< thb_send≪ thb_fail < tguard = tlease (4.2)

Bodega uses the following defaults for wide-area replication: thb_send = 120ms, thb_fail ≈
1200ms, tguard = tlease = 2500ms.

4.2.4 Summary of the Bodega Algorithm

We provide a complete presentation of the Bodega protocol in Figure 4.6 as a directly

followable implementation guide. The figure lists all actions a node r would take upon

certain conditions, grouped by purposes for clarity: triggers for a new roster, granting

procedure of new roster leases, heartbeats and lease renewals, handling client write

requests, handling client read requests. The description is based on a regular key-value

store API. Nodes implicitly retransmit non-acked messages. Broadcast message receivers

include the sender itself. Clock drift between nodes is assumed to be bounded by t∆, as is

required by any distributed lease algorithm; clock skews are irrelevant thanks to the lease

Guard messages. The arrows annotate a natural reading order that follows the usual flow of

the protocol.

4.3 Formal Comparison and Proof

For completeness, we give a qualitative comparison across all the notable linearizable read

optimizations (Figure 4.7, Table 4.1), and provide a concise proof of correctness.

4.3.1 Comparison Across Protocols

In Table 4.1, we model the normal-case write and read latency, degraded read latency under

write interference, and degradation period length of related protocols. Cells are shaded

according to example values from the Figure 4.8(b) GEO setting (lighter is better). We also

indicate whether a protocol retains the fault tolerance of classic protocols and whether

it allows tunable rosters. If tunable, we use its most read-optimized roster that tolerates

f= ⌊n
2
⌋ faults. Assume only one interfering write.

74

Relevant

states

on

node r:

SMR log of slots Ballot# & roster: bal ros Heartbeat per-peer timers: T
heartbeat, p

Grantor-side per-peer timers: T
guarding, p T

endowing, p Grantor-side sets: {}
guarding

{}
endowing

Grantee-side per-peer timers: T
guarded, p T

endowed, p Grantee-side sets: {}
guarded

{}
endowed

Grantee-side per-peer safety slot#: threshp Per-slot early AcceptNote markers: {}
accnote, slot

Proactive roster change to ros
′
:

1: let bal be the current ballot

2:announce_roster(bal, ros ′)

Upon T
heartbeat, p timeout:

3: let bal, ros be curr. ballot & roster

4: if p has a special role in ros:

4:1:create new roster copy ros
′

4:2:unmark p in any responder set

4:3: if p was the leader of ros: re-

choose the leader of ros
′

4:4:announce_roster(bal, ros ′)

Do announce_roster(bal, ros ′):
5:compose a unique higher ballot#

bal
′ = (b+1).rID from bal = b._

6:broadcast Heartbeat⟨bal ′, ros ′⟩

Recv Heartbeat⟨bal ′, ros ′⟩ ← p:

7: if bal
′ > current ballot bal:

7:1:revoke_leases(bal)
7:2:update bal & roster to bal

′
, ros

′

7:3:initiate_leases(bal ′)
7:4: if I am the leader of ros

′
: re-

Prepare all in-progress slots

8:refresh hbeat timer Theartbeat, p

Repeat every heartbeat interval:

9: let bal, ros be curr. ballot & roster

10:broadcast Heartbeat⟨bal, ros⟩
11: for every p ∈ {}endowing:

11:1:extd. Tendowing, p by tlease+t∆

11:2:piggyback lease Renew⟨bal⟩
12: for every p ∈ {}endowed with un-

replied Renew⟨bal⟩s:
12:1:piggyback RenewReply⟨bal⟩

Recv RenewReply⟨bal⟩ ← p:

13: if bal ̸= current ballot: ignore

14: if p in {}endowing:

14:1:set Tendowing, p by tlease+t∆

Do revoke_leases(bal):

15:clear {}guarding to empty set

16:broadcast lease Revoke⟨bal⟩
17: for every p ∈ {}endowing, wait until:

17:1:either RevokeReply⟨bal⟩ is re-
ceived from p successfully, or

17:2:p gets removed from {}endowing

Recv Revoke⟨bal⟩ ← p:

18: if bal ⩾ current ballot:

18:1:rmv. p from {}guarded, {}endowed

19:reply RevokeReply⟨bal⟩ to p

Do initiate_leases(bal):
20: for every node p:
20:1:set Tguarding, p by tguard+t∆

20:2:add p to {}guarding

21:bcast Guard⟨bal, thresh⟩; thresh is

the highest slot# I ever accepted

22: for every p ∈ {}guarding, async.:

22:1:wait for GuardReply⟨bal⟩
22:2: if p has been removed from

{}guarding, retry this step for p

22:3:move p into {}endowing

22:4:Tendowing, p by tguard+tlease+t∆

Recv Guard⟨bal, thresh⟩ ← p:

23: if bal ̸= current ballot: ignore

24: if p /∈ {}guarded and /∈ {}endowed:

24:1:add p to {}guarded, and record

threshp for later use in checks

24:2:set Tguarded, p by tguard−t∆

24:3:reply GuardReply⟨bal⟩ to p

Recv Renew⟨bal⟩ ← p:

25: if bal ̸= current ballot: ignore

26: (also ignore duplicate Renews, e.g.,
through seq# or unique msg IDs)

27: if p in {}guarded:

27:1:move p into to {}endowed

28: if p in {}endowed:

28:1:set Tendowed, p by tlease−t∆

Upon any lease Tintent, p timeout:

29:remove p from the corresponding

status set {}intent

Handle Write⟨k, v⟩ req← client:

30: let bal, ros be curr. ballot & roster

31: if I am leader: proceed to Accept
phase at next available slot; just

normal consensus except:

31:1:commit only after all respon-

ders of k in ros have replied

31:2:nodes bcast AcceptNote⟨bal,
slot⟩ to responders of k, besides
replying back to leader

32:else: redirect client to leader

Recv AcceptNote⟨bal, slot⟩ ← p:

33: if bal = ballot prepared at slot:

33:1:add p to {}
accnote, slot

Handle Read⟨k⟩ req← client:

34: if |{}endowed| <m, or if I am not a

responder of k in curr. roster ros:

34:1: if I am (unstable) leader: pro-

ceed to Accept phase as normal

34:2:else: redirect client to leader

35:else if there is no size-m subset

of {}endowed where, for all p in it, I

committed all slots up to threshp:

35:1: I probably just joined, hold until

true or redirect to leader

36:else if I am the (stable) leader:

36:1:reply w/ k’s last committed val

37:else, (I am a non-leader responder):

37:1:responder_read(k)

Do responder_read(k):

38:find highest slotk containing write

39: if slotk committed, or accepted at

current bal and |{}
accnote, slotk

|⩾m:

39:1:reply with the value in slotk

40:else, (not sure if the latest write

would commit or not):

40:1:hold till the above becomes true

40:2:redirect after tunhold timeout

Figure 4.6: Complete Summary of the Bodega algorithm. See §4.2.4 for description.

75

The following symbols are used to model the performance metrics. l: RTT between

client and the leader, c: RTT between client and its nearest server,m: time to establish a

simple majority quorum (i.e., to reach majority nodes from some server and receive replies),

M: time to establish a super majority quorum (as in EPaxos [253]), N: time to form a

quorum composed of all nodes. For an average client in typical WAN-scale settings, one

should expect c≪ l≈m<M<N.

Most results are derived naturally from Figure 4.7, §4.1.2, and §4.2.1-4.2.3. We provide

supplementary explanations. PQR (+ Ldr Ls) is a straightforward variant of PQR combined

with Leader Leases; if a near quorum read attempt fails, the client contacts the stable leader

directly, bounding slow-path latency by c+m+ l. We assume Quorum Leases always

incorporate Leader Leases. Qrm Ls (passive) is a variant of Quorum Leases where we

deliberately let grantees keep the leases upon accept to show the upper bound of Quorum

Leases performance, saving one re-granting RTT from the degradation time. Doing so risks

blocking fault-induced roster change commands as described in §4.2.3. Hermes uses primary-

backup broadcast and thus requires external coordination for fault tolerance; Megastore is

S0

S4

S1
S2
S3

W(k)

R(k)

Acc AccRep

✓

(a) Leader Leases

S0

S4

S1
S2
S3

W(k)

✓

Acc AccRep

PreAcc

Acc

AccRep

R(k)

(b) EPaxos

S0

S4

S1
S2
S3

W(k)

R(k)

Acc AccRep

✓

Rinse

Commit

(c) PQR

S0

S4

S1
S2
S3

W(k)

R(k)

Acc
AccRep

✓

Commit

(Revoke)

R(k)

(Re-grant)

R(k)？ ？

(d) Quorum Leases

S0

S4

S1
S2
S3

W(k)

R(k)

Acc AccRep

✓

AccNote

(e) Bodega

Figure 4.7: Timeline comparison across protocols on the handling of linearizable

reads in the presence of an interfering write. See §4.1.2 and 4.3.1 for the associated explanation.

76

Protocol WWW RRR R∗R∗R∗ D∗D∗D∗

Leader Ls l+m l l - #

EPaxos c+M c+M c+M+m M #

Hermes c+N c c ∼ c+ N
2

N
2

G# #

PQR l+m c+m c+m∗ rinses m #

PQR (+ Ldr Ls) l+m c+m c+m+ l m #

Pando c+m c+m c+N N G# G#

Megastore l+2N c c+ l 2N G# #

Quorum Ls l+N c c+ l 2N

Qrm Ls (passive) l+N c c+ l N G# G#

Bodega l+N c c ∼ c+ m
2

m
2

Table 4.1: Qualitative comparison across protocols assuming the most read-optimized

roster configuration of each protocol. Metrics areWWW: write latency; RRR: read latency if quiescent;

R∗R∗R∗: read latency if there is an interfering write; D∗D∗D∗: read performance degradation period

length. : fault tolerance (without external oracle). : allows tunable rosters. See §4.3.1 for

the explanation of metric values. Cells are shaded darker if their example numeric values are

higher using Fig.4.8(b) GEO setting numbers.

similar. Pando uses a pre-deployment planner to dictate erasure coding configuration and

quorum composition. Bodega achieves the best across all metrics and, at the same time,

retains fault tolerance and configurability.

4.3.2 Proof

We provide a proof of Bodega’s local read linearizability and write liveness, assuming

well-established results of the safety and liveness of leases [120]. For linearizability, only

locally-served reads need proof, as Bodega behaves the same as classic consensus otherwise.

Linearizability. A local read R served by server S observes any write W acknowledged

cluster-wise before R was issued.

Proof. R is served locally only if S is a responder that passes the stable roster check (4.1).

Let the stable roster be ⟨bal, ros⟩.

77

Case #1: W was committed on a ballot > bal. It is impossible because the latest ballot on at

least a majority of nodes is bal.

Case #2: W was committed on a ballot = bal. By the injective ballot-roster mapping and

the commit condition of writes, S must be inW’s write quorum and haveW in its log.

Case #3: W was committed on a ballot < bal. By majority intersection, for any size-m

subset E ∈ S’s {}endowed, at least one of the lease grantors P ∈ E acceptedW at its committed

slot x before granting to S. This implies threshp ⩾ x.

The above three cases are exhaustive.

Liveness ofWrites. A writeW can always eventually make progress if retried on a majority

group G of healthy servers.

Proof. By the property of leases, after old leases expire, a roster change can eventually be

made on all servers ∈G to restrict the leader and all the responders to be contained in G.

Then, normal consensus applies.

4.4 Implementation

We present details of our practical Bodega implementation.

The Summerset Replicated KV-store. We develop Summerset, a distributed, replicated,

protocol-generic key-value store. Summerset is written in async Rust/tokio using a lock-less

architecture and serves as a fair codebase for evaluating consensus and replication protocols.

We do not stack our implementation on top of previous research codebases [101, 253] due

to their lack of extensibility and noticeable language runtime overheads. We describe the

Summerset codebase in detail in Chapter 5.

The codebase has 13.6k lines of infrastructure code and includes five protocols of interest

(with individual lines of code reported): MultiPaxos with Leader Leases (2.5k), EPaxos (3.1k),

PQR and variant (2.8k), Quorum Leases and variant (3.2k), and Bodega (3.0k). All protocol

implementations have passed extensive unit tests and fuzz tests.

78

4.4.1 Smart Roster Coverage

In cases where users desire local reads but cannot observe workload patterns externally,

Bodega servers can collect statistics and automatically propose roster changes to mark

servers as responders for proper keys. Our default implementation traces per-key read/write

request counts grouped by clients’ preferred nearby server IDs. For a key, if > 95% requests

are reads at a periodic check, then servers near > 20% of the reads are added as responders.

More sophisticated strategies exist; for example, straggler detection can help remove fail-

slow nodes from responders promptly [154, 169].

4.4.2 Lightweight Heartbeats

In §4.2.3, we described roster leases as if all heartbeats carry the complete roster data

structure. In practice, rosters with fine-grained key ranges can get large (tens of KBs).

Luckily, most heartbeats in Bodega are lightweight heartbeats: the sender puts in only

the ballot number to indicate that the roster has not changed from previous heartbeats.

Full-sized heartbeats are sent when changes occur.

Similarly, clients may request a server to send the roster along with a command reply,

and then cache this roster as a heuristic for choosing the best responder for local reads.

4.4.3 Other Practical Details

We list miscellaneous details that are common features to all protocols.

Request Batching. As is common practice, Bodega deploys request batching at servers (at

1 ms intervals) for non-local-read commands. Each log slot contains a batch of requests and

the commit condition is checked for all writes contained.

Snapshots. Bodega servers take periodic snapshots of the executed prefix of the log [271].

Local reads past the beginning of the truncated log look up the latest snapshot directly.

Membership Management. Membership changes are handled identically to reconfigura-

tions in other protocols [63, 253, 268], just with an extra step of proposing and stabilizing an

empty roster with no responders ahead of the change.

79

4.5 Evaluation

We do comprehensive evaluations to answer these questions:

• How does Bodega perform compared to other protocols under microbenchmarks of

various write intensities on different cluster settings? We show that Bodega delivers

up to 65x better throughput and lower latency versus Leader Leases, and up to 18x

versus Quorum Leases, while maintaining similar write performance. (§4.5.1)

• What do the end-to-end request latency distributions look like? We show that Bodega

provides single-digit milliseconds latency at responders, outperforming all existing

protocols, and exhibits the same latency as Quorum Leases otherwise. (§4.5.2)

• What are the impacts of write interference, and how does performance change with

varying write ratios and value sizes? We show that Bodega’s reads experience much

smaller interference from writes compared to Quorum Leases, and produce a steady

throughput gain across various write ratios and sizes. (§4.5.2)

• How do different types of roster changes impact performance? We demonstrate that

a responder failure requires a lease timeout, while a regular roster change finishes in

just ~75 milliseconds. (§4.5.3)

• How does Bodega behave with varying roster composition, i.e., different choices of

responders and different coverages of keys? We show that higher coverage offers

multiplicatively faster reads and slightly slower writes. (§4.5.3)

• How does Bodega compare with two production-ready coordination services, etcd

and ZooKeeper, under YCSB benchmarks? We show that Bodega’s performance is on

par with sequentially-consistent etcd and ZooKeeper deployments. (§4.5.5)

Experimental Setup. All experiments are run on two CloudLab [90] clusters, hereafter

called WAN and GEO, shown in Figure 4.8. Most experiments are run on WAN, a wide-area

cluster spanning five CloudLab sites with nodes of similar hardware types: WI-c220g5,
UT-xl170, SC-c6320, MA-rs620, and APT-r320. §4.5.1 also includes a GEO cluster of five

c220g5 nodes emulated with Google Cloud RTTs reported in previous work [333] using

Linux kernel netem [224]. All nodes’ public NICs have 1Gbps bandwidth. In experiments

80

23

2832

39

402

59

51

60
52

SC

MAWI

UT

APT

(a)WAN (CloudLab sites)

129

77137

221

91
59

64

26
98

146

VA

EUOR

CA

JP

(b) GEO (GCP numbers [333], emulated)

Figure 4.8: Evaluation environment settings. Orange denotes designated leader node and

Red denotes other responders, if relevant. Edges mark per-pair RTT in milliseconds. See §4.5.

where the responder roles are controlled, the orange-colored site in Figure 4.8 denotes the

leader and the red-colored ones denote responders.

Clients are launched on machines evenly distributed across all datacenters, each marking

the nearby server as their preferred server for local reads when eligible. All machines run

Linux kernel v6.1.64 and pin processes to disjoint cores. All protocols use 120 ms heartbeat

interval, 1200±300 ms randomized heartbeat timeout, and 2500±100 ms lease expiration

(if applicable). All protocols send immediate Commit notifications: whenever a commit

decision is made, Commits are broadcast to other servers promptly.

4.5.1 Normal Case Performance

We run microbenchmarks on both cluster settings and compare the following linearizable

read protocols: ordinary MultiPaxos, Leader Leases, EPaxos, PQR, PQR (+ Leader Leases)

variant, Quorum Leases, Quorum Leases (passive) variant, and Bodega. We spawn 50

closed-loop clients with 10 near each server and let all clients run a microbenchmark with

1k 8B-size keys and 128B values; keys are chosen uniformly. We test three write percentages

in the workload mix: 0%, 1%, and 10%. Figure 4.9 shows the normalized throughput (w.r.t.

Leader Leases), avg. read latency, and avg. write latency perceived by clients at different

locations. Leader and responders (of the full key range) are set as depicted in Figure 4.8.

The red dashed lines indicate baseline Leader Leases throughput, and the top Ts on latency

bars indicate P99 latency.

The results yield the following observations. First, except for a few datapoints (which

we soon discuss), both GEO and WAN clusters exhibit similar performance patterns, just

with different absolute values due to RTT differences.

Second, for writes, all protocols except EPaxos exhibit similar performance. Quorum

81

Dumb

No
rm

 T
pu

t
(to

 L
dr

 L
s)

Dumb

Re
ad

 L
at

(m
s)

Dumb

W
rit

e
La

t
(m

s)

VA OR/CA EU JP

1x
2x
3x

VA OR/CA EU JP
0

100
200

VA OR/CA EU JP
0

100
200

(a) GEO, 10% writes

VA OR/CA EU JP
1x
9x

18x

VA OR/CA EU JP
0

100
200

VA OR/CA EU JP
0

100
200

(b) GEO, 1% writes

Dumb

No
rm

 T
pu

t
(to

 L
dr

 L
s)

Dumb

Re
ad

 L
at

(m
s)

Dumb VA OR/CA/EU JP

VA OR/CA/EU JP

1x

65x ~ ~~~

VA OR/CA/EU JP
0

100
200

(c) GEO, 0% write (read-only)

WI MA/UT/APT SC

WI MA/UT/APT SC

1x

31x
~ ~~~

WI MA/UT/APT SC
0

40
80

(d)WAN, 0% write (read-only)

MultiPaxos
Leader Leases
EPaxos
PQR
PQR (+ Ldr Ls)
Quorum Leases
Qrm Ls (passive)
Bodega

Dumb

No
rm

 T
pu

t
(to

 L
dr

 L
s)

Dumb

Re
ad

 L
at

(m
s)

Dumb

W
rit

e
La

t
(m

s)

WI MA UT/APT SC

1x
2x

4x

WI MA UT/APT SC
0

40
80

WI MA UT/APT SC
0

40
80

(e)WAN, 10% writes

WI MA UT/APT SC
1x
8x

16x

WI MA UT/APT SC
0

40
80

WI MA UT/APT SC
0

40
80

(f) WAN, 1% writes

Figure 4.9: Normalized throughput and read/write latency across different client

locations with different write intensities in the workload. Top row is the GEO setting, with

10% writes on the left and 1% writes on the right. Bottom row is the WAN setting, also with 10%

writes on the left and 1% writes on the right. Middle row contains the 0% write (i.e., read-only

workload) results of both GEO and WAN settings. See §4.5.1.

82

Leases and Bodega have slightly higher write latency due to the requirement of writes

reaching responders; this explains the small throughput gap between them and Leader

Leases for near-leader clients with 10% writes. EPaxos delivers better average (but not P99)

write latency due to its leaderless write protocol design.

Third, we observe coherent patterns for read performance. 1 Compared to ordinary

MultiPaxos, Leader Leases cut read latency for near-leader clients to nearly zero, but do not

help other clients as much; they still pay an RTT to the leader for reads. 2 In nearly all

cases, PQR (and its Leader Leases variant) show worse (or identical) performance compared

to Leader Leases. The only exception is in the GEO, 0% writes setting for the JP clients; they

are so far away from the leader that a nearer majority quorum actually helps, letting them

outperform local read protocols (since JP is not marked as a responder). 3 EPaxos has similar

read performance as PQR butwith higher P99 latencywhen there are writes. 4 BothQuorum

Leases variants and Bodega show the same performance as Leader Leases for clients near

the leader or a non-responder. 5 Quorum Leases and Bodega both deliver extraordinary

read performance for clients near responders when with 0% writes. 6 Bodega sustains this

read performance advantage and keeps read latency close to zero for higher write intensities.

In contrast, Quorum Leases performance quickly drops and almost degrades back to Leader

Leases for 10% writes. This shows the Bodega’s resilience to write interference, which is a

crucial advantage over previous approaches under practical workloads.

4.5.2 Detailed Performance Anatomy

We conduct a closer performance study across various dimensions.

Latency CDFs. We collect request latency CDFs across all 50 clients of the WAN setting

(Fig.4.9(e)-4.9(d)) and plot them in Figure 4.10. Results are filtered to show a single key for a

clean pattern. Each site contributes an equal 20% of datapoints.

We make four observations. 1 Write latencies across all workloads are similar and are

presented as one Figure 4.10(d). Quorum Leases and Bodega show slightly higher write

latencies in favor of responder local reads, while EPaxos delivers the same level of latencies

as its reads due to its leaderless design. These results align with §4.5.1. 2 At 0% writes, all

protocols deliver a read performance close to their theoretical best, though a few outlier

datapoints remain. 3 At 1% writes, slight write interference occurs. Quorum Leases reads

deviate from Bodega, with the passive variant delivering roughly half the latency of the

83

Dumb

CD
F

0 25 50 75 100
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

(a) Reads w/ 10% writes Dumb

CD
F

0 20 40 60
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

(b) Reads w/ 1% writes

Dumb

CD
F

0 20 40 60 80
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

(c) Reads w/ 0% writes Dumb

CD
F

0 20 40 60 80
Latency (ms)

0.0
0.2
0.4
0.6
0.8
1.0

(d)Writes

Bodega
Qrm Ls (passive)
Quorum Leases
PQR (+ Ldr Ls)
PQR
EPaxos
Leader Leases
MultiPaxos

Figure 4.10: Latency CDFs of end-to-end client requests in the WAN setting across

different write intensities, focusing on one specific key. See §4.5.2.

original variant. 4 At 10% writes, differences in read latency distributions are the most

obvious. MultiPaxos clients’ read latency clearly correlates with their distance to the leader;

Leader Leases are similar but with a majority-quorum latency subtracted. PQR and EPaxos

exhibit suboptimal latency and have high tail latency of up to 100 ms for a read; this is

due to the need for conflict resolution. Quorum Leases variants both degrade to Leader

Leases. Bodega delivers outstanding local read performance as expected (except for the

20% non-local SC clients).

Visualizing Write Interference. We use a similar setting to the read-only workload in

§4.5.1 on the WAN cluster, but this time with open-loop clients, each sending reads at a

rate of 400 reqs/sec to a key. At ~15 secs, we let one client issue a write command to the

key. We monitor the average read latency across the three non-leader responders for the

local read protocol variants, and plot them over a time axis in Figure 4.11. We see that the

write introduces an interruption to local reads for all three protocols. Both Quorum Leases

variants degrade to 40 ms read latency, which is the average RTT to the stable leader; the

84

0 25 50 75 100 125 150 175
Time (ms)

0

20

40

Re
ad

 L
at

 (m
s) write

arrives
Quorum Leases
Qrm Ls (passive)
Bodega

Figure 4.11: Read latency after an interfering write. Each datapoint represents a read

request finishing at the time of its x-value with a latency of its y-value. See §4.5.2.

1 2 5 10 25 50
Write ratio% (log scale)

0
2
4

Tp
ut

 (k
 re

qs
/s

) Bodega
Qrm Ls (passive)
Quorum Leases
PQR (+ Ldr Ls)

Figure 4.12: Throughput vs. write ratio.

x-axis is log-scale (same for Fig. 4.13). See §4.5.2.

32 128 512 2K 8K
Value size (log scale)

0

1

2

Tp
ut

 (k
 re

qs
/s

)

Figure 4.13: Throughput vs.

payload size. See §4.5.2.

passive variant shows a shorter degradation duration. Bodega 1 shortens the degradation

time to ~25 ms; recall Table 4.1, this is ~
m
2
, and 2 allows all reads to be held locally and

released at the end of the degradation, leading to better latencies also for disrupted reads.

Varying Write Ratios. We take the same setup as §4.5.1 on the WAN cluster and vary the

write ratios of the workload mix from 1% to 50% while fixing value size to 128B. We report

the aggregate throughput in Figure 4.12. All protocols except the PQR (+ Ldr Ls) baseline

show a trend of lower throughput with higher write interference as local reads become less

profitable. The results match Figure 4.9(e)-4.9(f).

Varying Value Sizes. We repeat the same setup as above and vary the value size while

fixing the write ratio at 5%. As expected, Figure 4.13 shows that smaller values have little

impact on performance, but throughput drops with larger values due to slower writes and

larger read results to transfer.

4.5.3 Roster Changes and Composition

We evaluate the duration of roster changes and the impact of their coverage.

RosterChangeDuration. We compare the duration of two different types of roster changes:

85

0 1 2 3 4 5 6 7 8
Time (secs)

0

100

200

La
te

nc
y

(m
s) UT node

fails hb timeout, changing to
new roster (here need to
wait for lease expiration)

fast regular
roster change

Write
Read

Figure 4.14: Failure-triggered vs. fast regular roster change. Each datapoint represents

a request finishing at the time of its x-value with a latency of its y-value. See §4.5.3.

failure-induced changes (where waiting for lease expiration is necessary) vs. regular (where

revocations complete quickly). Regular roster changes finish in just two message rounds,

because it is no more than an all-to-all lease revocation followed by the initiation of new

leases. We create an open-loop client near the WI server and let it issue a 50%-read workload

at a rate of 400 reqs/sec to 1k keys. We plot real-time latencies in Figure 4.14.

At ~800 ms, we crash the UT node, which is one of the responders for the full key range.

Writes are immediately blocked since UT as a responder is unreachable. Reads, however, can

still be served locally without interruption until ~1.1 secs later, when some healthy server

in the cluster raises a heartbeat timeout and initiates a change to a new roster where UT is

removed from all responder roles. Since UT is unresponsive to lease revocations, waiting

2.6 secs for expiration is required, after which normal operations continue.

At ~7.2 secs, we make an explicit roster change request to a server. In contrast to the

failure case, this roster change completes in just ~75 ms, which is ~2x cluster-wise RTTs as

expected (one for Revokes and one for Guards). Impacts on client requests are minor.

Choice of Responders. We run a 10%-write workload on all clients in the WAN setting,

while using an increasing set of responders for all keys; WI node is still the leader. We report

the cluster-wide average read/write latency and their standard deviation in Figure 4.15. With

more nodes added as responders, read latency tends to zero while write latency increases,

revealing the expected tradeoff. This demonstrates the importance of allowing adjustable

rosters to help avoid unnecessary taxes on writes.

Coverage of Keys. We repeat the same experiment, but vary the percentage of local-

read-enabled keys while fixing the choice of responders to Figure 4.8(a). The cluster-wide

average latencies and their standard deviation across the coverage spectrum are plotted in

Figure 4.16. Results show an expected decrease in read latency and a corresponding increase

86

WI +MA +SC +APT +UT
Responders Set

0
20
40
60
80

La
te

nc
y

(m
s) Write Read

Figure 4.15: Latency vs. increasing

coverage of responders. See §4.5.3.

0% 20% 40% 60% 80% 100%
Coverage of Keys

0

25

50

La
te

nc
y

(m
s)

Write
Read

Figure 4.16: Latency vs. percentage of

keys covered by the roster. See §4.5.3.

1 2 3 4 5
Number of Roster-Covered Replicas

0.0

0.5

1.0

1.5

2.0

Th
ro

ug
hp

ut
 (k

 re
qs

/s
)

Leader Leases (no failures)
Leader Leases (with failures)
Bodega (no failures)
Bodega (with failures)

Figure 4.17: Throughput vs. number of responders with and without failures (by

simulation). Results collected from simulation with constant node failure rate. See §4.5.4.

in write latency as local reads are enabled on more keys. This implies the general strategy

of enabling local reads for read-heavy keys while avoiding local reads for write-heavy keys.

4.5.4 Overall Impact of Failures (Simulation)

To demonstrate the long-term impact of failures on Bodega’s performance, we run a

timeslice-based Monte Carlo simulation to show the overall throughput versus the number

of responders with and without node failures involved. This simulation extends the roster

change evaluation of Figure 4.14 and helps justify that Bodega sustains a performance

advantage even under constant, frequent failures.

We use the 10%-writes throughput values measured in Figure 4.9(e) and 4.12 as the

failure-free throughputs of Bodega and LeaderLeases. We simulate a 5-node cluster where

each node may fail independently at an exaggerated failure probability of 0.5% every second

– much larger than the typical ~2% annual failure rate of cloud servers – and may recover

with a 1% probability. We conduct 5 rounds of simulations per protocol, with an increasing

set of servers (starting from server 0) allowed to become responders. After any occurrence

87

of responder failure, the cluster delivers 3 seconds of zero throughput to simulate the lease

expiration period; after any recovery of nodes within the set of desired responders, the

cluster delivers 100ms of zero throughput to simulate a proactive roster change. When no

failure/recovery is happening, the cluster delivers a throughput according to the current

number of healthy responders. Each simulation runs at 10ms timeslices repeated for a total

of 1,000,000 seconds of simulated runtime. Results are presented in Figure 4.17.

We observe that Bodega maintains a throughput gain from responder local reads even

at this exaggerated rate and can keep delivering over 2x throughput than LeaderLeases

when all nodes are allowed to be responders. The difference between Bodega’s fault-free

and faulty throughput is larger with a larger set of responders due to more frequent lease

expiration; however, this does not negate the performance gain of Bodega local reads.

4.5.5 Macrobenchmark vs. etcd and ZooKeeper

To evaluate the protocols in a more realistic setup, we compare Summerset protocols with

two widely-used coordination services, etcd [96] and ZooKeeper [155], on the WAN cluster.

We drive all systems with YCSB [74], the standard KV macrobenchmark. Workloads have

the following approximate write ratios (we treat insertions as updates). A: 50% w, B: 5% w,

C: 0% w, D: 5% w, F: 25% w.

YCSB Request Distributions. We use 10k keys and construct two scenarios corresponding

to two request distributions. 1 For the Uniform distribution, clients at all locations choose

keys uniformly randomly across the key space. Since there are no site-specific preferences

for keys, all sites are added as responders for all keys to secure local reads. 2 For Zipfian,

clients at each location choose keys according to a Zipfian-0.99 distribution, skewed towards

different sets of keys at different sites; this creates per-site preferences for keys. We then

add each site as a responder only for its top-20% accessed keys to derive an asymmetric

roster that imposes unnoticeable impacts on write performance.

etcd Modes. We deploy etcd in two modes, both with 120 ms heartbeat intervals. The

default mode showcases a standard implementation of vanilla Raft [271]. The stale mode

turns on the serializable member-local read option for all read requests, delivering sequential

consistency by always serving reads locally with past committed values at any server; this

represents the ideal upper bound for Bodega.

88

DumbNo
rm

 T
pu

t
(to

 P
QR

)

Dumb

Re
ad

 L
at

(m
s)

Dumb

W
rit

e
La

t
(m

s)

A B C D F
1x
2x
4x ~ ~ ~11 15

A B C D F
0

18
36

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
128 56 137 58 137 137 61 133 58

A B C D F
0

60
120

(a) Uniform, full-coverage roster

DumbNo
rm

 T
pu

t
(to

 P
QR

)

Dumb

Re
ad

 L
at

(m
s)

Dumb

W
rit

e
La

t
(m

s)

A B C D F
1x
2x
4x ~ ~ ~11 14

A B C D F
0

18
36

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
128 56 116 58 137 137 63 135 59

A B C D F
0

60
120

(b) Zipfian, top-20%-coverage roster

EPaxos
PQR (+ Ldr Ls)
Qrm Ls
Bodega

etcd (default)
 linearizable
etcd (stale)
 non-linear.

ZK (sync)
 non-linear.
ZK (default)
 non-linear.

Figure 4.18: YCSB workloads on Summerset-impl. protocols, etcd, and ZooKeeper.

Top row is with uniform key distribution and bottom row is with Zipfian-0.99 key distribution.

Workload E is skipped because it emphasizes scans. Note that etcd (stale) and ZooKeeper (both

modes) are non-linearizable. See §4.5.5.

ZooKeeper Modes. Similarly, we deploy ZooKeeper in two modes, though both are non-

linearizable. The default mode is a standard implementation of the ZAB primary-backup

protocol [155] that pushes writes to all servers and serves reads locally from anywhere. The

sync mode is the closest mode to linearizable reads that ZooKeeper clients can get: every

read request is preceded by a sync API call to force flush all the in-progress writes from the

leader to its endpoint server, but all writes that may have completed after the start of the

flush are not guaranteed to be seen by the read.

89

Results. We present the performance results in Figure 4.18, grouped by workload type and

with PQR (+ Ldr Ls) as the normalized throughput baseline. We make the following obser-

vations. 1 Bodega matches (and sometimes surpasses) the performance of sequentially-

consistent default ZooKeeper, and is able to keep up with stale etcd across all workloads.

This illustrates Bodega’s powerful local linearizable read capabilities. The advantage over

ZK is due to avoiding Java runtime overheads. 2 In workload C, both non-linearizable

services deliver ~0.3 ms read latency and over 10x throughput gain, while Bodega and

Quorum Leases deliver ~1.2 ms latency due to the 1 ms request batching applied. 3 EPaxos,

PQR (+ Ldr Ls), Quorum Leases, and Bodega all show similar patterns coherent to §4.5.1.

With no writes (C), both local read protocols deliver excellent performance. With higher

write ratios, Bodega sustains this advantage better than Quorum Leases. 4 Default etcd

and sync ZK have high read latencies of >50 ms because they are classic consensus without

leases. 5 Comparing the Uniform scenario with Zipfian, the only notable difference is that

Bodega exhibits higher write latencies close to ZK in Uniform. This is expected because

Bodega writes need to reach all nodes as they are all responders.

4.6 Supplementary Discussion

In this section, we discuss potential extensions to Bodega and other notable related work.

4.6.1 Potential Extensions

We discuss potential extensions to Bodega and interesting directions for future work.

Partial Network Partitioning. Using heartbeat timeout-based failure detection for leader

step-up is known to risk liveness under partial network partitioning [269], and the same

holds true for roster lease activations. Common techniques such as pre-votes [269] and

transparent re-routing [11] can be deployed to easily eliminate this issue.

Generalization of Roster Leases. We observe that the activation procedure of roster leases

shares similarities with broadcast-based (randomized, coin-flip) consensus [36, 257, 273].

It is a practical application of all-to-all broadcast in a non-adversarial setting for one-off

agreements on the roster. Combined with leases, this technique can be used to establish

fault-tolerant agreement on any general “metadata” that change infrequently, not limited to

90

leadership and assignment of responders as in Bodega. Possible extensions may include

cluster membership, quorum sizes, and node-specific performance and reliability hints.

Bounded Staleness Support. With simple modifications, Bodega can extend beyond

linearizability and support fast local reads that can tolerate (but require) bounded staleness

measured in the maximum version difference with the latest committed write. When a

non-leader responder receives a read that allows up to x versions stale, it can traverse the

tail of its log in reverse and search for at most x occurrences of the key, returning the latest

committed version among them if found.

4.6.2 Notable Related Work

We list out additional notable related work that are not covered in §4.1.

Consensus and Read Optimizations. §4.1.2 and §4.3.1 have covered in detail the most

essential related work, including classic consensus algorithms [192, 193, 204, 268, 269, 271],

leaderless ormulti-leader approaches [9, 67, 95, 171, 195, 196, 244, 253, 302, 333, 338], and read

leases [28, 63, 120, 254, 255, 335]. Flexible quorum sizes are discussed in classic literature [140]

as well as recent proposals such as Flexible Paxos [124, 147, 261, 354]. Optimistic holding

shares similarity to wait-vs.-abort in database concurrency control [133, 181].

Shared Logs and Lazy Ordering for Writes. Shared logs are a common abstraction found

in cloud systems and are usually backed by primary-backup-style protocols [29–32, 53, 87,

230]. CAD [107], Skyros [108], and LazyLog [234] are a series of work on a lazy ordering

optimization for writes and shared log appends. It hides a significant portion of write latency

but could hurt read performance in contended cases.

Synchronized Clocks. Recent works demonstrate production-ready implementations of

synchronized clocks [75, 222] and designs that take advantage of them through timestamp

heuristics [89, 110]. Chandra et al. presented a formal, optimal lease algorithm that assumes

synchronized clocks [43, 64].

91

4.7 Optimistic Connectivity in the Form of

Lease-Protected Roster Composition

To summarize, we present Bodega, a wide-area consensus protocol that enables always-local

linearizable reads anywhere (i.e., at arbitrary responder replicas) at any time (i.e., remains

local under interfering writes, with minimal disruption). Bodega achieves this via introduc-

ing the notion of a roster – a generalized cluster metadata that assigns proper replicas as

responders for proper keys – and deploying novel all-to-all roster leases off the critical path

to establish roster agreement without compromising fault tolerance. Bodega combines opti-

mistic holding with early accept notifications in the normal case to keep reads localized, and

employs smart roster coverage and lightweight heartbeats for practicality. Bodega delivers

extreme linearizable read performance comparable to sequentially-consistent production

systems with negligible overhead.

Similar to Crossword, Bodega is another concrete realization of the optimistic con-

nectivity design principle, albeit with a more sophisticated safety mechanism. Here, the

set of configurations is the set of all possible rosters. For keys that have heavy read traffic

near certain replicas, assigning those replicas as responders in the roster is an optimistic

action, because it pins those replicas in the corresponding keys’ write quorums. When

roster changes are needed for failure handling or performance optimization reasons, the all-

to-all roster leases mechanism assures safe transition between rosters in all circumstances,

providing fault tolerance and adaptability.

Given the continual expansion of the modern cloud, we believe that Bodega is a valuable

step towards performance-optimal wide-area replication for critical workloads.

92

Chapter 5

Summerset Distributed Key-Value Store

Implementation

Designing the appropriate consensus protocol is a vital first step that lays the foundation of

a distributed replication system. However, it does not undermine the equal importance of

implementing the protocol into actual distributed system code. Protocols are designed on

top of well-established abstractions of underlying mechanisms: messaging over the network,

durable storage, timing (for timeouts and leases), state management (KV or other object

types), specialized computation algorithms (such as erasure coding and graph algorithms),

and well-defined failure models (fail-stops, asynchrony, and BFT). It takes great engineering

effort and deep system programming experience to implement these mechanisms over the

general hardware across the cloud.

“Distributed systems are as much an engineering problem as they are a theory problem.”

– Camille Fournier, 2016 [331]

During our research journey on cloud consensus protocols, a unique challenge we faced

was the lack of a compact, expressive, fair, and modern codebase infrastructure for us

to implement and evaluate the protocol ideas on. Previous research prototypes/artifacts

provide a clean and uniform client interface, but only offer abstractions that are tailored to the

specific protocols in question. They usually have sub-optimal code quality and do not utilize

the latest concurrent programming techniques [101, 253, 270]. Deployed systems, on the

other hand, are hyper-optimized to the exact protocol in use with entangled system-specific

93

features, making them very hard to extend to different protocols [96, 155, 177, 290, 339].

To address this issue, we build Summerset, a protocol-generic replicated key-value store,

to serve as the chassis for replication protocol implementation and evaluation. Summerset

targets the following challenges: 1 to build a simple yet expressive replication system

framework that allows different consensus protocols to be implemented on top and evaluated

fairly, 2 to enable concise coding of consensus protocols that capture the essence of their

algorithms, hiding common details in supportive components, and 3 to utilize modern

concurrent programming techniques that deliver good performance.

In previous chapters, we briefly introduced Summerset in §3.3 and §4.4 when describing

the practical aspects of Crossword and Bodega. This chapter details the infrastructural

implementation of the Summerset key-value store codebase. The rest of this chapter is

organized as follows: §5.1 outlines Summerset’s architecture and highlights its protocol-

generic feature. §5.2 expands on notable implementation details. §5.3 enumerates currently

supported protocols and their implementation statistics. Summerset is open-sourced and is

available at https://github.com/josehu07/summerset.

5.1 Protocol-Generic Replication Testbed

Summerset is a distributed, replicated, protocol-generic key-value store written in async

Rust. The system is composed of three types of executables: the manager, servers, and

clients. We describe each of them below.

Summerset Manager is an auxiliary program that is responsible for coordinating the

construction of the key-value (KV) service and for the discovery of server addresses. In

every deployment of the service, there should be exactly one manager node, and the manager

should be the first program launched before any servers and clients. The manager listens

on a globally known port for server and client connections. Server nodes connect to the

manager to register themselves as a KV replica, and to receive updates on the list of peers’

addresses from the manager. Once a sufficient number of servers have registered, the

manager starts accepting client inquiries about server addresses to inform them of where

KV requests should be sent.

The manager is a purely assistive node that does not participate in any of the replication

protocols’ logic. Having a manager helps simplify the procedure of spinning up a replicated

https://github.com/josehu07/summerset

94

Summerset KV

Figure 5.1: Summerset logo.

Protocols

API
（to clients)

State
（in memory）

Storage
（persistent） Network

(to peers)

Figure 5.2: Summerset KV modular architecture.

KV cluster and running clients for experimental purposes. Instead of passing around a long

list of server addresses, all entities in a particular deployment just need to know themanager’s

address and port to make address discovery and initiate their initial mutual connections.

All the later activities, including KV requests and membership reconfigurations (other than

the registration of new nodes), happen completely between the servers and clients.

Summerset Servers are symmetrical multi-threaded replicas of the key-value store. Fig-

ure 5.2 depicts the architecture of each server replica. Servers are launched after the manager,

and expose two different ports, one for internal peer-to-peer replication traffic and the other

for public client-facing traffic. Servers register their names (IDs) and public addresses with

the manager and discover each other’s internal addresses through the manager.

A server node starts with an argument that selects the replication protocol in use (among

available options). §5.2 covers the details of how the protocol implementation and other

different components are modularized within each server executable, but a brief overview is

as follows. After the discovery of peer addresses, the protocol module’s new_and_setup()
function takes over and establishes peer-wise connections as the protocol requires (for

example, forming a chain topology in Chain Replication or an all-to-all topology in most

other protocols). Then, the function initializes any long-running tasks as desired by the

protocol (such as periodic timers). Finally, it invokes the run() function of the module,

which contains an infinite event loop that implements the main logic of the protocol by

listening on various types of events and reacting to them via proper event handlers. At this

point, the server is ready to accept client requests.

Summerset servers are protocol-generic in the sense that different replication protocols

can be used by selecting the appropriate protocol module. In a specific cluster, though, all

95

server replicas must run the same protocol. Common functionalities such as client request

queueing, persistent storage, and network communication are separated out into their own

modules. This allows straightforward implementations of the protocol modules and, more

importantly, fair comparison between protocols that emphasizes their core algorithms rather

than engineering challenges.

Summerset Clients are lightweight executables that issue requests to Summerset servers

and receive responses. Technically, any application can implement its own client-side logic

after importing the Summerset library for the definition of ApiRequest/ApiResponse and

Command/CommandResult types. Nonetheless, we provide a default client implementation

that provide standard features for testing and empirical evaluation.

A client contacts the manager once for the list of registered servers, and connects to one

or more of them based on the selected protocol’s demand. Our default client implementation

is single-threaded and closed-loop; it waits for the response to the ongoing request before

issuing the next request. When a response contains a proactive redirection hint (often

happening in leader-based consensus protocols) or a timeout error, the client may attempt

to reconnect to different server(s), and may re-contact the manager for an updated server

list. Requests that failed due to server overload employ exponential backoff.

Key-Value API. Summerset uses a minimal key-value API between servers and clients,

involving only Get(key) and Put(key, value) commands in most cases. Commands

are defined by the state machine module, so it is possible to implement variants of the

module that provide different command interfaces, as long as the Command struct implements

read_only() and write_key() methods. read_only() indicates whether a command is

read-only, i.e., it only queries and does not modify the state; if so, it returns the key that

the command reads. write_key() is the opposite method that returns the key that the

command touches if it is not read-only. These methods may be useful for optimizations in

certain protocols.

Besides regular key-value requests, clients could also issue special configuration change

requests to actively control the behavior of servers, for example, roster changes in Bodega

(§4.2) or membership reconfigurations [268, 271, 295], if the protocol module in use rec-

ognizes them. Clients send Leave notifications to connected servers when they finish the

workload in error-free cases, to help servers clean up resources promptly.

96

5.2 Implementation Details

We provide additional details on the internal implementation of Summerset servers.

5.2.1 Async Rust Programming Structure

Summerset is built with tokio [213], the asynchronous programming runtime of Rust. The

defining feature of tokio is its user-level concurrency (i.e., green threads) runtime, similar

to Golang’s user-level goroutines. Applications are composed of tasks, which are the unit

of scheduling that run async functions. Tasks can be spawned on the fly, be scheduled

onto any worker thread (i.e., OS-provided thread), and be migrated freely between worker

threads across await points
1
. At the time of writing, the tokio scheduler employs a queue-

based work-stealing implementation assuming cooperative scheduling. Combined with the

memory-safe, thread-safe type system of Rust, tokio applications can be (mostly) bug-free,

resource efficient, while still easy to write. If the application contains no unsafe code and

never misuses interior mutability constructs such as RefCells, it is guaranteed to be free of
memory errors and data races. Note that deadlocks are not statically prevented.

By default, a Summerset server creates a runtime with the number of worker threads

equal to the number of CPU cores reported by nproc. For the best performance, an ideal

application should maintain a reasonable number of tasks that are not too few to make use

of all the worker threads, and not too many to create bottlenecks at the tokio scheduler.

For commodity servers, this roughly means tens to hundreds of tasks, which is the case in

Summerset. All components of Summerset are inherently multi-tasked: there is one task

per client API connection, one or more tasks for state machine execution, multiple tasks for

the storage engine, one or more tasks per network connection to peers, and one task per

timer utility. The protocol module is a single-tasked event loop that calls tokio::select!
repeatedly. Under replication workloads, the bottleneck is always on the event handlers

and, transitively, on one or more of the I/O module tasks, not on the channels that connect

the tasks. We explain more details in the next section.

1
with the exception of tasks marked as blocking by the code, which are long-running, usually

I/O-related tasks that may block on a non-async function call for an extended period of time. These

tasks are recommended to be created via spawn_blocking!, which puts them onto special reserved

threads that never head-of-line block other async tasks by the scheduler.

97

5.2.2 Modularization and Lock-less Channel-based Synchronization

As shown in Figure 5.2, Summerset modularizes common functionalities into modules that

are well-isolated from the main algorithm of the protocol. This is achieved via implementing

common replica functionalities as specific groups of tokio tasks, coordinated through async

channels, a typical form of tokio synchronization primitives.

ComponentModules. The following components are currently modularized in Summerset.

ExternalApi module accepts client connections, listens for requests, batches requests at

regular intervals, and notifies the protocol. StorageHub module waits for durable storage

updates and persists data via an append-only write-ahead log (WAL). TransportHub takes

care of the sending and receiving of server-to-server messages. StateMachine module

executes committed commands and returns uniquely-identified replies. Timers are a special
case of modules. A protocol can maintain multiple timers, each backed by an internal sleeper

task. A timer can be set off, extended, and canceled multiple times.

Channel-based Synchronization. The dominant type of channels in use are multi-

producer single-consumer (mpsc) channels, which allow one or more tasks to produce

data items to a single consumer task. Conversely, there could be multiple mpsc channels in

the reverse direction, each connecting back to a producer task for communicating replies

(if any). Tasks of a module often form a one-directional event flow such that the replies

are generated from a different task and are fed to a different downstream task. For a con-

crete example, the peer-to-peer network communication module contains a dispatcher task

that waits for message sending events from other modules and passes them down to the

peer-specific message sender tasks. Other types of synchronization constructs are used

when appropriate, for example, Watch and Notify in timers. All these synchronization

constructs are provided by the Rust/tokio standard library and are internally backed by

efficient implementations out of semaphores.

Most channels operate on heap-allocated item types, such as String and Box<T>, so
data itself is not copied when passing through a channel; only their ownership handles

are moved around. This style of concurrent programming follows the wisdom of Golang’s

philosophy: “synchronization by (low-cost) communication (of ownership transfers)”. The

entire codebase contains zero explicit usage of Mutexes.

Future Work: Adaptive Multitasking via Backpressure. By default, Summerset uses

98

the unbounded version of channels, where the channel’s internal memory space could grow

indefinitely, such that sending to and receiving from the channel will always succeed (unless

the channel is closed). This leads to potential unbounded growth of the memory usage of

a channel if it is filled constantly faster than drained. This symptom usually indicates a

bottleneck within the receiver-side task and serves as a good hint of backpressure for load

balancing. Using classic techniques in event-based architectures [352], we can dynamically

tune the number and behavior of tasks in the modules on both sides of the channel according

to the length of the channel. When pressure builds up, producers can be downscaled, and

more consuming tasks can be spawned if possible. We leave this adaptive multitasking

optimization as future work.

5.2.3 Example Protocol Module

We provide an example of protocol module implementation through code snippets. Each

protocol module provides a <ProtocolName>Replica struct that implements the asyn-

chronous GenericReplica trait, which requires two async functions: new_and_setup()
and run(). Each module also exposes a ReplicaConfig<ProtocolName> struct that de-

fines protocol-specific configuration parameters settable from the command line.

The new_and_setup() function takes a manager address, two listening ports (for client-

facing API and internal peer-to-peer communication), and a configuration string from the

command line. It creates a <ProtocolName>Replica struct that holds handles to other

functionality modules, waits for initial cluster communication to be established, and returns

the replica struct.

#[async_trait]

impl GenericReplica for ExampleReplica {

async fn new_and_setup(

api_addr: SocketAddr,

p2p_addr: SocketAddr,

manager: SocketAddr,

config_str: Option<&str>,

) -> Result<Self, SummersetError> {

// connect to the cluster manager and get assigned a server ID

let mut control_hub = ControlHub::new_and_setup(manager).await?;

99

let id = control_hub.me;

let population = control_hub.population;

// parse protocol-specific configs

let config = parsed_config!(config_str => ReplicaConfigExample;

batch_interval_ms, max_batch_size, backer_path, ...)?;

// setup functionality modules as needed

let state_machine = StateMachine::new_and_setup(id).await?;

...

transport_hub.wait_for_group(population).await?;

// setup external API module for client requests

let external_api = ExternalApi::new_and_setup(

id,

api_addr,

Duration::from_millis(config.batch_interval_ms),

config.max_batch_size,

).await?;

Ok(ExampleReplica {

id,

population,

config,

control_hub,

external_api,

state_machine,

storage_hub,

transport_hub,

... // states as needed by the protocol

})

}

...

}

100

After a successful new_and_setup(), each server node then calls the run() method on the

replica struct, which runs any initialization procedures as needed and then enters an infinite

event loop, similar to the following example.

#[async_trait]

impl GenericReplica for ExampleReplica {
...

async fn run(&mut self) -> Result<bool, SummersetError> {
// recover state from durable storage WAL log or snapshots,

// kickoff timers, and do other init procedures as needed

self.recover_from_wal().await?;
...

// main event loop

loop {
tokio::select! {

// client request batch

req_batch = self.external_api.get_req_batch() => {
self.handle_req_batch(req_batch?).await?;

},

// message from peer

peer_msg = self.transport_hub.recv_msg() => {
let (peer, msg) = peer_msg?;
match msg {

// call the proper handler based on the

// message type...

}
},

// branches for other functionality modules...

101

// state machine execution result

cmd_result = self.state_machine.get_result() => {
let (cmd_id, cmd_res) = cmd_result?;
self.handle_cmd_result(cmd_id, cmd_res).await?;

},
}

}
}

}

Similarly, the protocol module also provides a client-side <ProtocolName>Client struct

that implements the GenericEndpoint trait and a ClientConfig<ProtocolName> struct

that contains client-specific arguments. The client struct usually follows a standard imple-

mentation unless the protocol requires special client-side processing logic, such as sending

reads to the nearest server for local reads as in Bodega (§4.2). We omit the client-side

methods here for clarity.

For the complete source code of Summerset, please refer to the open-sourced repository

at https://github.com/josehu07/summerset.

5.3 Supported Protocols and Features

For completeness, we show the list of replication protocol modules currently implemented on

Summerset and their lines of code statistics in Table 5.1. The infrastructure itself, excluding

protocol modules, lies at 14.6k lines of code.

We make notes on some of the protocols and their supported features. RepNothing

is a baseline protocol that makes no replication at all. SimplePush is a minimal, weakly-

consistent protocol that propagates all updates lazily among peers. Leader leases [63,

120] are supported in both MultiPaxos and Raft. Optimized EPaxos quorums [253] are

implemented. MultiPaxos and QuorumLeases support urgent commit notifications where a

leader immediately broadcasts commit decisions instead of waiting till the next heartbeat.

Crossword and Bodega implement all features discussed in Chapter 3 and 4, respectively.

All protocols support client request batching, peer-to-peer heartbeats, and autonomous

snapshots with configurable intervals.

https://github.com/josehu07/summerset

102

Protocol LoC Reference

RepNothing 0.5k -

SimplePush 0.7k -

ChainReplication 1.0k [295]

MultiPaxos 3.0k [63, 193]

EPaxos 2.9k [253, 333]

Raft 2.0k [269, 271]

RSPaxos 2.3k [258]

CRaft 2.3k [348]

Crossword 3.4k Chapter 3

QuorumLeases 3.1k [254, 255]

Bodega 3.1k Chapter 4

Infrastructure 14.6k -

Table 5.1: List of Protocols Currently Implemented on Summerset. LoC: lines of code.

On the client side, Summerset clients have four modes to operate in. It may 1 run

a benchmark from synthetic workloads or input traces, 2 run linearizability tests with

predefined scenarios or fuzzing, 3 run an interactive REPL-style command line, or 4 make

one-shot actions that change cluster configurations or pause/resume servers.

All the common component modules provided by Summerset have been extensively

unit-tested, and all the protocol modules currently implemented in Summerset have been

heavily fuzz-tested.

103

Chapter 6

Beyond Linearizability: A Unified

Consistency Levels Spectrum

A crucial step towards designing distributed replication protocols and building reliable

distributed storage systems is to define their consistency semantics. Chapter 3 and 4 assume

linearizability, a strong consistency level found ubiquitous in practical replication systems.

Beyond linearizability, though, weaker consistency levels exist and may be better choices for

systems that can tolerate a certain degree of fuzziness for higher performance and scalability,

such as social media and shopping cart backends. During our study on weaker consistency

levels and their relationship with linearizability, we found obscurity.

Apart from the purely formal summary by Viotti and Vukolić [342], there has been

no unified definition of existing consistency levels in the context of distributed replica-

tion systems in existing literature. This is largely due to the rich history of research that

contributed to this field. Many fundamental breakthroughs stemmed from different re-

search areas, including distributed system modeling [119, 141, 189, 190, 192, 240, 325],

multiprocessor shared-memory consistency [2, 6, 7, 143, 243, 256, 316], network reliability

modeling [49, 59, 100, 114, 121], and database transaction processing [122, 132, 250]. They

discuss different pieces of the problem within different contexts, leading to plentiful but

sometimes blurry terminology when applied to distributed replication.

To address the obscurity, we propose a minimal yet self-contained theoretical framework

– the Shared Object Pool (SOP) model – which unifies the definition of common consistency

levels in a way that is understandable to protocol designers and system engineers. The SOP

104

model defines each level as a conjunction of two constraints on the ordering of operations

allowed: convergence and relationship. Convergence bounds the “shape” of the allowed

orderings, while relationship restricts the relative position between operations within

that shape. This decomposition is intuitive and sufficiently expressive: the convergence

constraint relates to how much concurrency is tolerated by the level and exposed to clients,

and the relationship constraint relates to how (concurrent or non-concurrent) operations

retain ordering properties from physical time and client sessions.

We restrict our discussion to a selected set of non-transactional consistency levels seen

in real object storage designs. To further improve understandability, we use examples

extensively to explain the practical differences between consistency levels, and refer to

representative protocols and systems corresponding to each level.

The rest of this chapter is organized as follows. §6.1 describes the problem model setup,

defines ordering, and explains the meaning of non-transactional consistency within this

context. §6.2 defines all variants of ordering validity constraints. §6.3 presents the hierarchy

of selected consistency levels, dissects their ordering validity guarantees, explains their

practical differences, and gives examples of representative protocols and systems. §6.4

discusses the availability upper bounds in the presence of network partitioning.

6.1 Problem Model

We model our problem setup as a conceptual object storage service, which we term a Shared

Object Pool (SOP). In this section, we define the SOP model and explain the meaning

of consistency. Throughout this dissertation, consistency is not to be confused with the

“C” property in transactional ACID properties [122, 132], which refers to application-level

integrity invariants. In fact, consistency in our context maps to the “I” (isolation) property

in ACID, which will become clear in §6.1.4.

6.1.1 Shared Object Pool (SOP) Model

We consider a storage service shared by multiple clients, as shown in Figure 6.1. The service

appears to be a pool of objects. Each object has a unique name and contains a value; it is a

register in classic literature. The only way to learn about an object’s value is through the

result of a read operation, which we introduce below. Objects are not necessarily stored as

105

cWx∠1
cRx:1 cWx∠2

dWx∠3dRx:1
eRx:{2,3}Ordering: …

Storage ServiceObject Pool: x y …

Client c Client d …

Issue
Operation Ack

Client e

Figure 6.1: Depiction of the versatile Shared Object Pool (SOP) model. See §6.1.1.

physical bytes on physical machines; the SOP model is entirely conceptual and is agnostic

to any actual design of protocols and implementation of systems.

Clients are single-threaded, closed-loop entities that invoke operations on the service.

When a client c issues an operation p, it blocks until the acknowledgment of p by the service.

Multi-threaded or asynchronous client implementations should be modeled as multiple SOP

clients. An operation is of one of the following types:

• Read (R): we use |cRx:v| to denote client c reading object x and getting the result

value v upon acknowledgement. Note that the client operation only carries the object

name x; the value v is the outcome of this operation.

A read operation may return a set of unordered values to the client, or some re-

duced value by applying a pre-defined deterministic function f to the set, when the

consistency level allows the service to do so. We denote this as |cRx:f({v1,v2})|, or

just |cRx:{v1,v2}| for short. Examples of such functions include a merge function for

conflicting shopping carts and a take-max function for numerical register values.

• Write (W): we use |cWx∠v| to denote client c writing value v into object x.

• Read-Modify-Write (RMW): we use |cRMWx:v∠v ′| to denote a compound read-

modify-write operation on object x, which reads the value of x, getting v, and writes

back a new value v ′ based on some arbitrary computation over the result of the read.

One representative RMW operation is conditional write, e.g., compare-and-swap (CAS),

which reads the current value, compares it against a given value v, and writes a new

value v ′ if the comparison shows equality or writes v ′ = v back otherwise.

106

The types of objects and operations can be generalized. For example, objects can be counters

or queues, and RMW operations can be extended to arbitrary commands. We use the above

read-write-style definition throughout this chapter for clarity.

The service maintains a possibly partial ordering O of all operations acknowledged.

The ordering O captures dependencies between operations enforced by the service and

materializes the result of each operation. Given a workload of operations generated by

clients, whether an ordering is acceptable or not is decided by some validity constraints.

Modeling the validity constraints guaranteed by the service effectively models its interface

semantics, hence its consistency level. The following three subsections explain the meaning

of workload, ordering, and consistency, respectively.

6.1.2 Physical Timeline Workload

In the SOP model, each client is a single-threaded entity. For a concrete collection of client

operations, we can visualize the physical timeline T of when each operation is issued and

acknowledged. Every row represents a client, while the x-axis represents the real-world

time at which an operation is issued or acknowledged.

For example, below is a physical timeline of two clients, c and d, performing operations

on two objects, x and y:

c :

d :

cWx∠1 cWx∠3 cRy

dRx dWy∠2

A physical timeline depicts a concrete history of client activity. We can think of it as a

specific “workload” that drives the storage service. Given a physical timeline, the storage

service delivers a final ordering (from the set of valid orderings allowed by its consistency

level) that connects all operations in the timeline together.

Results of read values in R and RMW operations are not part of the physical time-

line workload. Rather, they are materialized in the final ordering decided by the service.

Everything else about client operations activity is included in the physical timeline.

Values of writes are part of the workload. Although we use concrete numeric values

as examples, they can also be symbolic values that capture the program logic of client

applications. For instance, |dWy∠2| in the example above may instead be |dWy∠v|, where

107

v is a symbolic value that represents applying some function over the return value of d’s

preceding read of object x. The write value of an RMW operation is typically a symbolic

value that depends on the result of the read.

6.1.3 Definition of Ordering

An ordering is a directed acyclic graph (DAG), where nodes are operations from a physical

timeline workload. Each operation that has been acknowledged appears exactly once in an

ordering. Pending operations that have not been acknowledged are not interesting in our

definition of consistency and are thus not explicitly discussed. A directed edge connecting

two operations represents an “ordered before” relationship between the two.

We say an operation op1 is ordered before op2 (denoted op1 ; op2) in ordering O iff.

there exists either an edge in O pointing from op1 to op2, or an operation op ′ such that

op1 ; op ′ and op ′; op2 (transitivity). If neither operation is ordered before the other,

that is, op1 ;̸ op2 and op2 ;̸ op1, then we say op1 and op2 are unordered with each other

(denoted op1 ↭̸ op2).

Given a physical timeline, an ordering is valid on the timeline with respect to a con-

sistency level if it satisfies the validity constraints enforced by that level. We will explain

validity constraints in detail in §6.2.

Early Literature Terminology. Similar definitions of “ordered before” relationship have

appeared in many early literature [20, 118, 141, 189, 190], where it was termed “happens

before” and was associated with single-point events. Unordered events in a partial ordering

were often termed “concurrent” events. In this paper, we use the phrases “ordered before” and

“happens before” interchangeably, and use “unordered” and “concurrent” interchangeably,

but on operations.

6.1.4 Meaning of Consistency

The consistency level of the storage service is determined by which orderings of operations

are considered valid given any physical timeline workload. In other words, the consistency

level enforces what validity constraints must be held on the ordering given any workload.

A stronger consistency level imposes more constraints than a weaker one and therefore

disallows more orderings, exposing an interface that is more restrictive in the protocol

108

design space and in the meantime easier to use by clients. In contrast, a weaker consistency

level relaxes certain constraints and opens up new opportunities in the protocol design

space, albeit providing weaker semantic guarantees for clients.

An ordering represents logical dependencies among operations, similar to Lamport’s

definition of logical clock on events [189], and does not necessarily capture physical time; in

fact, whether physical time is respected or not is one of the validity constraints that differ-

entiate several consistency levels. Our SOP model shares similarities with the specification

framework for replicated data types proposed by Burckhardt et al. [118]; the differences are

that we simplify the notion of ordering and cover stronger consistency levels (rather than

focusing only on causal and eventual consistency models).

Note that the SOP model is oblivious to any system design and implementation details

of the service, including but not limited to how the service is constructed out of servers,

what the network topology looks like, and how client-server connections are established.

These internal design choices should not affect the interface semantics exposed to clients.

We only consider a non-transactional storage service interface, where each operation

touches exactly one object. Transactional operations, which group multiple single-object

operations together, open up a new dimension in the consistency level space and are essential

to distributed database systems. A common practice in modern database systems is to deploy

sharded concurrency control mechanisms atop replicated data objects, effectively layering

transactional guarantees separately from single-object consistency [153, 307, 339]. Despite

this, transaction isolation levels can indeed be integrated into the same unified theoretical

framework with single-object consistency as seen in previous literature [26, 161] (because

they are both rooted in the validity of orderings). We leave such integration into the SOP

model as future work.

Early Literature Terminology. In early literature on shared memory consistency, oper-

ations are further decomposed into events [141]. The invocation and acknowledgment of

an operation are considered two separate events. All events form a strictly serial sequence,

named a history. Consistency levels are then defined on the validity of well-formed his-

tories. In this paper, we simplify this notation and choose not to use the words “event”

and “history”. Instead, we take a different approach and consider each operation op as a

contiguous timespan from its start (when the client issues op) to its end (when the service

acknowledges op and returns a result to the client). When discussing ordering of operations,

109

we use partial ordering to depict incomparability if necessary, instead of merging them into

a serial history of events. We found this approach easier to understand and visualize.

6.2 Ordering Validity Constraints

In this section, we list two sets of validity constraints that determine which orderings are

acceptable in a consistency level. Specifically, the two sets are: 1) convergence constraints,

which bound the lineage “shape” of the ordering, and 2) relationship constraints, which

bound the “placement” of operations with respect to each other within the ordering given

any physical timeline workload.

This decomposition into convergence and relationship follows the intuition that an

ordering DAG can be described first by its shape, then by the placement of nodes within that

shape. Specifically, the convergence constraint bounds the shape and controls how much

concurrency is tolerated and exposed to clients; for example, a serial order always gives

clients the vision that operations happen one after another. The relationship constraint

controls how operations retain their relative positions from their existing properties of

physical time and client sessions; for example, an ordering that honors physical time would

disallow putting a newer operation before an older one that has long been acknowledged.

We define the two sets of constraints below.

6.2.1 Convergence Constraints

The convergence constraints restrict whether a valid ordering must be a serial order or can

be a partial order, and in the latter case, whether reads must observe convergent results. The

three levels of convergence constraints are, from the strongest to the weakest accordingly,

Serial Order (SO), Convergent Partial Order (CPO), and Non-convergent Partial Order (NPO).

6.2.1.1 Serial Order (SO)

An SO ordering must be a total order of operations, forming a single serial chain.

The result of a read (or RMW) on object x is determined by the latest write (or RMW)

operation that immediately precedes the read. We say an operation op1 immediately precedes

operation op2 iff.:

110

• they are on the same object x, and

• op1 ; op2, and

• there is no other write (or RMW) operation op ′ on object x s.t. op1 ; op ′; op2.

If there is no immediately-preceding operation for a read, we assume a special initial value,

e.g. 0, for every object.

Below is an example ordering that satisfies SO:

|cWx∠1| |dWx∠2| |cRx:2| |dWy∠2| |cRy:2|

SO is the strongest convergence constraint that any consistency level can enforce. Every

operation has a relative position w.r.t. any other operation in the total order (with the

exception of a cluster of pure reads shown below). It implies that the service must maintain

a centralized view, e.g. a log, of all operations [192, 193]; an operation from a client can

never be acknowledged solely on its own will.

Cluster of Reads. We make one exception to the seriality of operations in an SO ordering:

any cluster of pure read operations in between two writes are allowed to be unordered with

each other. For example, the following ordering is a valid SO ordering:

|cWx∠1| |cWy∠2| |cRx:1|

|dRy:2|

|eRx:1|

|cWx∠3|

Without loss of generality, we always present a serial chain when giving SO ordering

examples for clarity.

6.2.1.2 Convergent Partial Order (CPO)

A CPO ordering can be a partial order of operations. Writes may be unordered with some

other operations, forming branches.

In addition, the result of a read must be strongly convergent [342], meaning that it must

observe all operations to the same object that immediately precede it. If multiple operations

with different values to the same object all immediately precede the read and they are

111

unordered with each other, then the read must return the set of all these values (or a reduced

value over the set by applying a deterministic reduction function, as described in §6.1.1).

Below is an example ordering that satisfies CPO (but not SO):

|cWx∠1| |dRx:1| |cWy∠2| |cWy∠3|

|dWy∠4|

|eRy:{3,4}|

|fRy:{3,4}|

Notice how certain operations are unordered with each other, e.g., |cWy∠2| ↭̸ |dWy∠4|

and |cWy∠3| ↭̸ |dWy∠4|. Also notice that |eRy:{3,4}| and |fRy:{3,4}| observe both values

3 and 4, as the two concurrent writes both precede them.

CPO opens the opportunity to allow temporarily diverging states of object values, as

long as they collapse into a convergent state at some read that observed the concurrent

values. This typically gives protocol designers more space to improve the scalability and

availability of the service.

6.2.1.3 Non-convergent Partial Order (NPO)

An NPO ordering can be a partial order of operations, just like in CPO. Furthermore, reads

(and RMWs) do not have to be convergent. They are allowed to only observe a subset of

values from immediately-preceding operations, or apply a diverging reduction function that

may produce different values on different clients given the same set of input values.

Reads still have to be well-formed, meaning they cannot observe values that come from

nowhere. For more complex object types such as counters or queues, this means values

observed must all obey return value consistency of the object semantic [342]; for example,

a queue should never have loops. We assume return value consistency is held for all

consistency levels discussed, as is the case in all practical cloud systems.

Below is an example ordering that satisfies NPO (but not CPO):

|cWx∠1| |dRx:1| |cWy∠2| |cWy∠3|

|dWy∠4|

|eRy:3|

|fRy:4|

Notice that |eRy:3| is now allowed to only observe value 3 and miss the existence of value 4;

similarly for |fRy:4|.

112

NPO allows clients to observe forever-diverging values of the same object. Without

careful assistance from the relationship constraints side, a service that only guarantees NPO

can hardly provide any reasonable consistency semantic.

6.2.2 Relationship Constraints

The relationship constraints restrict how operations are placed with respect to each other in

the final ordering. More specifically, they determine what properties of the physical timeline

workload must be reflected in the ordering. The four levels of relationship constraints

are, from the strongest to the weakest, Real-Time (RT), Causal (CASL), First-In-First-Out

(FIFO), and None. RT requires the physical time relationship between all operations to be

retained. CASL relaxes this constraint, but still requires retaining intra-client-session order

as well as cross-session causality. FIFO further relaxes CASL to only require retaining the

intra-client-session order. None places no restrictions.

6.2.2.1 Real-Time (RT)

In an RT ordering, if operation op1 ends before operation op2 starts in physical time

(regardless of whether they come from different clients or are on different objects), then the

ordering must enforce op1 ; op2.

For example, given the physical timeline below:

c :

d :

e :

cWx∠1 cWx∠2

dRx dWy∠3

eWx∠3 eRy

The following is an ordering that is SO and RT:

|cWx∠1| |eWx∠3| |cWx∠2| |dRx:2| |dWy∠3| |eRy:3|

And the following is an ordering that is CPO and RT:

|cWx∠1| |cWx∠2|

|eWx∠3|

|dRx:{2,3}| |dWy∠3| |eRy:3|

113

RT is the strongest relationship constraint that any consistency level can enforce. For

each client, its operations exhibit the same order as how the client issues them, because

an operation naturally finishes before the start of the next one following it on the same

client. Across different clients, RT ensures that an operation observes all other operations

acknowledged before its start.

The RT guarantee implies that the service must deploy some synchronization mechanism

across all clients; an operation from a client can never be acknowledged solely on the client’s

own will.

6.2.2.2 Causal (CASL)

The causal guarantee relaxes RT by allowing more cases of reordering between cross-client

operations. If operation op2 causally depends on operation op1 [7, 229, 240], then the

ordering must contain op1 ; op2. Specifically, op2 causally depends on op1 iff.:

• op1 and op2 are from the same client and op2 follows op1, or

• op1 is a write (or RMW), op2 is a read (or RMW), and op2 returns the written value

of op1, or

• there is an operation op ′ s.t. op2 causally depends on op ′ and op ′ causally depends

on op1 (transitivity).

For instance, the following is an SO ordering that satisfies CASL (but not RT), given the

same example timeline of §6.2.2.1:

|eWx∠3| |cWx∠1| |dRx:1| |dWy∠3| |eRy:3| |cWx∠2|

Notice that |cWx∠2| ends before |dRx:1| starts in physical time, yet |cWx∠2| ;̸ |dRx:1| in

the ordering.

Given this particular final CASL ordering, we can observe that e’s read |eRy:3| causally

depends on d’s write |dWy∠3| (and therefore, transitively, depends on d’s read |dRx:1| and

thus c’s write |cWx∠1|). Meanwhile, it has no interference with c’s second write |cWx∠2|.

In other words, in this particular ordering result produced by the service, the potential

“cause” of e reading value 3 out of y traces back to c’s write of value 1 to x, but is so far

considered irrelevant with c’s second write of value 2.

114

We can in fact visualize the causal dependencies captured by this ordering by drawing

arrows that represent potential causality between operations on the timeline:

c :

d :

e :

cWx∠1 cWx∠2

dRx dWy∠3

eWx∠3 eRy

The following is another valid ordering that is CPO and CASL on the same timeline

example; here, |dRx:{1,3}| observes |eWx∠3|, setting up an additional causal dependency

from eWx∠3 to dRx:

|cWx∠1|

|eWx∠3|

|dRx:{1,3}| |dWy∠3| |eRy:3| |cWx∠2|

CASL is weaker than RT. For each client, its own operations still exhibit the same order

as how the client issues them. Across different clients, however, CASL tolerates divergence

and is less restrictive. An operation op2 (or a group of operations) from a client can be

reordered before another operation op1 from a different client, even though op1 is ahead

of op2 in physical time, as long as op2 has not causally observed op1. This allows certain

operations to be processed concurrently without knowing the existence of each other.

Session Guarantees. A popular approach to interpreting causality is to think from each

client’s perspective (termed a session [325]) and decompose the CASL constraint into four

session guarantees:

• Read MyWrites: if a write op1 and a read op2 are from the same client and op2 follows

op1, then op2 must observe op1.

• Monotonic Writes: writes by a client must happen in the same order as they are issued

by the client.

• Monotonic Reads: if two reads are from the same client, then the latter read cannot

observe an older state prior to what the former read has observed. This means if a

client issues a read op1 followed by another read op2, then op2 must be ordered after

all writes that op1 observes.

115

• Writes Follow Reads, i.e., Session Causality: if a client issued a read op ′ that observed a

write op1, and later issues a write op2, then op2 must become visible after op1. Here,

we assume a functionally equivalent version of this guarantee, where op2 must be

ordered after the read op ′ itself. This allows us to simplify the notion of causality and

use a single ordering instead of two (i.e., visibility order and arbitration order [342]) to

define all the selected consistency levels on the SOP model.

The CASL guarantee can be defined exactly as the conjunctive combination of the above

four session guarantees [51, 161]. More specifically, Read My Writes, Monotonic Writes,

and Monotonic Reads together lead to the requirement that operations from a single client

session follow their original order as issued and completed by that session. On top of this,

Writes Follow Reads adds the subtle requirement of causality, where two writes from two

different sessions can be connected and form a required order, if there is an intermediate

read that observes the earlier write.

6.2.2.3 First-In-First-Out (FIFO)

The FIFO guarantee further relaxes CASL by removing write causality dependencies across

clients. Specifically, if a read operation opr from client c observes a write opw by a different

client, now write operations from client c following opr are allowed to be ordered before

opr and opw. In other words, writes by different clients do not have to maintain their

causality order any more.

For instance, the following is an SO ordering that satisfies FIFO (but not CASL), given

the same example timeline of §6.2.2.1:

|eWx∠3| |dWy∠3| |eRy:3| |cWx∠1| |dRx:1| |cWx∠2|

Notice that |dWy∠3| is now ordered before |cWx∠1| and |dRx:1|, breaking the causality

chain. Imagine that another client f is reading objects x and y; it may then observe d’s

write to y before seeing c’s write to x. This may lead to counter-intuitive results for client

applications, e.g., showing a user some updated private data before knowing that the user

has been removed from the access control list (although the update was made after the ACL

removal operation).

The name FIFO comes from the following analogy: writes from each client are observed

by everyone in the same order as they are issued by the client, as if each client pushes its

116

own writes into a separate FIFO queue; meanwhile, writes from different clients are not

coordinated with each other by reads.

The FIFO guarantee can be defined exactly as the combination of the Read My Writes,

Monotonic Writes, and Monotonic Reads session guarantees [161]. It relaxes CASL by remov-

ing Writes Follow Reads: a write operation can now get reordered before reads that precede

it on the same client, as well as any writes from other clients observed by those reads.

6.2.2.4 None Relationship

An ordering could, of course, place no restrictions on the relative positions of operations. In

this case, operations issued by the same client may get arbitrarily reordered. Writes by the

same client may be visible to another client in a different order than issued, and a client’s

read may fail to observe its own preceding write.

This level of relationship constraint demands the least amount of synchronization across

operations. Every operation may be processed in a completely asynchronous manner.

6.3 Consistency Levels

We present the hierarchy of useful consistency levels and dissect each level’s ordering validity

constraints. We first explain the most common consistency levels, namely linearizability,

sequential consistency, causal+ consistency, and eventual consistency, followed by more subtle

levels. We provide examples along the way to help demonstrate their practical differences,

and mention representative protocols and systems belonging to each level.

Figure 6.2 presents the hierarchy of selected consistency levels. Arrows represent a

“stronger than” relationship, where the source level is strictly more restrictive than and thus

implies the destination level. Table 6.1 defines all these consistency levels in a condensed

manner by listing their ordering validity constraints. Note that variants of the above-

presented relationship constraints are used in Table 6.1 to define three subtle levels; we

explain those variants later in their level’s subsection.

117

Linearizability
(i.e., Strong Consistency,

Atomic Consistency)

Strict Serializability

Regular Sequential
Serializability

(One-Copy)
Serializability

transactional
non-transactional

… Regular Sequential

Sequential
Real-time Causal

Causal+
(i.e., Causal with convergence)

Causal

PRAM (i.e., FIFO)

Per-key Sequential

Eventual

Stronger than
and implies

Bold Common level

Weak

Bounded Staleness

Figure 6.2: Strength hierarchy of the selected consistency levels. Bold ones are the

most common levels. Arrows mean the source level is strictly stronger than the destination level.

Consistency Level Convergence Relationship

Linearizability SO RT

Regular Sequential SO RT-W & CASL-R

Sequential SO CASL

Bounded Staleness NPO Bounded-CASL

Real-time Causal CPO Weak-RT

Causal+ CPO CASL

Causal NPO CASL

PRAM NPO FIFO

Per-key Sequential CPO CASL-per-key

Eventual CPO None

Weak NPO None

Table 6.1: Ordering validity constraints of the selected consistency levels. This table

is a condensed summary of §6.2-§6.3, and is the reasoning behind Figure 6.2.

118

6.3.1 Linearizability

The strongest non-transactional consistency level is linearizability, as defined by Herlihy

and Wing in [141]. In our model, a linearizable ordering can be defined as one that satisfies

both SO and RT constraints given a physical timeline. It is a serial total order where each

operation is ordered before all operations that start after its acknowledgment in real time.

A service that provides linearizability is one that always yields a linearizable ordering.

Such a service must maintain some form of a serial log of all operations, where each

operation has a specific relative position w.r.t. others. All clients agree on that same order

of operations. Furthermore, the service must keep a record of the acknowledgment of each

operation, so as to properly order all operations that start after its acknowledgment to satisfy

the real-time property.

Linearizability is often referred to as strong consistency, due to the fact that it is the

strongest possible non-transactional consistency level. Linearizability is sometimes also

referred to as atomic consistency [141, 243], because a service that provides linearizability

appears to be a piece of shared memory where every client operation is an atomic memory

operation. This convenient atomicity semantic makes linearizability one of the easiest

consistency levels to reason about and verify against; we can just think of the service as a

single piece of atomic memory and apply client operations as they arrive, ignoring all the

internal details about complicated distributed system implementation.

State Machine Replication (SMR). Since the ordering is a serial total order, it is natural

to model the object pool as a state machine and model client operations as state-transfer

commands. The service acts as a coordinated set of replicated state machines (typically by

replicating the log of operations) and applies committed commands in the decided serial

order. This resembles the well-known State Machine Replication (SMR) approach [188, 305],

which is widely used inmodeling distributed replication systems and presentingmulti-decree

consensus protocols.

Our Shared Object Pool (SOP) model is equivalent to the SMR model if we put some

restrictions on both sides. Specifically, an SOP model where only SO orderings are accepted

is equivalent to an SMR model where the state is a collection of read-write objects. The

SMR model is more expressive than the SOP model in the aspect that it allows more general

state machines with custom states and custom commands, not only reads and writes. SOP

is more expressive than SMR in the aspect that it inherently allows partial orderings, which

119

helps us incorporate consistency levels that do not guarantee SO.

Protocols and Systems. Linearizability is the predominant consistency level adopted

by critical replication systems built atop SMR protocols. Classic protocols include Chain

Replication [295], Multi-Paxos [193] and its many variants/optimizations [9, 42, 95, 101, 107,

108, 147, 187, 196, 202, 244, 253, 258, 264, 268, 271, 283, 317, 348, 353], Byzantine fault-tolerant

protocols [1, 59, 76, 367], and others [208, 217, 273, 285, 323, 376] (some with advanced

hardware assumptions). Systems incorporating SMR components include lock/coordination

services [30, 31, 54], distributed cloud databases [75, 88, 153, 301, 307, 339, 341, 380], and

metadata services of large-scale storage systems [45, 96, 111, 125, 159].

6.3.2 Sequential Consistency

Sequential consistency, as originally defined by Lamport in the context of a multiprocessor

computer [190], means that all clients agree on the same sequence of operations applied by

the service, where operations from each client appear in the same order as issued by the

client. In our model, a service that provides sequential consistency always gives an ordering

that is SO and CASL
1
for any physical timeline workload.

Compared to linearizability, since the ordering does not have to be RT, sequential

consistency allows the service to move an operation (or a group of operations) backward in

time, reordering it before another group that does not causally precede it. This property is

sometimes referred to as unstable ordering [41, 53], in contrast to stable ordering provided

by linearizability.

For example, given the following physical timeline:

c :

d :

cWx∠1

dWx∠2 dRx

A linearizable ordering must be SO and RT:

1
Viotti and Vukolić gave a formal formula of sequential consistency that conjuncts SO with

PRAM (instead of CASL as in our definition) [342]. However, we believe the formula is an erratum

and deviates from their text, which reads: “the realtime ordering of operations invoked by the same

process is preserved.” Their discussion indicates a conjunction with processor consistency, a term that

aligns with our CASL constraint.

120

|cWx∠1| |dWx∠2| |dRx:2|

While a sequentially consistent protocol is allowed to give the following ordering that is

SO and CASL:

|dWx∠2| |cWx∠1| |dRx:1|

The reordering is allowed because client d did not issue any read on object x before |dWx∠2|

that observed value 1 written by client c. Therefore, there is no causal dependency from

client c’s write |cWx∠1| to client d’s write |dWx∠2|.

At first glance, it may be hard to tell the exact differences between linearizability and se-

quential consistency. Attiya and Welch presented a quantitative analysis of the performance

implications of these two levels, showing that linearizability is strictly more expensive to im-

plement than sequential consistency for common object types in systems without perfectly

synchronized clocks [20]. But what semantic power do we lose by relaxing the real-time

guarantee? The following paragraphs explain three practical implications: 1) sequential

consistency does not capture external causality dependencies, 2) sequential consistency is

non-local, and 3) it takes extra care to add read-modify-write (RMW) operation support to a

sequentially-consistent protocol.

External Causality Dependencies. So far we have assumed that all clients communicate

only with the service and there are no external communication channels between clients

that bypass the service, as depicted in Figure 6.1. However, in real distributed systems such

as cloud databases [78, 129, 176, 341], clients of a replicated storage service may be part of a

higher-level system. It is not uncommon for clients to coordinate with each other through

external causality dependencies, which are impossible for the service to capture without

preserving real-time dependencies.

In the example depicted by Figure 6.3, client c first issues a write of value 1 to object x

and waits for its acknowledgment. It then sends a message to client d through an external

inter-client channel saying “I have finished my write to x and you can go ahead to operate

on x.” Client d then issues its own write of value 2 and expects to read out 2 afterwards.

However, since the message from c to d is external to the service, a sequentially consistent

service may reorder d’s write ahead of c’s, and return value 1 for d’s read.

A service that provides linearizability will be able to capture such implicit external

dependencies because of the real-time property, as |dWx∠2| starts after |cWx∠1|’s acknowl-

121

dWx∠2 cWx∠1 dRx:1Ordering: …

Sequentially Consistent ServiceObject Pool: x …

Client c Client d

Wx∠1 Ack
①

External Message: c has finished Wx∠1

②

③

Wx∠2
④

Ack
⑤

Rx
⑥

Ack: 1
⑦

Figure 6.3: Example of external causality dependency with sequential. See §6.3.2.

edgment in physical time. In contrast, weaker levels that do not honor real time will at best

capture logical causality, the normal definition of causality (CASL) as described in §6.2.2.2.

Note that external causality dependencies are not to be confused with the external

consistency property in distributed transaction processing systems [75, 113], which means

that transactions are serialized into the same order as their commit order.

Implementation Locality. Herlihy and Wing have proven in [141] that a protocol that

implements sequential consistency for each object individually does not necessarily guaran-

tee overall sequential consistency across all operations. Formally, we say that sequential

consistency is non-local: it is possible for an ordering to be SO and CASL on each object,

while not SO or CASL overall.

For example, given the following physical timeline:

c :

d :

cWx∠1 cWy∠1 cRy

dWy∠2 dWx∠2 dRx

The following ordering is SO and CASL on each object (i.e., the subordering on object x

and y are both SO and CASL), but the overall ordering is CPO and FIFO:

|cWy∠1| |cWx∠1| |cRy:2|

|dWx∠2| |dWy∠2| |dRx:1|

Notice that given the result of d reading 1 out of x and c reading 2 out of y, it is impossible

to resolve an SO and CASL ordering across all six operations. This implies that a protocol

122

that guarantees sequential consistency on each object may fail to come up with a global

sequence of operations. In fact, such a protocol provides per-key sequential consistency

(covered in §6.3.5.6).

In contrast, a service that provides linearizability on a per-object basis is guaranteed to

provide overall linearizability [20, 141]. We say that linearizability is local, allowing modular

implementation and verification. The above example can only return value 1 for c’s read

and value 2 for d’s read with such a service.

Support for RMW Operations. A protocol that implements sequential consistency for

only read (R) and write (W) operations may take advantage of the unstable ordering of

writes to speed up the processing of writes. Shared register protocols [19, 41] are the primary

examples of this category.

Adding support for read-modify-write (RMW) operations to such protocols is a non-

trivial task [53]. In particular, we cannot simply treat RMW operations in the same way as

pure writes, because RMWs require a stable base value to determine the result of the read.

Systems that demand compare-and-swap (CAS) operations (such as the LogOnce operation

on shared logs [129]) may have to opt for a service that provides linearizability (or regular

sequential consistency [137] as discussed in §6.3.5.1).

Protocols and Systems. Sequential consistency originates from memory consistency

theory [2, 143, 190]. In the context of replicated objects, sequential consistency (or its

per-key variant [73]) is often seen in primary-backup systems [155] and message streaming

systems [179, 290, 373] where writes may propagate to readable endpoints after acknowl-

edgment. The transactional form of sequential consistency – serializability [38] – plays an

indispensable role in database systems.

6.3.3 Causal+ Consistency

If a global total order is not required, it may be desirable to further relax sequential con-

sistency and embrace the family of causal consistency levels. Causal consistency stems

from the definition of causal memory [7]. Lloyd et al. pointed out in [229] that distributed

replication protocols typically implement a slightly stronger version of causal consistency

termed causal+ consistency. It is essentially causal consistency with convergent reads.

In our model, a service that provides causal+ consistency always gives an ordering that

is CPO and CASL. Compared to sequential consistency, the ordering does not have to be a

123

serial total order, but instead may leave certain operations from different clients unordered

with each other. This opens up opportunities to improve the scalability of a replication

protocol. However, all causal dependencies still have to be reflected in the decided ordering.

For example, given the following physical timeline:

c :

d :

e :

cWx∠1 cWy∠1

dWx∠2 dRy

eRx eWy∠3

A service that provides causal+ consistency may give the following ordering that is CPO

and CASL:

|cWx∠1| |cWy∠1|

|dWx∠2| |eRx:{1,2}| |eWy∠3| |dRy:3|

Notice that |cWx∠1| and |dWx∠2| are unordered with each other, and |eRx:{1,2}| observes

the values of both writes, hence causally depends on both. |eWy∠3| follows e’s read and

hence causally depends on both writes as well. |dRy:3| observes the result of e’s write and

hence continues this causal dependency chain, while |cWy∠1| is dangling and has not been

observed by any reader.

Interpreting A Partial Ordering. Assuming that we are designing a replication protocol

atop a set of replica nodes, an intuitive way to interpret a partial ordering in the SOP model

is to think from each replica’s perspective. Replicas may each maintain a local ordering;

different replicas are free to apply different orders for operations that are unordered with

each other from the global perspective. Figure 6.4 demonstrates this perspective.

With a consistency level that always gives an SO ordering, all replicas agree on the

same sequence of operations. With a consistency level that allows CPO or NPO ordering,

replicas may apply operations in different orders, as long as everyone is coherent with the

required validity constraints. This removes the need to coordinate a global sequence for

writes that do not causally depend on each other, and is the root source of the scalability

and availability benefits of causal+ and weaker consistency levels.

124

cWx∠1 dWx∠2 cWy∠1 eRx:{1,2} …

Causally Consistent
Service

x y … Replica AdWx∠2 cWx∠1 cWy∠1 eRx:{1,2} …

Causally Consistent Service

x y …cWx∠1 dWx∠2 eRx:{1,2} cWy∠1 …

x y … Replica

Figure 6.4: Interpretation of a partial ordering using explicit replicas. See §6.3.3.

Why Causality. The causal property is desirable in many application scenarios. For

example, COPS [229] describes a scenario where client c is sharing a photo with client d

by first uploading the photo to an image store s and then adding a reference to the photo

to the album a. Client d then checks c’s album and, upon seeing a new reference, goes to

fetch the referenced photo:

c :

d :

cWs∠photo cWa∠refphoto

dRa dRs

For consistency levels that do not honor causal dependencies, such as per-key sequential

consistency or eventual consistency, it is possible for d to observe a new reference out

of album a but fail to see the new photo from store s (if |cWs∠photo| ;̸ |dRs:nil| in the

decided ordering). Causal and thus causal+ consistency prevents this type of counter-

intuitive phenomena, because causal dependencies will force |cWs∠photo| ; |dRs:photo|

since |cWa∠refphoto|; |dRa:refphoto|.

Why Convergence. Compared to plain causal consistency, causal+ consistency demands a

convergent conflict resolution mechanism for conflicting values observed by a read. In other

words, all read operations that observe the same set of unordered values on an object must

resolve into the same return value. Examples of such conflict resolution mechanisms include

last-writer-wins, taking-the-max, and taking-the-sum.

Without the convergence guarantee, causal consistency is allowed to forever return

different values for reads on the same object from different clients. This is undesirable in

125

many applications. For example, consider a scenario where two clients, c and d, happen to

concurrently update the time for a reminder event t [229]:

c :

d :

cWt∠7pm cRt

dWt∠8pm dRt

Original causal consistency may yield the following NPO ordering, letting both c and

d falsely believe that their own update is the finalized one, even though they have indeed

observed both writes:

|cWt∠7pm| |cRt:7pm|

|dWt∠8pm| |dRt:8pm|

Causal+ consistency guarantees that c and d agree on the same time value after they

have observed both writes. Assuming a last-writer-wins conflict resolution policy, the

service may check the acknowledgment timestamp of both writes and determine that the

reduced value should be 8pm:

|cWt∠7pm| |cRt:f({7pm,8pm}) = 8pm|

|dWt∠8pm| |dRt:f({7pm,8pm}) = 8pm|

With a service that provides linearizability or sequential consistency, conflicts are avoided

altogether by enforcing an SO ordering. However, as previous paragraphs have explained,

such protocols inherently have a lower scalability upper bound and a lower availability

upper bound.

Protocols and Systems. Causal dependency originates from causal memorymodels [7, 325].

It has been adopted by replication systems designed to address availability [27, 35, 47, 167,

184, 282] and/or scalability [12, 35, 98, 229, 248, 282] concerns in large-scale cloud systems,

while preserving useful causality semantics.

6.3.4 Eventual Consistency

Eventual consistency, as the name suggests, is a consistency level that only requires reads

issued by the same client on an object to return a consistent value if no updates are being

126

made to the object. There is no relationship constraint between operations, meaning that

any pair of operations are allowed to get reordered, let alone preserving causality, in the

final ordering. Eventual consistency is widely adopted in high-demand systems where high

performance, scalability, and availability outweigh the need for timely consistency.

Eventual (Strong) Convergence. Although eventual consistency is sometimes used inter-

changeably with weak consistency, it does impose one extra requirement on the service: the

decided ordering must be (strongly) convergent [342]. Writes eventually become visible to all

readers albeit with an arbitrary delay, and reads on the object must all return the same value

once they have observed the same writes. This corresponds to the strong eventual variant

defined in previous literature [343]; in our model, it is captured by the CPO constraint.

For example, given the following physical timeline:

c :

d :

cWx∠1 cWx∠2 cRx

dWx∠3

An eventually consistent service is allowed to produce the following CPO ordering:

|cWx∠2| |cWx∠1| |cRx:{1,3}|

|dWx∠3|

Notice that |cWx∠2| is allowed to be ordered before |cWx∠1|, violating the FIFO property. In

real implementations, eventually consistent systems typically process every write operation

in an asynchronous manner to maximize concurrency. Also notice that |cRx:{1,3}| must

return a convergent value over the set {1,3}.

Quiescent Consistency. A related, vaguely defined term is quiescent consistency [139]. In

a commonly accepted definition, special periods of physical time called quiescence period are

identified, during which no write operations are happening. All operations acknowledged

ahead of the period are ordered before those that start after the period. Quiescent consistency

is weaker than eventual consistency, because if a system-wide quiescence period never

appears, it effectively makes no guarantees at all [342].

Protocols and Systems. Eventual consistency is widely adopted by web-scale systems

in the form of gossiping protocols and anti-entropy propagation [84, 93, 186, 306]. These

127

systems value performance and scalability greatly and can tolerate inconsistencies. A notable

line of research related to eventual consistency is on Conflict-free Replicated Data Types

(CRDTs) [214, 310, 329].

6.3.5 Other Consistency Levels

In this section, we briefly describe the rest of the selected consistency levels other than the

four most common ones. These levels explore different combinations of convergence and

(variations of) relationship constraints to refine the consistency level hierarchy.

6.3.5.1 Regular Sequential Consistency

Helt et al. formalized the notion of regular sequential consistency in a recent work [137]. It

takes the middle ground between linearizability and sequential consistency. It combines

the strengths of both by imposing different levels of relationship constraints for read-only

operations versus write operations. Specifically, all writes (and RMWs) must honor the

real-time property (denoted RT-W), while read operations are allowed to travel back in time

as long as they still honor causality (denoted CASL-R).

For example, given the following physical timeline:

c :

d :

cWx∠1 cRx

dWx∠2

A service that provides regular sequential consistency may give the following SO order-

ing, where c’s read travels back in time:

|cWx∠1| |cRx:1| |dWx∠2|

Invariant-equivalence to Linearizability. It is shown that regular sequential consistency

is invariant-equivalent to linearizability [137], meaning that: 1 it is local (see §6.3.2) and 2

it inherently supports RMW operations thanks to stable ordering of writes. However, since

reads are not guaranteed to observe the latest committed write, this level does not guarantee

to capture external causality dependencies, making it still weaker than linearizability.

128

The transactional version of this consistency level is regular sequential serializabil-

ity [137], where read-only transactions are allowed to get reordered in the serialized se-

quence, while all other transactions must honor RT. Similar properties have been exploited

in transactional database systems that use Timestamp Ordering (T/O) optimistic concurrency

control mechanisms [370].

6.3.5.2 Real-time Causal Consistency

Real-time causal consistency is a strengthening of causal+ consistency by bringing back

a relaxed version of the real-time property. On top of causal+, real-time causal further

requires that: if operation op1 is acknowledged before the start of op2 in physical time,

then op2 ;̸ op1 in the final ordering. Notice that this is a weaker constraint than what we

have defined as RT, since RT would enforce op1 ; op2. We denote this weaker constraint

Weak-RT.

Assuming that the system is composed of a set of symmetric message-passing replica

nodes, Mahajan et al. have proven in [240] that real-time causal consistency is the strongest

possible level that is achievable in an always-available, one-way convergent system (which

is implied by our definition of sticky available in §6.4).

Fork-based Consistency Models. A family of fork-based consistency models has been

developed to deal with Byzantine faults in a system containing untrusted components.

For example, a fork-linearizable system ensures that if any two replicas have observed

different orderings (i.e., forked by an adversary), then their writes will never be visible to

each other afterwards (i.e., they cannot be joined again). Fork causal consistency is a family

of consistency levels that weaken causal consistency to tolerate Byzantine replicas and

enforce causal consistency among correct replicas [241].

6.3.5.3 Causal Consistency

Causal and causal+ consistency have been explained in §6.3.3. As a recap, a service that

provides causal consistency must give an ordering that is NPO and CASL. Such an ordering

captures all the potential causality dependencies between operations, but does not demand

convergent conflict resolution, meaning that different clients are allowed to forever retrieve

different values from reads on the same object.

129

As mentioned in §6.2.2.2, causal consistency can be defined exactly as the combination

of the four session guarantees [51, 161].

6.3.5.4 Bounded Staleness

Although causal consistency enables the powerful abstraction of causal dependency, it does

not provide any guarantee on the “timeliness” of when writes become visible to reads.

Bounded staleness is a vaguely-defined family of consistency levels that typically strengthen

causal consistency by adding recency guarantees [249].

Bounded staleness levels put an extra constraint on the delay between the acknowledg-

ment of a write by client c on object x and when reads from other clients on x must reflect

the effect of the write. The delay constraint may be expressed in the following ways: 1) at

most j more write operations by client c, or 2) at most k more updates on object x, or 3)

at most a physical time interval t, or 4) a mixture of the three, e.g., whichever is reached

first. We use the name Bounded-CASL to broadly refer to the combination of the CASL

relationship guarantee with any delay constraint.

Because of the extra delay constraint, bounded staleness levels are incomparable with

both sequential and causal levels, because they both do not express any recency requirements.

6.3.5.5 PRAM Consistency

Pipeline Random Access Memory (PRAM) consistency [226], or simply FIFO consistency, is

a weaker consistency level than causal consistency, where causality across clients is not

captured. It was originally defined for shared memory systems. In our framework, it is a

consistency level that requires NPO and FIFO ordering.

Using the notion of session guarantees, PRAM consistency can be defined exactly as the

combination of Monotonic Writes, Monotonic Reads, and Read My Writes [161]. It does not

enforceWrites Follow Reads, hence not capturing cross-client causality.

Consistent Prefix. The combination of Monotonic Writes and Monotonic Reads are some-

times referred to as Consistent Prefix [249]. This name comes from the fact that, for every

writer, all clients will observe a monotonically-growing prefix of its writes.

Although Figure 6.2 does not include consistent prefix because of its vague definition,

we can derive a strength rank of this level w.r.t. bounded staleness, causal, and PRAM

consistency: any Bounded Staleness configuration > Causal > PRAM > Consistent Prefix.

130

6.3.5.6 Per-key Sequential Consistency

As §6.3.2 pointed out, sequential consistency is non-local, meaning that a protocol that

enforces SO and CASL ordering on a per-object basis (termed CASL-per-key) does not

necessarily guarantee a global SO and CASL ordering across all operations. In fact, such a

protocol implements per-key sequential consistency.

This consistency level was first studied in the PNUTS system [73], a highly-concurrent

data serving system that provides per-record consistency. However, modern distributed

systems typically have complicated client-side logic layered on top of a non-transactional

object store, where each client is interested in more than one object. This makes the

object-key-oriented consistency level less appealing than session-oriented causality levels.

The photo-album case described in §6.3.3 would be a good example that demonstrates the

limitations of per-key sequential consistency.

6.3.5.7 Weak Consistency

Weak consistency is at the bottom of the consistency level spectrum and is weaker than

all other consistency levels. In our model, weak consistency can be defined as enforcing

an NPO and None-relationship ordering. It can simply be interpreted as “providing no

consistency guarantees at all”. This terminology in the context of replication is irrelevant to

weak ordering in shared memory systems [143, 256].

6.3.5.8 Mixed/Hierarchical Consistency Levels

So far, we have assumed a single conceptual storage service withoutmaking any assumptions

on the internal implementation of the service. Real distributed systems may, however,

contain multiple layers or scopes of sub-services, each providing a different consistency

level semantic. For example, CosmosDB [249] provides a stronger consistency guarantee

for clients within the same region than those distributed across multiple regions, effectively

exposing a 2-layer consistency model. Given the implementation details of a system, we can

always define mixed or hierarchical consistency levels composed of multiple basic levels.

Yu andVahdat [368, 369] proposed a continuous consistencymodel for replicated services,

where consistency is defined as a 3-tuple, (numerical error, order error, and staleness), named

a conit. This leads to a fairly fine-grained consistency spectrum and allows applications to

dynamically balance consistency and performance.

131

6.3.5.9 Memory Consistency Models

Distributed replication consistency is tightly related to early works in multiprocessor shared

memory consistency. Hill defined hardware memory consistency model as the interface

contract for sharedmemory, where instructionsmay be executed out-of-order [143]. Memory

consistency models and techniques such as weak ordering, acquire/release consistency, entry

consistency, cache coherence, and memory fences/barriers [143, 256] are out of the scope of

this dissertation.

6.4 Availability Guarantees

Besides consistency, availability is an important (and interrelated) part of the interface

contract between a distributed storage service and its clients. The consistency level semantics

of the service sets a limit to the best possible availability the service can provide. Availability

is also not implementation-oblivious; the meaning of fault tolerance and availability can

only be defined given a specific system model. For completeness, in this section, we consider

a simple system of symmetric replicas and briefly present the best possible availability

guarantee that each consistency level can provide in such a system.

6.4.1 Symmetric Replicas System Model

We consider a fault-tolerant system implementation of the object store service composed

of a set of symmetric replica servers, similar to what Figure 6.4 depicts. Each replica node

holds a complete copy of all objects and can communicate with any other replica through

messages over the network. Clients establish connections to one (or more) replica(s), issue

operations, and wait for acknowledgments.

Data Partitioning. Since we only consider non-transactional workloads, this symmetric

model can be easily extended to incorporate data partitioning (or called partial replication),

where each node is responsible for a subset of objects. For each object, only the set of nodes

that hold the object is under consideration for availability.

Client-side Caching. A client may act as a partial replica server by doing client-side

coherent caching w.r.t. the consistency level for its reads and writes [27, 325]. In this case,

we can count the client itself as a valid partial replica.

132

6.4.2 Meaning of Availability

Consider a non-Byzantine fail-stop setting with a partially synchronous network [193]. We

say a system of symmetric replicas provides availability if, in the presence of arbitrarily

long network partitions between arbitrary replicas, every client that can connect to one (or

a specific set of) non-failing replica(s) of an object can get valid acknowledgments for all

operations it issues on that object.

Availability Levels. We consider three coarsely-defined levels [161]:

• Totally available: every client that can contact at least one non-failing replica of an

object eventually receives responses that honor the consistency level for operations

on that object.

• Sticky available: a client maintains stickiness if it keeps contacting the same replica

for all of its operations on an object. The system is sticky available if every client that

sticks to a non-failing replica of an object eventually receives responses that honor

the consistency level for operations on that object.

• Weakly available: the system does not always guarantee progress under arbitrary

network partitioning scenarios.

Note that the “weakly available” category can be further decomposed into finer-grained,

protocol-specific availability levels if we can bound the number of failures to a certain

quantity. For example, most state machine replication protocols are available when at

least a majority of nodes are healthy and connected. Also, extra care needs to be taken to

define reasonable transactional availability guarantees [26]. We limit our discussion to the

coarse-grained definition.

6.4.3 Availability Upper Bounds

The CAP theorem states that a distributed system cannot achieve Consistency, Availability,

and network Partition-tolerance all at the same time [49]. This informal description is often

taken in an overly restrictive form. A more precise statement would be that a distributed

system cannot achieve linearizability, total/sticky availability, and tolerance to full network

partitioning all at the same time. This statement has been proven by Gilbert and Lynch [114].

133

Consistency Level Availability Upper Bound

Linearizability

Weakly available

Regular Sequential

Sequential

Bounded Staleness

Real-time Causal

Sticky available

Causal+

Causal

PRAM

Per-key Sequential

Session Guarantees:

Read My Writes

Writes Follow Reads

Totally available

Monotonic Reads

Monotonic Writes

Eventual

Weak

Table 6.2: Availability coarse upper bound of selected consistency levels. Bold levels

are the common levels as marked in Figure 6.2. See §6.4.3 for related discussions.

By relaxing linearizability to weaker consistency levels, it is often (but not always)

possible to derive a replication protocol that guarantees sticky or even total availability

under arbitrary network partitions. Table 6.2 lists the availability upper bound of each of

the selected consistency levels.

Most of these availability bounds have been proven in previous literature [26, 240].

Linearizability, regular sequential consistency, and bounded staleness are obviously weakly

available because of the RT constraint or the delay constraint: clients connecting to servers

separated on opposite sides of a network partition have no way of knowing the acknowledg-

ment time of operations made on the other side, unless operations on that side are blocked

indefinitely. Sequential consistency cannot be sticky available because of its non-locality,

as counter-examples similar to the one presented in §6.3.2 can be constructed; in contrast,

per-key sequential is sticky available. Bailis et al. have proven that the writes follow reads,

monotonic reads, and monotonic writes session guarantees are totally available, while

read my writes requires stickiness [26]. Causal and PRAM consistency are therefore both

sticky available. Mahajan et al. have proven that real-time causal is as available as causal

consistency (given one-way convergence, which is assumed in our model) [240]. Causal+ is

134

also sticky available following this result. Eventual and weak consistency are both totally

available: clients can make progress on any live server.

Limitations. The availability upper bounds presented here are rather coarse-grained and do

not capture everything about availability. First, they say nothing about recency guarantees,

i.e., how stale are read results allowed to be. For example, although causal consistency is

sticky available, a network partition may indefinitely prevent writes made on one side from

being visible to readers on the other side. Bounded staleness levels would thus all be weakly

available in our definition. Second, these availability bounds do not consider partial network

partitions, where certain pairs of nodes cannot directly communicate with each other, but

some indirect multi-hop paths are still available. Alfatafta et al. discussed partial network

partitions and mechanisms to exploit indirect paths [11].

6.5 Summary of Consistency Modeling

In this chapter, we presented the Shared Object Pool (SOP) model, a unified consistency mod-

eling framework that unites the definitions of common non-transactional consistency levels

(linearizability, sequential consistency, causal consistency, eventual consistency, and more).

Our definitions are simple and concise, where each level can be defined as a conjunction of

two constraints on the allowed ordering of client operations: the convergence constraint,

which dictates the shape of the ordering, and the relationship constraint, which dictates

the relative position between operations within the ordering. We present a hierarchy of

common consistency levels derived from the definitions, illustrate with extensive examples,

and briefly discuss availability upper bounds.

135

Chapter 7

Enforcing Correctness and Availability

Ensuring the correctness and availability of distributed replication protocols and their

implementations is crucial, as they are built to provide fault-tolerant storage and access

methods to critical data. A flawed protocol algorithm or a buggy system implementation

could lead to infrastructural failures, undermining the reliability these systems are meant

to provide. There are two main steps towards correctness enforcement in the context of

replication systems: empirical testing and formal methods.

Testing is ubiquitous across all fields of computer science and offers practical validation

of the behavior of a system implementation. Numerous tools and frameworks have been

developed to ease distributed systems testing. Notable examples include specialized semantic

checkers such as Porcupine [18], language-specific schedule exploration frameworks (that

maximize test coverage) such as Shuttle [183] and Turmoil [332], and holistic end-to-end

testing frameworks (that have fault injection capabilities) such as Jepsen [161, 162].

Formal methods are powerful techniques that enable machine-aided mathematical ver-

ification of expected properties. Modeling languages such as TLA
+
[194] and P [85] are

essential tools for specifying the concise algorithm of a protocol and for checking its prop-

erties via temporal logic. Advanced proof assistants such as Coq/Rocq [327], Lean [82],

Dafny [211], and Verus [206] help develop machine-checked proofs.

This chapter documents two of our efforts on correctness enforcement, one on testing

and the other on formalization, that augment the comprehensiveness of our research practice.

§7.1 describes a unified consistency level checker with Jepsen toolchain integration and the

associated analysis results; it demonstrates an application of the SOP consistency model

136

we proposed in Chapter 6. §7.2 presents the formal TLA
+
specifications we developed

for three consensus protocols: MultiPaxos, Crossword, and Bodega, and how they are

model-checked with various features.

7.1 Unified Checker for Jepsen Testing

Consistency checking is a crucial aspect of testing replication systems. To demonstrate the

uniformity, practicality, and understandability of the SOP model developed in Chapter 6,

we apply it to consistency checking. Assume a known number of clients using a key-value

store service. Given a history of client operations as input, our consistency model should be

able to decide which consistency levels the service conforms to (according to the specific

history) and which levels it certainly already violates.

A checker cannot operate without history trace inputs. We build upon Jepsen, a widely-

used distributed system testing, fault injection, and analysis toolchain [162] (open-sourced

by the same-named company [161]). Jepsen offers an automated workflow for running real

distributed systems, generating client workloads, injecting failures, recording the execution

history, and performing consistency and availability analysis based on observed results.

Jepsen is written in Clojure, a dialect of the functional programming language Lisp with a

Java-backed runtime.

We implement a consistency levels conformity checker prototype in ~1k lines of Rust,

using SOP orderings as the underlying mechanism. We add ~1k lines of Clojure wrappers

to integrate the checker with the Jepsen toolchain and make it a selectable alternative to

the original Knossos linearizability analyzer [163] for key-value operations. Source code of

the demo can be found at https://github.com/josehu07/jepsen.demo.

7.1.1 Checker Logic

The checker takes as input from the Jepsen execution stage a history, which is a sequence

of events where each event is either the invocation or the completion of a client operation

(recall §6.1.4). There are three types of operations: read (R), write (W), and compare-and-

swap (CAS). The three types correspond to the model’s definition described in §6.1.1, with

CAS being a concrete, representative type of an RMW operation that conditionally writes a

new value if passing an equality check on an expected old value.

https://github.com/josehu07/jepsen.demo

137

The checker outputs four flags to indicate whether the given history conforms to the

four most common consistency levels: linearizable (Linr.), sequential (Seql.), causal+ (Casl+),

and eventual (Evtl.). Conveniently, due to the chain ranking across the four levels, satisfying

a higher level guarantees all weaker levels. Note that the result of a run is specific to the

particular history produced in the run, and the system in general could be at a weaker level

than what was exposed by the test run.

The internal logic of the checker goes as follows. 1 It parses the history into a timeline

resembling §6.1.2, stored as a collection of per-client queues of spans, where each span

represents a specific operation with start and end timestamps. 2 It repeatedly drains

the queues in bulks of concurrent operations, and tries to iterate through all possible

constructions of ordering graphs. If a graph satisfying both the convergence and relationship

validity constraints of a level is found when all queues in the timeline have been drained,

that level is satisfied. The iterative process starts from "easier" graphs (e.g., SO graphs with

RT relationship constraint), seeking stronger levels first to terminate early, before moving on

to "harder" graphs (e.g., CPO graphs with more flexible relationship constraints). 3 If all the

CPO graph possibilities are exhausted for all chunks of spans, the checker terminates with

all flags set to false, meaning weak consistency. The checker also terminates immediately if

any read returns a corrupted or never-seen-before value.

7.1.2 Analysis Results

We run the Jepsen workflow on three representative systems: the etcd key-value store [96],

the ZooKeeper coordination service [155], and the RabbitMQ message broker [287], with

various setups when relevant. All systems are run with 5 replicas distributed across 5

CloudLab c220g2 machines [90], and all systems are structured to expose a replicated

key-value store service API to clients (covered below).

In each run, 10 clients are distributed across the samemachines evenly, and each generate

30 seconds of workloads with random keys and values concurrently at a global 200 ops/sec

rate. Network partitioning faults are injected every 10 seconds and last 5 seconds each time.

This testing setup is able to produce a diverse coverage of the consistency hierarchy across

the four most common levels.

Table 7.1 presents the results of the runs. Our SOP-based checker outputs fine-grained

consistency validation results that span the four common levels. Jepsen’s original Knossos

138

System Setups SOP-based Checker Jepsen

System Mode Conv. Rela. Linr. Seql. Casl+ Evtl. Knossos

etcd

Quorum read SO RT Pass

Stale read SO CASL # No

CAS as txns SO CASL # No

ZK

Locked atoms SO RT
∗ ∗ Pass

∗

Local refs CPO CASL # # No

RabbitMQ P2P announce CPO None # # # No

Table 7.1: Jepsen workflow consistency checker outputs on representative systems.

Conv.: convergence. Rela.: relationship. See §7.1 for explanation of system deployment modes.

analyzer outputs a binary decision on linearizability only. The results of all six system setups

match what we would expect from the system deployments; we explain the deployment

modes below.

etcdModes. etcd is a Raft-consensus-backed, strongly-consistent key-value store for critical

data with transaction support. Default deployment uses quorum reads, following the Raft

protocol strictly, and is therefore linearizable. If reads are allowed to be acknowledged before

reaching a majority quorum (Stale read), they could miss the latest committed writes, and

the service degrades to sequential consistency. We also test a mode where CAS operations

are implemented manually as serializable transactions instead of single-point operations,

which also brings the overall consistency down to sequential.

ZooKeeper (ZK) Modes. ZooKeeper is a sequentially-consistent coordination service

backed by the ZAB primary-backup protocol. We use ZK through the Avout library, which

provides a distributed Clojure atom abstraction using ZK as access locks. Although sequen-

tially consistent, triggering a non-linearizable read result is rare as it requires stale locks

to be held in close succession; thus, our test run yielded a linearizable history (
∗
). We also

include a mode where a subset of atoms is replaced with local atom references without

cross-node communication. This caps those atoms at causal+ consistency.

RabbitMQ (RMQ) Modes. RabbitMQ is a message queueing and brokerage system. We

build a peer-to-peer broadcasting layer using RabbitMQ queues co-located with each node

as the communication media between them. This resembles a weakly-consistent key-value

store service to clients, where updates received by a server are propagated lazily to peer

nodes through background announcements.

139

Performance Limitation. The main purpose of the checker implementation is to demon-

strate the uniformity, expressiveness, and practical relevance of the SOP model. A major

limitation lies in brute-force ordering graph construction, which has sub-factorial complex-

ity with respect to the number of concurrent writes (bounded by the number of clients),

leading to long analysis time and high memory consumption. Checking for linearizability

alone takes ~1s, on par with Jepsen’s time in our small-scale tests, but weaker levels require

up to hours to explore, with the RabbitMQ eventual consistency case taking 3 hours 24

minutes. In practice, level-specific algorithms should be used [3, 18, 46, 146, 163, 274] with

auxiliary information and heuristics from the tested system, such as object versions and the

believed serialization order.

7.2 Formal TLA
+
Specifications

Empirical testing is indispensable in the design and implementation of distributed systems,

but testing alone is insufficient for ensuring absolute correctness. Formal methods are

machine-aided tools that utilize logic-based mathematical structures to model computer

algorithms, and verify and prove that they satisfy their expected properties. Formalization

plays a critical role in distributed systems research, as distributed protocols and programs

are not easily comprehensible to humans; consensus is no exception. Applying formal

methods helps eliminate deep logical flaws and ensure the fundamental safety and liveness

properties of the underlying algorithm.

Formally proving the properties of real programs from end to end, even for smaller

single-node programs, is intrinsically hard and is a problem that stands at the cutting edge of

formal verification research at the time of writing [62, 106, 135, 206, 207, 211, 327]. Luckily, at

an inner level, well-developed tools exist to help model and verify the underlying consensus

protocols of replication systems in a more abstract manner [85, 194]. The most notable

examples are tools built around the temporal logic of actions (TLA), a mathematical logic

framework constructed by Lamport et al. [191] capable of expressing temporal states that

evolve with logical time.

In this section, we present our work on formally specifying three of the presented

consensus protocols: MultiPaxos with modern features, Crossword, and Bodega, using

the standard TLA
+
specification toolchain [194]. We show how we model the consensus

140

protocols and their assumptions, how we define the desired properties, and how we verify

them with model checking.

7.2.1 TLA
+
Fundamentals

Detailed tutorials on the TLA
+
specification language and its associated toolchain are

available from multiple online sources [194, 199, 349]. Here, we give a brief introduction to

its fundamentals.

Basic Constructs. TLA
+
builds upon the mathematical primitives of first-order logic. At its

core, everything is composed of booleans, logical operators (and ∧, or ∨, not ¬, implication

=⇒), and satisfaction tests. On top of booleans, there are two types of fundamental

constructs: sets and functions. Sets are collections of unique elements that are internally

represented as a boolean existence test formula. Sets support set operators (such as union

∪, intersection ∩, difference \, and xor ⊕) and enable predicate logic (forall ∀, exists ∃).
Elements of sets can also be sets. Functions are mappings from a domain set to a range set,

defined as [x ∈D 7→ e(x)].

For convenience, libraries define other commonly-used constructs on top of these two

concepts. These constructs include strings, integral numbers (each being a singleton set),

infinite sets of numbers (such as Nat for all natural numbers), finite sets (which support

the cardinality operator), sequences (which are functions from integer indices to elements),

tuples (which are finite sequences), multisets (which are functions from elements to integer

counters), records (which are functions from string names to values), and more.

Temporal Logic of Actions (TLA) is an extension to the aforementioned logical constructs,

designed specifically for modeling the execution of programs as state machines. It introduces

the notion of states and actions. Starting from an initial state, a program can be modeled as

a collection of actions. An action is enabled if its preconditions are satisfied by the current

state, and specifies how to produce the next state from the current one.

An execution is a specific chain of steps, where in each step, an enabled action is selected

at the state to produce the next state. An execution could be infinite even when the number

of possible states is finite; for a minimal example, consider a program that oscillates between

two states indefinitely. A program could specify a termination condition on states to check

for termination guarantees, but this is not required. The behavior of a program is, generally

speaking, the graph of all possible executions rooted at the initial state.

141

To be able to express the concept of executions mathematically and to define properties

on them, TLA introduces two new temporal predicates: always □ and eventually 3. The

always □ predicate defines a condition that is true on all states of an execution, and the

eventually 3 predicate defines one that is true on some state of an execution. Notice the

similarity with regular logical operators, but on the new temporal axis. The two predicates

can be combined. For example, 3□ precedes a condition that is eventually true and stays

true after some step, and □3 precedes a condition that is recurrently true.

Specification and Model Checking. TLA
+
is a specification language that expresses

TLA formulas to model programs and properties. The specification of a program is usually

expressed as

Spec= Init ∧ □[Next]⟨⟨vars⟩⟩, (S1)

where Init is the initial state composed of concrete values of vars, Next is the disjunction

of all actions, and [Next]⟨⟨vars⟩⟩ means applying Next while allowing stuttering steps (i.e.,

steps that leave vars unchanged).

Developers also specify properties to be checked on the program in TLA
+
formulas.

There are two types of properties in general: safety and liveness. Safety properties are

conditions that are expected to be true on all states in all executions of a program’s behavior;

they are also referred to as invariants. Safety invariants can be expressed using □Invar,

and the toolchain recognizes them specially for the purpose of optimizing verification speed.

Other properties belong to liveness properties and usually involve 3 predicates, making

them generally harder to verify.

Model checking refers to the technique of exploring the entire behavior of a program

by computing all possible executions from an initial state given finite input parameters,

and verifying that desired properties are satisfied. The TLA
+
toolchain comes with TLC, a

Java-based finite-space model checker. By setting constant values to all input parameters

of a specification, TLC runs model checking to look for violations. Model checking is a

resource-consuming task due to the nature of the exponential growth of states; TLC is

multi-threaded and supports distributed checking and checkpointing to be practical. Other

features include symmetrical sets (allowing different permutations of a set be considered

the same state if all elements are symmetrical) and deadlock detection (allowing detection of

non-termination when loops are found in the behavior graph).

The TLA
+
toolchain also includes TLAPS, a tool for writing machine-checked formal

142

proofs. Since model checking fulfills our needs, we will not delve into the specifics of TLAPS

in this dissertation.

PlusCal (+Cal) is a higher-level auxiliary language that allows developers to write specifi-

cations in a way that closely resembles actual procedural programs. Expressing algorithms

in vanilla TLA
+
may be tedious and counterintuitive. PlusCal provides programming-like

constructs to make this easier, for example, macro for function definitions, await for writing

preconditions, with for expressing nondeterminism (due to multiple allowed actions), and

control flow constructs such as if-else and while-do.
A PlusCal algorithm is written as a special comment in a .tla file, where the toolchain

automatically generates and appends translated TLA
+
formulas. All three specifications we

present below are written mainly in PlusCal.

7.2.2 Practical MultiPaxos Specification

We start by modeling MultiPaxos [193], the classic consensus protocol that laid the foun-

dation for later literature. Despite the rich history of research, we found that previous

MultiPaxos TLA
+
specifications (available online [116, 200, 201]) were all centered around

the basics of the single-decree Paxos algorithm [192], which deviates from how practical

systems implement it in the wild (as an SMR protocol). They also lacked modern features

such as asymmetric quorum sizes and leader leases. Therefore, we develop a newMultiPaxos

specification that models it from the perspective of an SMR log.

Our enhanced MultiPaxos specification has been accepted into the official TLA
+
Exam-

ples repository [123], available at https://github.com/tlaplus/Examples/tree/mas
ter/specifications/MultiPaxos-SMR. The specification and configuration files are

also included in Appendix A.1. We enumerate its features and advantages below.

Practical SMR-Style LogModel. Wemodel the system as a collection of symmetrical nodes

that each maintains a replica of the log of commands; the log is referred to as insts, meaning

“instances”. Each node keeps track of its states that closely resemble real replication system

implementations, such as Summerset. See the NodeStates variable. Message sending and

receiving are modeled as adding or picking a message to/from the global “bag” of messages.

This network model adheres to conventional practice and can naturally express message

drop, duplication, out-of-order delivery, and implicit retransmission.

https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos-SMR
https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos-SMR

143

Explicit ClientRequests andMessages. The specification explicitlymodels client requests

as well as internal node-to-node messages, rather than treating communication as magical

actions. It takes as input two sets of client commands for writes and reads, respectively,

and processes the issuance and acknowledgment of them as client-observable events. See

ClientEvents, InitPending, and the TakeNew<R/W>Request macros. Similarly, the internal

Prepare and Accept messages are defined explicitly and have corresponding handlers. See

PrepareMsg, AcceptMsg, and the Handle<MsgType> macros.

Explicit Safety and Termination Condition. Unlike previous specifications that only

use single-decree consensus properties, the safety condition of Linearizability is defined on

client-observed request issuance and acknowledgment events on the log. This matches the

exact definition of linearizability from end to end. Termination is marked explicitly when all

input requests are successfully replicated, allowing us to use the CHECK_DEADLOCK feature

to verify the protocol’s progress guarantee under our network model.

Explicit Node Failure Injection. The NodeFailuresOn input flag allows explicit injection

of node failures. This enables faster exploration of failure scenarios, and allows checking

for the protocol’s fault tolerance guarantee when combined with CHECK_DEADLOCK.

Asymmetric Read/Write Quorum Sizes. The specification recognizes read vs. write

commands and allows setting asymmetric read/write quorum sizes, instead of always fixing

both to the majority number. See ReadQuorumSize andWriteQuorumSize.

Leader Leases and Local Read at Stable Leader. The specification includes the feature

of leader leases [63], where nodes may grant leases to the believed leader, making it a stable

leader that can serve read requests locally when holding at least a majority number of leases.

We model leases as a collection of special, removable LeaseGrant messages, and a stable

leader may serve a read request through TakeNewReadRequestLocally.

Model Checking Statistics. With the default parameters presented in §A.1.2-§A.1.3, TLC

is able to finish model checking with no errors. A total of 25,266,000 distinct states are

found. The depth of the complete search graph is 34. Model checking finishes in 5 minutes

41 seconds on a machine with two 32-core AMD 7543 @ 2.8GHz CPUs (128 cores in total)

and 256GB of memory.

144

7.2.3 Crossword Specification

We model Crossword in a similar SMR-style approach based on §7.2.2. The specification

and configuration files are included in Appendix A.2. We describe the differences from the

base specification below.

Erasure-Coded Shards. Every instance of a log replica has an additional field named

shards, which keeps track of the set of erasure code shards available for this instance at

this replica. See the InstStates variable. Using this notation, the ValidAssignments formula

enumerates all the valid Balanced Round-Robin (BRR) shard assignment policies according

to Crossword (§3.2.2).

Updated Messages and Commit Condition. Following Crossword’s logic, we updated

the Prepare and Accept messages such that they carry a shards set with them to indicate

the specific set of shards transferred. The commit condition of an instance checked by the

leader is updated accordingly, adding the extra clause that tests shard coverage. See the

CommittedCondition formula.

Reconstruction Reads During Prepare. Without loss of generality, we model the recon-

struction reads for non-committed instances at a new leader as part of the Prepare phase,

by letting the PrepareReply message carry the information of available shards directly. If

data is reconstructable after receiving a sufficient amount of PrepareReplies, that data must

be used as the value for the instance.

Model Checking Statistics. With the default parameters presented in §A.2.2-§A.2.3, TLC

is able to finish model checking with no errors. A total of 218,047,420 distinct states are

found. The depth of the complete search graph is 35. Model checking finishes in 1 hour 36

minutes on a machine with two 32-core AMD 7543 @ 2.8GHz CPUs (128 cores in total) and

256GB of memory.

7.2.4 Bodega Specification

We model Bodega in a similar SMR-style approach based on §7.2.2. The specification and

configuration files are included in Appendix A.3. We describe the differences from the base

specification below.

Rosters and Roster Leases. We extend the leader leases feature of the base MultiPaxos

145

specification to support Bodega’s roster leases. The definition of rosters can be found in the

Rosters variable and follows the definition in §4.2.1 and §4.2.3. Without loss of generality,

we assume only one key in the system; therefore, a single responders set is sufficient. Active

roster change attempts are made only in parallel with leader step-ups to reduce state bloat.

Local Read at Responders. If any node finds itself holding at least a majority of up-to-date

roster leases, it attempts to serve read requests locally. See the updated TakeNewReadRequest

macro. If the replica is a non-leader responder, the local read acknowledgment action

is enabled only when the latest known write is in Committed status, which follows the

requirement of the Bodega protocol.

LocalRead Safety Threshold. Bodega requires nodes to communicate their latest accepted

slot number after roster changes to let a responder calculate the safe slot threshold, after

which the responder can start serving local reads. These numbers are encoded as the

CommitPrev field, and are communicated via the added PrepareNotice messages that act as

part of the lease guards.

Model Checking Statistics. With the default parameters presented in §A.3.2-§A.3.3, TLC

is able to finish model checking with no errors. A total of 20,431,063 distinct states are

found. The depth of the complete search graph is 37. Model checking finishes in 3 minutes

38 seconds on a machine with two 32-core AMD 7543 @ 2.8GHz CPUs (128 cores in total)

and 256GB of memory.

Model checking Bodega helped us discover an early design flaw in the protocol, where

we erroneously used the latest committed indices rather than the correct latest accept indices

in the calculation of safety thresholds. This shows how model checking is effective for

verifying protocol designs.

146

Chapter 8

Related Work

In this chapter, we categorize and discuss all prior works related to this dissertation. These

include consensus protocols and optimizations (§8.1), optimistic system design techniques

(§8.2), studies on cloud workloads and real system implementations (§8.3), and correctness

enforcement via testing and formal verification (§8.4).

8.1 Distributed Replication and Consensus

Replication has been applied ubiquitously for fault tolerance since the dawn of distributed

systems. Behind the scenes, consensus protocols are the driving force for linearizable

replication, which is the main focus of this dissertation. In §8.1.1 through §8.1.6, we discuss

existing consensus protocols in categories, assuming the common failure model of fail-stop

nodes and an asynchronous network. We then briefly discuss notable works in two related

research areas: Byzantine fault tolerance (§8.1.7) and replication with weaker consistency

levels (§8.1.8).

8.1.1 Classic Consensus Protocols

Paxos [192] is the classic work that defined the terminology of “consensus” and laid the

foundation for all future consensus protocols. It provides a mechanism for multiple inde-

pendent nodes to reach agreement on a single value in as few as two rounds of messages:

Prepare and Accept. Using this single-decree consensus as a basis, MultiPaxos [193] builds

a multi-decree consensus protocol, where nodes use the Prepare phase to settle for lead-

147

ership and use repeated Accept phases to establish agreement on multiple values, usually

organized in the form of a log of state machine commands. Later optimizations include Fast

Paxos [196], Cheap Paxos [187], Generalized Paxos [195], and Disk Paxos [105]. We have

presented Paxos and the consensus problem in detail in the background chapter (§2.1-§2.2),

but include them here again for completeness.

Viewstamped Replication (VR) [268] is a protocol that operates similarly to Paxos in the

normal case but adds membership management capability, which later becomes a standard

technique in consensus. VR introduces the notion of views, and allows nodes to reconfigure

the members of the cluster via view changes to mitigate failures. Chain Replication [295]

explores a novel cluster topology where nodes are organized as a one-directional chain,

greatly simplifying membership management and increasing throughput utilization, at

the cost of per-request latency. It inspired later throughput-optimized protocol designs.

Raft [269, 271] is a relatively recent protocol that resembles the same underlying mechanisms

as MultiPaxos but introduces two differences: strong leadership and implicit batching on the

log. Raft literature gives an exceptionally clear presentation of the protocol and has since

gained popularity in modern replication systems. Prior work has proven the inherent duality

between MultiPaxos and Raft, and that optimizations are portable between the two [347].

Crossword and Bodega use these classic consensus protocols as building blocks, and

infuse them with optimistic connectivity techniques to address the unique challenges

imposed by the modern cloud.

8.1.2 Erasure-Coded Consensus

Erasure coding is a family of parity-based algorithms that can reconstruct missing or cor-

rupted shards of data, with minimal and tunable information redundancy that is fractional

to the original data size [279, 375]. Reed-Solomon code (RS code) [291], described in detail in

§3.1.3, is a standard type of erasure code based on Galois fields algebra. Recent storage sys-

tems often implement a variant of RS code called locally recoverable code (LRC) [152, 168, 275],

which uses smaller parity scopes across the stripe to reduce reconstruction I/O at the cost of

recoverability. Erasure coding does not offer ordering and consistency, but previous works

have demonstrated integration with consensus protocols.

RSPaxos [258] is the earliest work to integrate erasure coding with consensus, assigning

a single shard per server to reduce storage and network overhead, though at the cost of

148

reduced availability. CRSRaft [293] and adRaft [294] provide Raft versions of this design,

followed by CRaft [348], a more recent protocol that reverts to full-copy replication after

failures, still offering limited fault tolerance. We described RSPaxos and CRaft in greater

detail in §3.1.3. ECRaft [361] and HRaft [165] gradually restore shards onto healthy nodes

during the fallback process, and FlexRaft [377] tweaks the RS coding scheme according to

the number of healthy nodes. However, these approaches fall short in addressing degraded

availability, inflexible shard allocation under normal operation, and non-graceful leader

failover. Crossword is inspired by these protocols and addresses these challenges.

As orthogonal contributions, Pando [338] is a higher-level protocol optimized for wide-

area networks, focusing on the latency-versus-storage-cost tradeoff rather than on dynamic

adaptability at runtime. It presumes a frontend-backend topology, relies on pre-deployment

planning for quorum configurations, and lacks support for reconfiguration. Racos [372]

applies erasure coding to Rabia [273], a randomized coin-flipping consensus protocol, aiming

to alleviate leader overload.

8.1.3 Bandwidth-Aware Consensus Designs

A common practice of deploying consensus in scalable storage systems is to partition the

address space of keys into separate groups, each composed of virtual replicas scattered

around the actual cluster. Gaios [45] proposes this idea via Paxos groups. Later systems

include Paxos-based Spanner [75], Derecho [164], and fRSM [227], as well as Raft-based

cloud services such as CockroachDB [339], TiDB [148, 153], and Consul [134]. Crossword

is applicable to each consensus group independently, as discussed in §3.5.2.

Multiple protocols inspired by Chain Replication use the pipeline structure design to opti-

mize for throughput. Examples include CRAQ [324], RingPaxos [245], ChainPaxos [101], and

PigPaxos [68]. This type of design amplifies latency and is prone to unbalanced performance

and stragglers along the chain, which Crossword strives to avoid.

Several works, namely PigPaxos [68], S-Paxos [44], SDPaxos [379], and Autobahn [115],

incorporate data dissemination or relaying techniques that decouple payload transfer from

the ordering messages, making it asynchronous or multi-hop on a ring topology. A similar

design philosophy, named master replication, decouples the strongly-consistent metadata

layer from a weakly-consistent data storage layer, and can be found in distributed storage

systems (not necessarily replication systems) such as Niobe [239], Gnothi [346], Google’s

149

GFS [111], and Amazon’s S3 [21]. These techniques increase system complexity and do not

relieve the total amount of workload on the critical path; however, Crossword’s gossiping

path can make use of them to improve scalability when under constant high load.

8.1.4 Leaderless or Multi-Leader Consensus

Leaderless or multi-leader consensus protocols decentralize leadership duties across nodes

to allow fast-path quorums to be closer to clients, enhancing scalability and reducing latency

in wide-area deployments. Mencius [244] is the first multi-leader protocol that assigns the

leader role in Round-Robin order across nodes based on slot index, improving load balance.

EPaxos [253] is a pioneering leaderless protocol that allows any node to act as the command

leader for nearby clients. Ordering is first attempted on a fast-path supermajority quorum,

and a second phase is required if conflicts arise; inter-command dependencies are defined as

in Generalized Paxos [195]. A recent proposal utilizes hardware timestamps to help reduce

conflict probability [333]. SwiftPaxos [302] improves the slow path of EPaxos from 2 RTTs

to 1.5 RTTs by re-introducing a leader. PQR [67, 124] is a variant of leaderless consensus

that applies leaderless operations to reads only, where clients read from the nearest majority

until all replies contain the same latest committed value. Atlas [95] trades off availability

for smaller fast-path quorum sizes for geo-scale deployments with a larger number of nodes

(e.g., >10 across the globe).

As discussed in §4.1.2.2, the leaderless approach is a novel and effective technique for

write-heavy workloads in geo-scale replication, but is sensitive to command interference

and hinders local read optimizations. Bodega therefore adopts a leader-based approach,

but takes inspiration from it in the design of roaster leases.

8.1.5 Leases in Consensus Systems

Distributed leases [120] are a well-established distributed system technique that allows a

grantor node to make a limited-time promise to a grantee node, ensuring that the grantee

never holds the promise longer than the grantor. We have explained the assumptions and

inner workings of leases in §4.1.1.

One way of leveraging leases is to deploy them as client-facing APIs and let user applica-

tions handle promises directly. Examples of such usage include distributed lock services such

150

as Chubby [54], objects tagged with time-to-live (TTL) expiry information as in etcd [96],

and file locking in NFSv4 [136].

Leases have also been applied to consensus protocols to enable read optimizations.

Leader leases [63] were first introduced in early implementations of MultiPaxos to establish

stable leadership, such that no two nodes consider themselves leader at the same time,

permitting local reads at the leader. Megastore [28] uses an external coordinator to maintain

read leases to all replicas, but experiences long periods of lease downtime across writes.

Quorum Leases [254, 255] extend leases to configurable subsets of replicas and remove the

external coordinator, but the temporal interruption of lease coverage bywrites persists (recall

§4.1.2.3). Bodega overcomes these drawbacks via deploying roster leases as a generalization

of leader leases off the critical path.

8.1.6 Other General Consensus Topics

We list other works that are more distantly related to this dissertation.

Atypical QuorumAssembly. Dynamic quorums [140] and weighted voting [112] are early

proposals in transactional database systems exploring atypical quorum assemblies other than

simple majorities. Dynamic quorums use pre-assigned sets of candidate quorums (which

hardcode availability to specific nodes), while weighted voting uses numerical weights that

are more flexible than node counts. We discuss in §9.2.1 how the latter could be combined

with erasure-coded Crossword to achieve highly-available consensus. Flexible Paxos [147]

demonstrates a way to decouple the quorums of the two phases of Paxos when deployed to

a larger array of nodes. Pando [338] and others [328] exploit asymmetric read/write quorum

sizes, configured statically via a pre-deployment planner.

Membership Management. Vertical Paxos [202, 223] describes a system architecture

where a separate, external consensus cluster acts as a configuration oracle that dictates

membership changes on a group of replicas, allowing the main cluster to run a simpler

primary-backup protocol. Hermes [171] is a recent example that delegates reconfiguration to

an external service and runs leaderless primary-backup broadcast underneath. uKharon [125]

is a concrete implementation of an RDMA-enabled low-latency membership service.

Shared Logs and Lazy Ordering. Shared logs are a widely used abstraction in cloud

systems [29–32, 53, 87, 230], typically implemented using primary-backup-style protocols.

151

CAD [107], Skyros [108], and LazyLog [234] exploit the nil-externality property of the

command interface and adopt a lazy ordering technique for writes and log appends, masking

a significant portion of write latency, but may degrade read performance when reads are

frequent or follow writes closely. Commutativity is another API property that can be

harnessed in the co-design with replication [195, 277].

Hardware-Assisted Acceleration. With recent advancements in hardware, newer con-

sensus protocols start to exploit specialized hardware semantics to accelerate replication

operations, although many of these semantics are not yet available in the general cloud.

These include RDMA visa SmartNICs [5, 344, 350], in-network ordering via programmable

switches [71, 80, 81, 217, 285, 323, 374], strictly synchronized clocks [43, 64, 75, 89, 110, 222],

disaggregated memory [151, 259], and client-side validation capability [17, 323, 366].

Randomized Coin-Flip Consensus. Ben-Or’s algorithm [36, 257], Rabin’s algorithm [257,

288, 334], and recent protocols such as Rabia [273] are randomized consensus protocols that

rely on the statistical properties of common coins to achieve agreement in a probabilistic

threshold of rounds. They are essential contributions to Byzantine fault-tolerance and

blockchain systems, but are not as practical as classic consensus otherwise. We recognize

the connection between randomized consensus and Bodega’s roster leases activation, and

discuss in §9.2.2 how roster leases can be extended to establish general agreements.

Scalability and Fail-Slow Tolerance. Several works specifically target SMR scalability

concerning the number of replicas [298, 317] or partitions [42, 144], and propose design

principles such as compartmentalization [353]. In large-scale partitioned deployments, it

is easier to run into fail-slow leaders; Copilots [264] is a fail-slow-tolerant protocol that

maintains a copilot leader who is ready to take over when the main leader is lagging.

Programmability Improvements. A unique sub-direction of consensus research is to

develop tools and libraries that improve programmability for developers. DepFast [235] is

a programming framework for developing quorum systems that hides the complexity of

quorum operations. Derecho [164] is a general library that implements an efficient SMR

solution for cloud applications. Electrode [382] utilizes new Linux kernel eBPF extensions

to help offload common networking tasks in distributed protocols to the kernel. Crane [77]

enables transparent SMR at the socket API level for general server programs.

152

8.1.7 Byzantine Fault Tolerance (BFT)

Byzantine fault tolerance (BFT) is a fundamental failure model where nodes may behave

maliciously, send conflicting information, or actively disrupt the protocol. Although not the

main focus of this dissertation, BFT has been studied extensively in distributed systems the-

ory [59, 60, 100, 203, 288]. Due to its inherent difficulty, however, practical implementations

did not flourish until recent blockchain-based cryptocurrency systems gained popularity.

Traditional BFT protocols are direct extensions of classic consensus that use carefully

designed quorums and message rounds to tolerate up to f Byzantine failures with 3f+ 1

nodes. Examples include Byzantine Paxos [197], PBFT [39, 59, 60], HotStuff [367], and

Basil [320]. Byzantine ordered consensus [378] proposes a new correctness specification

primitive that removes the leader’s despotism on SMR ordering decisions.

Modern blockchain systems, such as Bitcoin [260], Ethereum [55], Diem [86], and

Avalanche [299], approach BFT from a different angle, using randomization and probabilistic

algorithms to achieve ordering and agreement with statistical guarantees. Recent prototypes

and optimizations include Bidl [286], RainBlock [284], and Autobahn [115].

8.1.8 Weaker Consistency Levels

Consistency levels weaker than linearizability are useful for systems where fuzzy ordering

can be tolerated. Despite not being the major focus of this dissertation, we recognize their

significance in practical systems and have developed a consistency model in Chapter 6

that unifies all the common weaker consistency levels. We list recent replication protocols

developed for those levels.

Primary-backup protocols such as ZooKeeperZAB [155] are sequentially-consistent [190]

protocols where stale reads can be served by any replica. Gryff [53] is a modern shared

register [19, 137] protocol that extends vanilla registers with compare-and-swap (CAS)

capability via logical base timestamps. COPS [229] defines the notion of causal+ consistency.

ChainReaction [12] is a chain-structured causally-consistent [27] data store. Occult [248]

improves the scalability of causal replication by using read-blocking (versus write-blocking)

to alleviate cascading slowdowns upon writes. PNUTS [73] defines the notion of per-key

sequential consistency. Examples of eventually-consistent [343] replication systems include

Bayou [282], Grapevine [306], and StaleStores [312].

153

TACT [368] and consistency-based SLAs [326] allow multiple consistency levels to be

picked and dynamically tuned according to performance requirements. Noctua [238] is

an automated analysis framework for mixtures of relaxed consistency semantics in web

applications. MongoDB [381] employs a unique pull-based consensus design to support its

speculative execution feature.

8.2 Optimistic System Design Techniques

Beyond optimistic connectivity for consensus protocols, optimistic design techniques are

a recurring theme in distributed systems and algorithms. Instead of paying the upfront

cost to make room for the rare worst-case scenarios, an optimistic design attempts more

aggressive but performant operations first, expecting that these operations would succeed.

In the unfortunate case, a detection or validation mechanism catches inconsistencies and

invokes safer but slower fallbacks without causing any harm.

Unlike optimistic connectivity, existing optimistic system designs are centered around

conflicts, as we have explained in §1.3. They expect infrequent occurrences of conflicts

that would break correctness guarantees; these conflicts include concurrent transaction

executions that break isolation guarantees (§8.2.1), concurrent object updates that require

resolution (§8.2.2), and speculatively executed code that are wrong predictions (§8.2.3). We

review related work on these topics.

8.2.1 Optimistic Concurrency Control (OCC)

The most pronounced application of optimistic techniques is optimistic concurrency control

(OCC) for serializable transaction processing in database systems [138, 181]. As an alternative

to pessimistic mechanisms based on locking, OCC protocols let concurrent transactions

proceedwithout blocking, recording writes locally andmemorizing read versions. At commit

time, read versions are validated against their current committed versions. If all versions

are up-to-date, the transaction is allowed to commit and its writes are published atomically;

otherwise, the transaction is aborted and should be scheduled for retry.

The original presentation of OCC by Kung and Robinson [181] defines the three phases of

a transaction (read, validation, write) and proposes a parallel validation algorithm. Silo [336]

uses an epoch-based OCC protocol for fast in-memory databases. Larson et al. [205] pro-

154

posed an optimistic variant of multi-version concurrency control (MVCC). TicToc [370]

brings optimism to timestamp ordering (T/O) mechanisms and eliminates the bottleneck of

global timestamp allocation. Polaris [365] enables priority in OCC, protecting high-priority

transactions from being aborted by lower-priority ones. MOCC [345] scales OCC to many-

core machines. AOCC [128] chooses adaptively between different validation schemes (local

read-set vs. global write-set) according to the workload. Optimistic lock coupling [212, 311]

infuses concurrent index accesses with validation-based methods.

Jasmin [185], Megastore [28], and MaaT [242] adopt distributed OCC protocols for

distributed transactions in multi-node databases. Harding et al. [133] studied and evaluated

OCC with other types of concurrency control algorithms in a distributed setting. Common

limitations of OCC methods include wasteful validation for read-heavy workloads under

low contention and high abort rates under skewness.

8.2.2 Optimistic Conflict Resolution Mechanisms

In large-scale object storage systems that provide causal consistency or eventual consistency,

optimistic conflict resolution mechanisms are common. These systems, such as Amazon

DynamoDB [93], Apache Cassandra [186], and CouchDB [15], allow concurrent client

operations on the same objects to proceed with little to no global synchronization, and

reconcile conflicts explicitly when divergent operations are detected. A representative

example of such a mechanism was given in Dynamo literature [84], where the system

allows conflicting versions of a shopping cart to resolve using a “merge” operation – a

natural semantic for shopping carts; other acceptable resolution strategies may include

last-write-wins or random.

Conflict-free replicated data types (CRDTs) [214, 310] are a well-studied category of data

structure primitives that offer the aforementioned conflict resolution capability without

requiring explicit resolution strategies. Vector clocks [99, 247], a technique often employed

by causally-consistent transactional systems, also fall into this category as they use an array

of logical timestamps to compare and reconcile states between nodes.

8.2.3 Speculative Execution

Another design technique that incorporates optimism is speculative execution, often found

in modern CPU microarchitectures [315, 337]. To avoid wasting CPU pipeline cycles idling

155

on memory stalls or branches, modern CPUs speculatively stream the next instructions

on a predicted path, greatly improving CPU utilization. Upon wrong predictions, all the

side effects potentially caused by the incorrect instructions must be rolled back, keeping

100% transparency to applications. Although essential to performance, implementing bullet-

proof speculative execution with minimal microarchitectural side effects is hard, leading to

multiple security vulnerabilities [175, 225].

The idea of speculative execution has been applied to other fields, including database

query execution [303], big data analytics [359], cloud microservices [219], caching [69, 280,

362], and file systems [66, 97, 265, 266].

8.3 Cloud Studies and System Implementations

Prior works have presented empirical studies, surveys, and experience reports on serving

cloud workloads (§8.3.1) and implementing resilient systems (§8.3.2).

8.3.1 Cloud Workload Studies and Architecture Surveys

The “4D” characteristics of the cloud, namely distance, density, diversity, and dynamism,

have been acknowledged by multiple studies on cloud workloads and hardware. Reiss

et al. [292] analyzed Google cloud traces, emphasizing the heterogeneity and dynamicity

from a compute/memory perspective. Later studies on Alibaba cloud traces [127, 228] and

Microsoft Azure workloads [276] reveal similar and increasingly intensifying challenges for

storage and networking.

CloudScape [304] is a recent study that surveys storage services across the modern

AWS cloud, showcasing the significance of strongly-consistent replicated storage and the

heterogeneity inside the infrastructure. Prior architectural studies have been conducted on

the microservice architectures of Meta [157], Alibaba [233], and Google [308]. The trend of

geographical expansion of modern cloud platforms is also apparent, as can be inferred from

their public infrastructure maps [23, 25, 72].

8.3.2 Representative System Implementations

Consensus, and replication in general, have been powering real-world fault-tolerant cloud

systems for decades. Numerous examples of system implementations exist, and it is impos-

156

sible to list them comprehensively; we enumerate representative examples in this section.

Linearizable replication is crucial for systems that manage critical metadata and provide

essential coordination, for example: etcd [96] – a reliable transactional key-value store

(originally developed for Kubernetes metadata [296]), Chubby [54] – a distributed lock

manager, Tigerbeetle [330] – a financial database, FoundationDB [380] – a distributed

ACID database, and Kafka/Kraft [177, 179], RabbitMQ [287], and Redpanda [290] – message

queueing and brokerage systems.

Many cloud storage systems and HTAP databases are linearizable by default in their

core operations, for example: Google Spanner [75], Amazon S3 [21, 33], CockroachDB [339],

TiDB [153], and ScyllaDB [307]. Notable examples of systems operating at weaker consis-

tency levels in today’s cloud ecosystem include ZooKeeper [155] – a sequentially-consistent

coordination service, database systems such as Amazon Dynamo [84, 93], Aurora [341],

Apache Cassandra [186], and MongoDB [381], and file systems such as GFS/Colossus [111,

142], HDFS [314], and Ceph [351].

8.4 Testing and Formal Verification

A significant field of distributed systems research is dedicated to developing empirical and

formal methods to ensure the correctness of protocols and systems. Substantial advancement

has been made in this field in recent years; we discuss notable works in three directions:

empirical testing (§8.4.1), formal modeling (§8.4.2), and formal proofs (§8.4.3).

8.4.1 Empirical Testing

Jepsen [161] is a renowned distributed system analysis group that offers in-depth testing,

analysis, and consulting for distributed system projects, using the open-source framework

of the same name [162]. Jepsen incorporates two consistency checker implementations,

Elle [172] for transactional isolation checking and Knossos [163] for object-based lineariz-

ability checking. Relatedly, Porcupine [18] is a general linearizability checker for Golang

services based on prior formal algorithms [146, 231, 357].

A crucial feature of Jepsen is automated fault injection during tests. Fault injection is

a universal technique in distributed system testing. Notable approaches include lineage-

driven injection [13], chaos engineering by Netflix [34], and deterministic simulation by

157

FoundationDB [380], TigerBeetle [330], Amazon EBS [50], and others. Fault injection has

also been applied extensively to the crash consistency of file and storage systems [251, 289].

Zooming in on a single node of a distributed system, concurrent multi-tasking programs

are predominant. A promising approach to surface concurrency bugs is controlled concur-

rency testing [52, 371], where a schedule explorer cooperates with the task scheduler of the

language runtime to deliberately expose uncommon task schedules, avoiding the pitfall of

repeating the good cases during fuzz tests. Tools have been developed for popular system

programming languages with user-level schedulers: Shuttle [183] and Turmoil [332] for

Rust/tokio, synctest [263] for Golang, and Fray [182] for Java.

8.4.2 Formal Modeling and Specification

Formal modeling languages enable expressing distributed algorithms and system designs in

well-defined, machine-checkable specifications. This is helpful both in the early design phase

to eliminate hidden flaws, as well as in the implementation phase to improve maintainability.

TLA
+
[194] is the de-facto standard of formal specifications in distributed systems and is

widely adopted across the industry; we have discussed TLA
+
, PlusCal, and temporal logic in

extensive detail in §7.2. The P language by Amazon [85] is a modern, programmer-friendly

alternative to TLA
+
that emphasizes transparent implementation. PGo [130] is a Golang

toolchain for compiling special modular PlusCal models into runnable code. Earlier tools

include CDAP [109] based on process calculus and UPPAAL [37] based on timed automata.

8.4.3 Formal Verification via Proofs

Formal proof assistants and verifiable languages, which have seen significant advancement

over the recent years, apply formalization from a different angle by helping developers write

machine-checkable proofs. They build upon programming language theory fundamentals

such as Hoare logic [145] and Separation logic [297], and use satisfiability modulo theories

(SMT) solvers (such as Z3 [83]) to guide developers to construct verifiably-sound proofs of

program properties.

Coq/Rocq [327] is a classic proof language and interactive assistant toolchain that has

been used prevalently in formal methods research. Isabelle/HOL [267] is a similar proof

assistant using a different underlying logic. Lean [82] is a theorem prover specializing

in general mathematics. Verdi [356] is a Coq-based framework for expressing distributed

158

systems via refinement, and IronFleet [135] blends TLA
+
specification with proof-based

verification for distributed system implementations specifically via three layers of refine-

ment. I4 [237] and DistAI [364] automatically generate inductive invariants for distributed

protocols, and Sift [236] combines refinement with invariant automation.

Dafny [211, 216] is a verification-infused programming language where executable

programs can be verified with respect to specifications. Similarly, F
⋆
[322] is a proof-aware

language with a subset (Low
⋆
) compilable to C, and Verus [206] is a modern verification-

aware language based on Rust for low-level systems code.

Various system prototypes have been formally verified using the aforementioned tools.

Examples include seL4 [174] – an OS microkernel, DaisyNFS [62] – a network file system,

Anvil [319] – a Kubernetes cluster controller template, VeriSmo [383] – a VM security

module, Asterinas [281] – a Linux ABI-compatible Rust OS kernel with novel framekernel

architecture, and others [173].

159

Chapter 9

Conclusion and Future Work

In this closing chapter, we summarize each part of the dissertation (§9.1), discuss potential

future work directions (§9.2), comment on general experiences and lessons learned from

this research journey (§9.3), and finally conclude (§9.4).

9.1 Summary

This dissertation comprises six interwoven parts that together advance the state of the

art in consensus and replication for the cloud. We summarize each of the pieces below in

§9.1.1-§9.1.6, respectively.

9.1.1 The Principle of Optimistic Connectivity

We propose the design principle of optimistic connectivity, a guideline for constructing

linearizable consensus protocols that are resilient to dynamism while never compromising

consistency and availability. As cloud replication workloads and hardware environments

become increasingly diverse, dispersed, dense, and dynamic (which we summarized as the

“4D” challenges), classic consensus protocols in cloud services exhibit inferior performance

due to their rigid, pessimistic constraint on fault tolerance. Specifically, every replication

instance must leave room for a sufficient number of failures in all cases. Opportunities exist

in bringing optimism into consensus protocols for better common-case performance.

Unlike previous optimistic design techniques that validate speculative results to avoid

correctness-breaking conflicts, optimistic connectivity harvests a different and more gen-

160

erally applicable source of optimism, rooted in progress and availability. The intuition is

that failures are inevitable, but still infrequent; aggressive operations that perform well but

require connectivity to more nodes would normally succeed.

Following the principle of optimistic connectivity, a protocol should contain multiple

configurations, where some require connecting more nodes in return for better performance

(by, e.g., transferring less data or spreading information to a wider area), and others require

conservative quorums to assure progress. All configurations obey the same linearizability

guarantee, and transitions between configurations are allowed at runtime. If the protocol

accommodates such a group of configurations, then the performance-wise optimal configu-

rations can be chosen to adapt to real-time situations. When fault-induced timeouts happen

(analogous to validation errors in existing optimistic techniques), the protocol falls back to

conservative configurations until the faults are resolved, preserving availability at all times.

9.1.2 Crossword: Optimistic Quorum-Shards Adaptivity

We present Crossword, a flexible consensus protocol that applies optimistic connectivity

to tackle dynamic data-heavy workloads, a rising challenge in cloud replication systems

where payload sizes span a wide spectrum and introduce sporadic bandwidth stress.

Crossword incorporates the erasure coding technique to each consensus instance and

distributes coded shards intelligently to significantly reduce critical-path data transfer when

it is beneficial to do so. Unlike previous approaches that always statically assign shards to

servers, Crossword enables an adaptive tradeoff between the number of shards assigned

per follower and the quorum size in reaction to dynamic workloads and network conditions,

while always retaining the availability guarantee of classic protocols. Crossword handles

leader failover gracefully by employing a lazy follower gossiping mechanism that incurs

minimal impact on critical-path performance.

We evaluate Crossword comprehensively to show that it matches the best performance

among previous approaches (MultiPaxos, Raft, RSPaxos, and CRaft) in static scenarios,

and outperforms them by up to 2.3x under dynamic workloads and network conditions.

Crossword is able to select the best shard assignment policy adaptively at runtime. Our

integration of Crossword with the Raft module of CockroachDB brings 1.32x higher

aggregate throughput to TPC-C under 5-way replication. Erasure code computation incurs

negligible overhead using reasonable schemes at the scale of a consensus cluster.

161

9.1.3 Bodega: Optimistic Composition of Readers Roster

We presentBodega, the first consensus protocol that can serve linearizable reads locally from

any desired replica, regardless of the presence of interfering writes. Optimistic connectivity

is applied in the selection of local reader replicas, granting the protocol superior performance

in wide-area replication for reads without sacrificing the availability of writes.

Bodega introduces a novel roster leases mechanism that safeguards the roster, a new

notion of cluster metadata. The roster is a generalization of leadership; it tracks arbitrary

subsets of replicas as responder nodes for local reads. A consistent agreement on the roster

is established through roster leases, an all-to-all leasing mechanism that generalizes existing

all-to-one leasing approaches (Leader Leases, Quorum Leases), unlocking a new point in the

protocol design space. Bodega employs further optimizations, including optimistic holding,

early accept notifications, smart roster coverage, and lightweight heartbeats, to minimize

interruption from interfering writes and maximize practicality. Bodega is a non-intrusive

extension to classic consensus; it imposes no special requirements on writes other than a

responder-covering quorum.

We evaluate Bodega with a wide variety of previous protocols (Leader Leases, EPaxos,

PQR, and Quorum Leases) and two production coordination services (etcd and ZooKeeper).

Bodega speeds up average client read requests by 5.6x∼13.1x on real WAN clusters under

even moderate write interference. Bodega delivers comparable write performance with

previous approaches, supports fast proactive roster changes, retains fault tolerance via roster

leases, and closely matches the performance of sequentially-consistent etcd and ZooKeeper

deployments across all YCSB workloads.

9.1.4 Summerset Distributed KV-Store Implementation

We implement Summerset, a distributed, replicated, protocol-generic key-value store as

a well-founded testbed for implementing consensus protocols and evaluating them fairly.

Summerset is written in Rust and built using tokio, the modern asynchronous programming

framework of Rust, embracing its memory safety, concurrency safety, and high performance.

At the time of writing, the code infrastructure contains 14.6k lines of Rust, plus 11 replication

protocol modules with various levels of complexity.

Summerset adopts a modularized architecture and is generic to protocols. Common

replication system functionalities, such as durable storage, network communication, and

162

state machine command execution, are implemented as separate components connected

through async channels. Each component manages its own multitasking capabilities, and

the channels coordinate performance bottlenecks. Each protocol is implemented as a

single protocol module that encodes the protocol logic as a straightforward event loop.

Summerset is used as the evaluation platform for all the microbenchmarks conducted on

both Crossword and Bodega.

9.1.5 Unifying the Consistency Levels Spectrum

During our study on the connection between linearizability and weaker consistency levels,

we discovered that there were no existing models that unify the definitions of consistency

levels from a replication system perspective. To address this ambiguity and to benefit future

replication system research, we develop the Shared Object Pool (SOP) model, a simple yet

expressive model that harmonizes the definition of common non-transactional consistency

levels: linearizability, sequential consistency, causal+ consistency, eventual consistency, and

other subtle levels in between.

The SOP model categorizes consistency levels based on the constraints they impose on

the logical ordering of read, write, and read-modify-write operations observable to clients.

There are two types of constraints working in conjunction: convergence and relationship.

The convergence constraint dictates the shape of the ordering, which can be serial (SO),

convergent partial (CPO), or non-convergent partial (NPO). The relationship constraint

dictates the placement of operations with respect to each other in the ordering, which

includes real-time (RT), causal (CASL), first-in-first-out (FIFO), or none.

With our model, linearizability of a replicated service can be defined as always delivering

a serial and real-time ordering of operations (SO + RT). Other levels weaken one or both

aspects of the constraints, and their connections with linearizability are thus made clear.

9.1.6 Rigorous Testing and Formal Specification

Besides protocol design and system implementation, testing and formalization play equally

important roles in distributed systems research. To this end, we develop a unified consistency

checker with integration to the Jepsen toolchain, improve existing TLA
+
specifications of

MultiPaxos, and create new formal specifications for Crossword and Bodega.

163

We implement a consistency checker that applies the SOP model to extend existing

checkers beyond linearizability to three weaker levels. The checker is integrated with Jepsen,

the distributed system testing and analysis framework, and tested with various deployment

modes of three real systems: etcd, ZooKeeper, and RabbitMQ.

With TLA
+
, the temporal logic specification language, we create an advanced formal

specification for MultiPaxos that has an explicit termination condition and closely resembles

its implementation in actual state machine replication systems with modern features (such

as asymmetric quorums and leases). On top, we build specifications for Crossword and

Bodega. All specifications are model-checked with sufficient inputs and report no errors.

9.2 Future Work

We recognize that Crossword (Chap. 3), Bodega (Chap. 4), Summerset (Chap. 5), and the

formalization methods we applied during the design and implementation process (Chap. 6-7)

all have potential for further extensions. We discuss their future work directions extending

beyond this dissertation in §9.2.1-§9.2.4, respectively.

9.2.1 Asymmetric Erasure Coded Consensus

Crossword’s integration of erasure coding with consensus opens up the opportunity to

explore asymmetric shard assignment policies, where different nodes receive and persist a

different number of shards. In Chapter 3, we focused our discussion on Balanced Round-

Robin assignment policies in the codeword space, but recognized the possibility of static

unbalanced assignment policies with Figure 3.3(e) and 3.12. Crossword can be extended to

make full use of unbalanced assignments to optimize for asymmetry across replicas.

Two types of asymmetry exist in modern cloud replication systems, namely performance

asymmetry and reliability asymmetry. The former captures performance differences between

nodes, such as in network latency, network bandwidth, storage capacity, and real-time vari-

ance. The latter captures different failure probabilities of nodes, invalidating the traditional

measurement of failures in terms of a number of nodes [102]. Such asymmetry may appear

in replication systems with different hardware types at different sites, with geo-distributed

replicas at different positions in the day-night cycle, or with heterogeneous datacenter

servers and lower-end edge nodes.

164

Both asymmetry could be addressed by introducing asymmetry into the consensus

protocol, more specifically, by using a finer-grained codeword space (as in Figure 3.3(e)) and

assigning different numbers of shards to nodes according to their properties: nodes with

higher runtime performance capacity and lower failure rate should be assigned more shards

than others. To achieve this, a more sophisticated commit condition needs to be designed,

such that the probability of unavailability calculated from the acceptance pattern is on par

with symmetric consensus. Equally necessary are mechanisms for collecting the runtime

statistics of replicas for decision making.

9.2.2 General-Purpose Roster Leases for Distributed Systems

Bodega proposes the all-to-all roster leases mechanism as a generalization to classic leader

leases in the context of consensus reads. We recognize that the roster leases’ ability to

establish a fault-tolerant, out-of-band agreement of cluster metadata across nodes applies

much more generally to all distributed systems. As long as the assumptions of bounded

clock drift and mutual connectivity hold between every pair of nodes (which is typical in

today’s systems), any cluster could make use of roster leases but replace the “roster” with

any piece of cluster metadata that changes infrequently.

A representative example of such metadata is cluster membership information. In the

simple case, assume a fixed-size cluster with changing members. Nodes actively maintain

leases with all peers according to their knowledge of membership, and any node that

holds at least a majority of matching leases can affirm stable membership. This enables

autonomous membership management in general distributed systems without relying on

external coordination. In a harder case, cluster size may change over time, invalidating the

lease count threshold when the cluster size increases. A lightweight coordination service is

required to notify all members before bringing in new nodes.

Other forms of cluster metadata that may benefit from lease protection include quo-

rum sizes, object-location mappings, partitioning information, security tokens (assuming

confidential communication channels), and application-specific configuration parameters.

9.2.3 Smart Policy Making at Runtime

Adhering to the design principle of optimistic connectivity, both Crossword and Bodega

protocols involve policy making: choosing the assignment policy for each instance, and

165

deciding on the assignment of responders for each key range, respectively. In our current

implementation on Summerset, intuitive heuristics are used in both cases; recall §3.3.1 and

§4.4.1. There are opportunities to make smarter runtime policy decisions.

With the recent advancements in machine learning, system researchers have explored

learning-based methods for policy making in low-level system tasks, including but not

limited to indexing [79, 178], caching [300, 363], parameter tuning [103, 170, 262], compres-

sion [158], and garbage collection [160]. Similar techniques can be applied in Summerset

after adding better support for continuous collection of runtime statistics. Since all policies

preserve correctness and fault tolerance, simpler heuristics can be used as a fallback while

inference is running in the background, introducing minimal negative performance impact.

Reinforcement learning [321] techniques can be applied to encourage exploration of diverse

policies for a better coverage of runtime statistics.

9.2.4 Abstractions for Formal Methods and Observability

Another valuable direction for future research involves finding the proper component

abstractions within replication protocols and systems. This is better explained from two

concrete perspectives. First, formal verification tools could be applied to actual replication

system code to derive a provably correct implementation, but previous works have shown

that this is difficult for a monolithic codebase with complex internal dependencies [62, 135,

236]. To overcome this challenge, we should investigate the correct ways to decompose

replication system code into refinement-friendly components. An effective step towards this

goal is to draw insights from recent work [281] and verify Summerset’s channel-oriented

modularization architecture with, e.g., Verus [206], and learn from the experience.

Second, observability into the inner workings of distributed systems has always been a

hard challenge, mainly due to the lack of knowledge about which elements are the most

important to expose. With the help of component abstractions, critical links are easier to

identify because they correspond to the connections between components. A possible future

work then is to build an observability framework for Summerset that displays the inter-

component channels to identify performance bottlenecks and to visualize the consensus

algorithms for educational purposes. This would also help evaluate the effectiveness of

Summerset’s current modularization approach and sparkle improvements.

166

Formalization

Design Implementation

 Testing

Iteration Timeline

Figure 9.1: When we apply formalization methods in a design iteration. See §9.3.

9.3 Lessons Learned

Throughout our research journey on cloud consensus protocols and systems, we have

gathered high-level lessons and experiences that may be generally applicable to the field of

distributed systems. We share these lessons here.

Formal Methods Help You Learn and Design. While formal methods are more promi-

nently associated with verification than with modeling, we found formal specification tools

to be extremely useful for learning and comprehending complex protocols, as well as solidi-

fying prototype designs. Building TLA
+
specifications of classic protocols gave us a better

understanding of their assumptions, invariants, and effects. Modeling Crossword helped

us derive the correct Prepare phase actions, and modeling Bodega fixed a subtle bug in

our original design of the safety threshold (where we used last committed indices instead of

last accepted indices).

Formal methods can be the “tester” for the design. There is no doubt that formalization

tools should be applied not only after implementation, but from the beginning of the design

phase when possible (as shown in Figure 9.1), to strengthen developers’ knowledge about

the problem statement and to solidify the foundation of the design.

Useful Definitions Are Practical Definitions. Distributed system protocols and algo-

rithms are usually presented using high-level abstractions, which make them interesting

and sound through a mathematical lens, but may not always be intuitively translatable to

practical assumptions. For example, reaching a single-decree consensus may be intuitive

but is not enough for practical replication of continuous requests; drawing the leasing

mechanism on a timeline may be explanatory but does not correspond to how timers should

be managed on each party.

We found that a general rule of thumb is to always try to push the definition of protocols

one level down, until the point where all the building-block abstractions have correspond-

167

ing classes or helper functions in your actual program. This heuristic guided us through

the development of the practical MultiPaxos TLA
+
specification, and helped us present

Crossword and Bodega in pragmatic ways. It also helped us decide on the appropriate

components that the Summerset infrastructure should provide to protocols. Overall, we

believe this rule is helpful to other areas of distributed systems research.

Find Inspirations From Other Topics. It is widely agreed that techniques from topics not

conventionally related to a problem may spark innovative solutions. Replication systems

are no exception. We were able to infuse Crossword with erasure coding, design Bodega

with leasing mechanisms, and implement Summerset using cutting-edge user-level concur-

rent programming techniques; all are not traditional techniques related to consensus and

replication. We believe that looking further beyond conventional system boundaries will

lead to more powerful innovations.

9.4 Closing Remarks

In this dissertation, we have demonstrated the principle of optimistic connectivity, a design

guideline for cloud consensus protocols. We presented two linearizable consensus protocols,

Crossword and Bodega, that follow this guideline to address the intensifying challenges of

scale and dynamism imposed by the modern cloud environment. We developed Summerset

as a solid testbed for protocol implementation and evaluation, proposed the SOP model to

unify linearizability with weaker consistency levels, and discussed essential techniques of

testing and formalization to enforce correctness and availability.

As cloud workloads and architectures continue to evolve, the significance of strongly

consistent, highly available cloud services is bound for unremitting increase. This work

contributes to the landscape by opening a new perspective on consensus protocol design

and implementation. Together with breakthroughs in neighboring fields such as formal

verification and machine learning, we hope this dissertation serves as a stepping stone

towards optimal, versatile, robust, and formally verifiable fault-tolerant distributed systems.

168

Appendix A

Appendix: TLA
+
Specifications

Wepresent the complete TLA
+
specifications of protocols discussed in §7.2. All specifications

are presented as standard PlusCal [198] algorithms that can be auto-translated into TLA
+
.

A.1 TLA
+
Specification of MultiPaxos in SMR Style

A.1.1 MultiPaxos SMR-Style Protocol Specification

module MultiPaxos

extends FiniteSets , Sequences , Integers , TLC

Model inputs & assumptions.

constant Replicas , symmetric set of server nodes

Writes , symmetric set of write commands (each w/ unique value)

Reads , symmetric set of read commands

MaxBallot , maximum ballot pickable for leader preemption

ReadQuorumSize , read quorum size to allow for asymmetry

CommitNoticeOn , if true, turn on CommitNotice messages

NodeFailuresOn , if true, turn on node failures injection

StableLeaderOn if true, turn on stable leader leases

ReplicasAssumption ∆
= ∧ IsFiniteSet(Replicas)
∧Cardinality(Replicas)⩾ 1

∧ “none” /∈ Replicas

Population ∆
= Cardinality(Replicas)

MajorityNum ∆
= (Population÷2)+1

169

WritesAssumption ∆
= ∧ IsFiniteSet(Writes)

∧Cardinality(Writes)⩾ 1

∧ “nil” /∈Writes
a write command model value serves as both the

ID of the command and the value to be written

ReadsAssumption ∆
= ∧ IsFiniteSet(Reads)
∧Cardinality(Reads)⩾ 0

∧ “nil” /∈Writes

MaxBallotAssumption ∆
= ∧MaxBallot ∈ Nat
∧MaxBallot ⩾ 2

ReadQuorumSizeAssumption ∆
= ∧ReadQuorumSize ∈ Nat
∧ReadQuorumSize ⩾ 1

∧ReadQuorumSize ⩽ MajorityNum

WriteQuorumSize ∆
= (Population +1)−ReadQuorumSize

CommitNoticeOnAssumption ∆
= CommitNoticeOn ∈ boolean

NodeFailuresOnAssumption ∆
= NodeFailuresOn ∈ boolean

StableLeaderOnAssumption ∆
= StableLeaderOn ∈ boolean

assume ∧ReplicasAssumption
∧WritesAssumption
∧ReadsAssumption
∧MaxBallotAssumption
∧ReadQuorumSizeAssumption
∧CommitNoticeOnAssumption
∧NodeFailuresOnAssumption
∧StableLeaderOnAssumption

Useful constants & typedefs.

Commands ∆
= Writes ∪Reads

NumWrites ∆
= Cardinality(Writes)

NumReads ∆
= Cardinality(Reads)

NumCommands ∆
= Cardinality(Commands)

Range(seq) ∆
= {seq [i] : i ∈ 1 . . Len(seq)}

Client observable events.

170

ClientEvents ∆
= [type : {“Req”}, cmd : Commands]
∪ [type : {“Ack”}, cmd : Commands ,

val : {“nil”}∪Writes]

ReqEvent(c) ∆
= [type 7→ “Req”, cmd 7→ c]

AckEvent(c, v) ∆
= [type 7→ “Ack”, cmd 7→ c, val 7→ v]

val is the old value for a write command

InitPending ∆
= (choose ws ∈ [1 . . Cardinality(Writes)→Writes]

: Range(ws) = Writes)
◦ (choose rs ∈ [1 . . Cardinality(Reads)→ Reads]

: Range(rs) = Reads)
W .L.O .G ., choose any sequence contatenating writes

commands and read commands as the sequence of reqs;

all other cases are either symmetric or less useful

than this one

Server-side constants & states.

Ballots ∆
= 1 . . MaxBallot

Slots ∆
= 1 . . NumWrites

Statuses ∆
= {“Preparing”, “Accepting”, “Committed”}

InstStates ∆
= [status : {“Empty”}∪Statuses ,

write : {“nil”}∪Writes ,
voted : [bal : {0}∪Ballots ,

write : {“nil”}∪Writes]]

NullInst ∆
= [status 7→ “Empty”,

write 7→ “nil”,
voted 7→ [bal 7→ 0, write 7→ “nil”]]

NodeStates ∆
= [leader : {“none”}∪Replicas ,

commitUpTo : {0}∪Slots ,
commitPrev : {0}∪Slots ,
balPrepared : {0}∪Ballots ,
balMaxKnown : {0}∪Ballots ,
insts : [Slots → InstStates],
reads : [Slots ∪ {NumWrites +1}→ subset Reads]]

NullNode ∆
= [leader 7→ “none”,

commitUpTo 7→ 0,

commitPrev 7→ 0,

balPrepared 7→ 0,

171

balMaxKnown 7→ 0,

insts 7→ [s ∈ Slots 7→ NullInst],
reads 7→ [s ∈ Slots ∪ {NumWrites +1} 7→ {}]]

commitPrev is the last slot which might have been

committed by an old leader; a newly prepared leader

can safely serve reads locally only after its log has

been committed up to this slot. The time before this

condition becomes satisfied may be considered the

“recovery” time

reads is the set of read commands “anchored” at

each instance, i .e ., reads that squeeze in between

an instance and its predecessor

FirstEmptySlot(insts) ∆
=

if ∀s ∈ Slots : insts[s].status ̸= “Empty”
then NumWrites +1

else choose s ∈ Slots :
∧ insts[s].status = “Empty”
∧∀ t ∈ 1 . . (s −1) : insts[t].status ̸= “Empty”

Service-internal messages.

PrepareMsgs ∆
= [type : {“Prepare”}, src : Replicas ,

bal : Ballots]

PrepareMsg(r , b) ∆
= [type 7→ “Prepare”, src 7→ r ,

bal 7→ b]

InstsVotes ∆
= [Slots → [bal : {0}∪Ballots ,

write : {“nil”}∪Writes]]

VotesByNode(n) ∆
= [s ∈ Slots 7→ n .insts[s].voted]

PrepareReplyMsgs ∆
= [type : {“PrepareReply”}, src : Replicas ,

bal : Ballots ,
votes : InstsVotes]

PrepareReplyMsg(r , b, iv) ∆
= [type 7→ “PrepareReply”, src 7→ r ,

bal 7→ b,
votes 7→ iv]

PeakVotedWrite(prs , s) ∆
=

if ∀pr ∈ prs : pr .votes[s].bal = 0

then “nil”
else let ppr ∆

=

choose ppr ∈ prs :

172

∀pr ∈ prs : pr .votes[s].bal ⩽ ppr .votes[s].bal
in ppr .votes[s].write

LastTouchedSlot(prs) ∆
=

if ∀s ∈ Slots : PeakVotedWrite(prs , s) = “nil”
then 0

else choose s ∈ Slots :
∧PeakVotedWrite(prs , s) ̸= “nil”
∧∀ t ∈ (s +1) . . NumWrites : PeakVotedWrite(prs , t) = “nil”

AcceptMsgs ∆
= [type : {“Accept”}, src : Replicas ,

bal : Ballots ,
slot : Slots ,
write : Writes]

AcceptMsg(r , b, s , c) ∆
= [type 7→ “Accept”, src 7→ r ,

bal 7→ b,
slot 7→ s ,
write 7→ c]

AcceptReplyMsgs ∆
= [type : {“AcceptReply”}, src : Replicas ,

bal : Ballots ,
slot : Slots]

AcceptReplyMsg(r , b, s) ∆
= [type 7→ “AcceptReply”, src 7→ r ,

bal 7→ b,
slot 7→ s]

no need to carry command ID in

AcceptReply because ballot and slot

uniquely identifies the write

DoReadMsgs ∆
= [type : {“DoRead”}, src : Replicas ,

bal : Ballots ,
slot : Slots ∪ {NumWrites +1},

read : Reads]

DoReadMsg(r , b, s , c) ∆
= [type 7→ “DoRead”, src 7→ r ,

bal 7→ b,
slot 7→ s ,
read 7→ c]

DoReadReplyMsgs ∆
= [type : {“DoReadReply”}, src : Replicas ,

bal : Ballots ,
slot : Slots ∪ {NumWrites +1},

read : Reads]

173

DoReadReplyMsg(r , b, s , c) ∆
= [type 7→ “DoReadReply”, src 7→ r ,

bal 7→ b,
slot 7→ s ,
read 7→ c]

read here is just a command ID

CommitNoticeMsgs ∆
= [type : {“CommitNotice”}, upto : Slots]

CommitNoticeMsg(u) ∆
= [type 7→ “CommitNotice”, upto 7→ u]

Messages ∆
= PrepareMsgs
∪ PrepareReplyMsgs
∪ AcceptMsgs
∪ AcceptReplyMsgs
∪ DoReadMsgs
∪ DoReadReplyMsgs
∪ CommitNoticeMsgs

LeaseGrants ∆
= [from : Replicas , to : Replicas]

LeaseGrant(f , t) ∆
= [from 7→ f , to 7→ t]

this is the only type of message that may be

“removed” from the global set of messages to make

a “cheated” model of leasing: if a LeaseGrant
message is removed, it means that promise has

expired and the grantor did not refresh, possibly

in order to grant to someone else

Main algorithm in PlusCal .

algorithm MultiPaxos

variable msgs = {}, messages in the network

grants = {}, lease msgs in the network

node = [r ∈ Replicas 7→ NullNode], replica node state

pending = InitPending , sequence of pending reqs

observed = ⟨⟩, client observed events

crashed = [r ∈ Replicas 7→ false] ; replica crashed flag

define

ThinkAmLeader(r) ∆
= ∧node[r].leader = r
∧node[r].balPrepared = node[r].balMaxKnown
∧ ∨¬StableLeaderOn

∨Cardinality({g ∈ grants :
g .to = r })⩾ MajorityNum

174

AppendObserved(seq) ∆
=

let filter(e) ∆
= e /∈ Range(observed)

in observed ◦SelectSeq(seq , filter)

UnseenPending(r) ∆
=

let filter(c) ∆
=

∧∀s ∈ Slots : node[r].insts[s].write ̸= c
∧∀s ∈ Slots ∪ {NumWrites +1} :

c /∈ node[r].reads[s]
in SelectSeq(pending , filter)

RemovePending(cmd) ∆
=

let filter(c) ∆
= c ̸= cmd

in SelectSeq(pending , filter)

reqsMade ∆
= {e .cmd : e ∈ {e ∈ Range(observed) : e .type = “Req”}}

acksRecv ∆
= {e .cmd : e ∈ {e ∈ Range(observed) : e .type = “Ack”}}

terminated ∆
= ∧Len(pending) = 0

∧Cardinality(reqsMade) = NumCommands
∧Cardinality(acksRecv) = NumCommands

numCrashed ∆
= Cardinality({r ∈ Replicas : crashed [r]})

end define ;

Send a set of messages helper.

macro Send(set) begin
msgs := msgs ∪ set ;

end macro ;

Expire existing lease grant from f , and make a new repeatedly refreshed

lease grant to t .
macro Lease(f , t) begin

grants := {g ∈ grants : g .from ̸= f }∪ {LeaseGrant(f , t)} ;
end macro ;

Observe client events helper.

macro Observe(seq) begin
observed := AppendObserved(seq) ;

end macro ;

Resolve a pending command helper.

macro Resolve(c) begin
pending := RemovePending(c) ;

end macro ;

175

Someone steps up as leader and sends Prepare message to followers.

macro BecomeLeader(r) begin
if I’m not a leader

await node[r].leader ̸= r ;
pick a greater ballot number

with b ∈ Ballots do

await ∧ b > node[r].balMaxKnown
∧¬∃m ∈ msgs : (m .type = “Prepare”)∧ (m .bal = b) ;

W .L.O .G ., using this clause to model that ballot

numbers from different proposers be unique

update states and restart Prepare phase for in-progress instances

node[r].leader := r
node[r].balPrepared := 0

node[r].balMaxKnown := b
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if@= “Accepting”
then “Preparing”
else @]]

node[r].reads :=
[s ∈ Slots ∪ {NumWrites +1} 7→ {}] ;

broadcast Prepare and reply to myself instantly

Send({PrepareMsg(r , b),
PrepareReplyMsg(r , b, VotesByNode(node[r]))}) ;

expire my old lease grant if any and grant to myself

if StableLeaderOn then

Lease(r , r) ;
end if ;

end with ;

end macro ;

Replica replies to a Prepare message.

macro HandlePrepare(r) begin
if receiving a Prepare message with larger ballot than ever seen

with m ∈ msgs do

await ∧m .type = “Prepare”
∧m .bal > node[r].balMaxKnown ;

update states and reset statuses

node[r].leader := m .src
node[r].balMaxKnown := m .bal
node[r].insts :=

176

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if@= “Accepting”
then “Preparing”
else @]] ;

send back PrepareReply with my voted list

Send({PrepareReplyMsg(r , m .bal , VotesByNode(node[r]))}) ;
expire my old lease grant if any and grant to new leader

if StableLeaderOn then

Lease(r , m .src) ;
end if ;

end with ;

end macro ;

Leader gathers PrepareReply messages until condition met, then marks

the corresponding ballot as prepared and saves highest voted commands.

macro HandlePrepareReplies(r) begin
if I’m waiting for PrepareReplies
await ∧node[r].leader = r

∧node[r].balPrepared = 0 ;

when there are enough number of PrepareReplies of desired ballot

with prs = {m ∈ msgs : ∧m .type = “PrepareReply”
∧m .bal = node[r].balMaxKnown}

do

await Cardinality(prs)⩾ MajorityNum ;

marks this ballot as prepared and saves highest voted command

in each slot if any

node[r].balPrepared := node[r].balMaxKnown
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if ∨@= “Preparing”
∨ ∧@= “Empty”

∧PeakVotedWrite(prs , s) ̸= “nil”
then “Accepting”
else @,

!.write = PeakVotedWrite(prs , s)]]
node[r].commitPrev := LastTouchedSlot(prs) ;
send Accept messages for in-progress instances and reply to

myself instantly

Send(union
{{AcceptMsg(r , node[r].balPrepared , s , node[r].insts[s].write),

177

AcceptReplyMsg(r , node[r].balPrepared , s)} :
s ∈ {s ∈ Slots : node[r].insts[s].status = “Accepting”}}) ;

end with ;

end macro ;

A prepared leader takes a new write request into the next empty slot.

macro TakeNewWriteRequest(r) begin
if I’m a prepared leader and there’s pending write request

await ∧ThinkAmLeader(r)
∧∃s ∈ Slots : node[r].insts[s].status = “Empty”
∧Len(UnseenPending(r))> 0

∧Head(UnseenPending(r)) ∈Writes ;
find the next empty slot and pick a pending request

with s = FirstEmptySlot(node[r].insts),
c = Head(UnseenPending(r))

W .L.O .G ., only pick a command not seen in current

prepared log to have smaller state space; in practice,

duplicated client requests should be treated by some

idempotency mechanism such as using request IDs
do

update slot status and voted

node[r].insts[s].status := “Accepting”
node[r].insts[s].write := c
node[r].insts[s].voted .bal := node[r].balPrepared
node[r].insts[s].voted .write := c ;
broadcast Accept and reply to myself instantly

Send({AcceptMsg(r , node[r].balPrepared , s , c),
AcceptReplyMsg(r , node[r].balPrepared , s)}) ;

append to observed events sequence if haven’t yet

Observe(⟨ReqEvent(c)⟩) ;
end with ;

end macro ;

Replica replies to an Accept message.

macro HandleAccept(r) begin
if receiving an unreplied Accept message with valid ballot

with m ∈ msgs do

await ∧m .type = “Accept”
∧m .bal ⩾ node[r].balMaxKnown
∧m .bal ⩾ node[r].insts[m .slot].voted .bal ;

update node states and corresponding instance’s states

node[r].leader := m .src
node[r].balMaxKnown := m .bal

178

node[r].insts[m .slot].status := “Accepting”
node[r].insts[m .slot].write := m .write
node[r].insts[m .slot].voted .bal := m .bal
node[r].insts[m .slot].voted .write := m .write ;
send back AcceptReply
Send({AcceptReplyMsg(r , m .bal , m .slot)}) ;

end with ;

end macro ;

Leader gathers AcceptReply messages for a slot until condition met, then

marks the slot as committed and acknowledges the client.

macro HandleAcceptReplies(r) begin
if I’m a prepared leader

await ∧ThinkAmLeader(r)
∧node[r].commitUpTo < NumWrites
∧node[r].insts[node[r].commitUpTo+1].status = “Accepting” ;

W .L.O .G ., only enabling the next slot after commitUpTo
here to make the body of this macro simpler; in practice,

messages are received proactively and there should be a

separate “Executed” status

for this slot, when there are enough number of AcceptReplies
with s = node[r].commitUpTo+1,

c = node[r].insts[s].write ,
ps = s −1,

v = if ps = 0 then “nil” else node[r].insts[ps].write ,
ars = {m ∈ msgs : ∧m .type = “AcceptReply”

∧m .slot = s
∧m .bal = node[r].balPrepared }

do

await Cardinality(ars)⩾ WriteQuorumSize ;
marks this slot as committed and apply command

node[r].insts[s].status := “Committed”
node[r].commitUpTo := s ;
append to observed events sequence if haven’t yet, and remove

the command from pending

Observe(⟨AckEvent(c, v)⟩) ;
Resolve(c) ;
broadcast CommitNotice to followers

if CommitNoticeOn then

Send({CommitNoticeMsg(s)}) ;
end if ;

end with ;

179

end macro ;

Replica receives new commit notification.

macro HandleCommitNotice(r) begin
if I’m a follower waiting on CommitNotice
await ∧node[r].leader ̸= r

∧node[r].commitUpTo < NumWrites
∧node[r].insts[node[r].commitUpTo+1].status = “Accepting” ;

W .L.O .G ., only enabling the next slot after commitUpTo
here to make the body of this macro simpler

for this slot, when there’s a CommitNotice message

with s = node[r].commitUpTo+1,

c = node[r].insts[s].write ,
m ∈ msgs

do

await ∧m .type = “CommitNotice”
∧m .upto = s ;

marks this slot as committed and apply command

node[r].insts[s].status := “Committed”
node[r].commitUpTo := s ;

end with ;

end macro ;

A prepared leader takes a new read request and anchor it to the next

empty slot.

macro TakeNewReadRequest(r) begin
if I’m a prepared leader and there’s pending read request

await ∧ThinkAmLeader(r)
∧Len(UnseenPending(r))> 0

∧Head(UnseenPending(r)) ∈ Reads ;
find the next empty slot and pick a pending request

with s = FirstEmptySlot(node[r].insts),
c = Head(UnseenPending(r))

W .L.O .G ., only pick a command not seen in current

prepared log to have smaller state space; in practice,

duplicated client requests should be treated by some

idempotency mechanism such as using request IDs
do

broadcast DoRead and reply to myself instantly

Send({DoReadMsg(r , node[r].balPrepared , s , c),
DoReadReplyMsg(r , node[r].balPrepared , s , c)}) ;

add to the set of on-the-fly reads anchored at this slot

node[r].reads[s] :=@∪ {c} ;

180

append to observed events sequence if haven’t yet

Observe(⟨ReqEvent(c)⟩) ;
end with ;

end macro ;

Assuming using leader leases, a prepared leader takes a new read request

and serves it locally. In practice, a slow-path fallback to normal quorum

read should be allowed; but here the ThinkAmLeader condition enforces
client requests be taken only when the leader is stable , therefore DoRead
messages will never be sent .
macro TakeNewReadRequestLocally(r) begin

if I m a prepared and recovered leader that has committed all slots

of old ballots, and there’s pending read request

await ∧ThinkAmLeader(r)
∧node[r].commitUpTo ⩾ node[r].commitPrev
∧Len(UnseenPending(r))> 0

∧Head(UnseenPending(r)) ∈ Reads ;
find the latest committed slot and pick a pending request

with s = node[r].commitUpTo,
v = if s = 0 then “nil” else node[r].insts[s].write ,
c = Head(UnseenPending(r))

W .L.O .G ., only pick a command not seen in current

prepared log to have smaller state space; in practice,

duplicated client requests should be treated by some

idempotency mechanism such as using request IDs
do

acknowledge client directly with the latest committed value, and

remove the command from pending

Observe(⟨ReqEvent(c), AckEvent(c, v)⟩) ;
Resolve(c) ;

end with ;

end macro ;

Replica replies to a DoRead message.

macro HandleDoRead(r) begin
if receiving an unreplied DoRead message with valid ballot

with m ∈ msgs do

await ∧m .type = “DoRead”
∧m .bal ⩾ node[r].balMaxKnown
∧ ∨m .slot > NumWrites

∨ ∧m .slot ⩽ NumWrites
∧m .bal ⩾ node[r].insts[m .slot].voted .bal ;

send back DoReadReply

181

Send({DoReadReplyMsg(r , m .bal , m .slot , m .read)}) ;
end with ;

end macro ;

Leader gathers DoReadReply messages for a read request until read quorum

formed, then acknowledges the client.

macro HandleDoReadReplies(r) begin
if I’m a prepared leader

await ThinkAmLeader(r) ;
for an on-the-fly read, when there are enough DoReadReplies and that

the predecessor write has been committed

with s ∈ (Slots ∪ {NumWrites +1}),

c ∈ node[r].reads[s],
ps = s −1,

v = if ps = 0 then “nil” else node[r].insts[ps].write ,
drs = {m ∈ msgs : ∧m .type = “DoReadReply”

∧m .slot = s
∧m .read = c
∧m .bal = node[r].balPrepared }

do

await ∧Cardinality(drs)⩾ ReadQuorumSize
∧node[r].commitUpTo ⩾ ps ;

W .L.O .G ., only enabling slots at or before commitUpTo
here to make the body of this macro simpler; in

practice, messages are received proactively and there

should be separate status tracking for these reads

append to observed events sequence if haven’t yet, and remove

the command from pending

Observe(⟨AckEvent(c, v)⟩) ;
Resolve(c) ;
remove from the set of on-the-fly reads in anchored slot

node[r].reads[s] :=@\{c} ;
end with ;

end macro ;

Replica node crashes itself under promised conditions.

macro ReplicaCrashes(r) begin
if less than (N −WriteQuourmSize) number of replicas have failed

await ∧WriteQuorumSize +numCrashed < Cardinality(Replicas)
∧¬crashed [r]
∧node[r].balMaxKnown < MaxBallot ;

this clause is needed only because we have an upper

bound ballot number for modeling checking; in practice

182

someone else could always come up with a higher ballot

mark myself as crashed

crashed [r] := true ;

end macro ;

Replica server node main loop.

process Replica ∈ Replicas
begin

rloop : while (¬terminated)∧ (¬crashed [self]) do
either

BecomeLeader(self) ;
or

HandlePrepare(self) ;
or

HandlePrepareReplies(self) ;
or

TakeNewWriteRequest(self) ;
or

HandleAccept(self) ;
or

HandleAcceptReplies(self) ;
or

if CommitNoticeOn then

HandleCommitNotice(self) ;
end if ;

or

if ¬StableLeaderOn then

TakeNewReadRequest(self) ;
else

TakeNewReadRequestLocally(self) ;
end if ;

or

HandleDoRead(self) ;
or

HandleDoReadReplies(self) ;
or

if NodeFailuresOn then

ReplicaCrashes(self) ;
end if ;

end either ;

end while ;

end process ;

183

end algorithm ;

A.1.2 Invariants Specification

module MultiPaxos MC
extends MultiPaxos

TLC config-related defs.

ConditionalPerm(set) ∆
= if Cardinality(set)> 1

then Permutations(set)
else {}

SymmetricPerms ∆
= ConditionalPerm(Replicas)
∪ ConditionalPerm(Writes)
∪ ConditionalPerm(Reads)

ConstMaxBallot ∆
= 2

ConstReadQuorumSizeUsual ∆
= 2

ConstReadQuorumSizeSmall ∆
= 1

Type check invariant.

TypeOK ∆
= ∧∀m ∈ msgs : m ∈ Messages

∧∀g ∈ grants : g ∈ LeaseGrants
∧Cardinality({g .from : g ∈ grants}) = Cardinality(grants)
∧∀r ∈ Replicas : node[r] ∈ NodeStates
∧Len(pending)⩽ NumCommands
∧Cardinality(Range(pending)) = Len(pending)
∧∀c ∈ Range(pending) : c ∈ Commands
∧Len(observed)⩽ 2∗NumCommands
∧Cardinality(Range(observed)) = Len(observed)
∧Cardinality(reqsMade)⩾ Cardinality(acksRecv)
∧∀e ∈ Range(observed) : e ∈ ClientEvents
∧∀r ∈ Replicas : crashed [r] ∈ boolean

theorem Spec⇒2TypeOK

Linearizability constraint.

184

ReqPosOfCmd(c) ∆
= choose i ∈ 1 . . Len(observed) :

∧observed [i].type = “Req”
∧observed [i].cmd = c

AckPosOfCmd(c) ∆
= choose i ∈ 1 . . Len(observed) :

∧observed [i].type = “Ack”
∧observed [i].cmd = c

ResultOfCmd(c) ∆
= observed [AckPosOfCmd(c)].val

OrderIdxOfCmd(order , c) ∆
= choose j ∈ 1 . . Len(order) : order [j] = c

LastWriteBefore(order , j) ∆
=

let k ∆
= choose k ∈ 0 . . (j −1) :

∧ (k = 0∨order [k] ∈Writes)
∧∀ l ∈ (k +1) . . (j −1) : order [l] ∈ Reads

in if k = 0 then “nil” else order [k]

IsLinearOrder(order) ∆
=

∧{order [j] : j ∈ 1 . . Len(order)}= Commands
∧∀ j ∈ 1 . . Len(order) :

ResultOfCmd(order [j]) = LastWriteBefore(order , j)

ObeysRealTime(order) ∆
=

∀c1, c2 ∈ Commands :
(AckPosOfCmd(c1)< ReqPosOfCmd(c2))
⇒ (OrderIdxOfCmd(order , c1)< OrderIdxOfCmd(order , c2))

Linearizability ∆
=

terminated ⇒
∃order ∈ [1 . . NumCommands → Commands] :

∧ IsLinearOrder(order)
∧ObeysRealTime(order)

theorem Spec⇒ Linearizability

A.1.3 Model Checking Parameters

MultiPaxos MC.cfg

SPECIFICATION Spec

CONSTANTS
Replicas = {s1, s2, s3}

185

Writes = {w1, w2}
Reads = {r1, r2}
MaxBallot <- ConstMaxBallot
ReadQuorumSize <- ConstReadQuorumSizeUsual // or Small
CommitNoticeOn <- TRUE
NodeFailuresOn <- TRUE
StableLeaderOn <- TRUE // or FALSE

SYMMETRY SymmetricPerms

INVARIANTS
TypeOK
Linearizability

CHECK_DEADLOCK TRUE

A.2 TLA
+
Specification of Crossword

A.2.1 Crossword Protocol Specification

module Crossword

extends FiniteSets , Sequences , Integers , TLC

Model inputs & assumptions.

constant Replicas , symmetric set of server nodes

Writes , symmetric set of write commands (each w/ unique value)

Reads , symmetric set of read commands

MaxBallot , maximum ballot pickable for leader preemption

CommitNoticeOn , if true, turn on CommitNotice messages

NodeFailuresOn if true, turn on node failures injection

ReplicasAssumption ∆
= ∧ IsFiniteSet(Replicas)
∧Cardinality(Replicas)⩾ 1

WritesAssumption ∆
= ∧ IsFiniteSet(Writes)

∧Cardinality(Writes)⩾ 1

∧ “nil” /∈Writes
a write command model value serves as both the

ID of the command and the value to be written

186

ReadsAssumption ∆
= ∧ IsFiniteSet(Reads)
∧Cardinality(Reads)⩾ 0

∧ “nil” /∈Writes

MaxBallotAssumption ∆
= ∧MaxBallot ∈ Nat
∧MaxBallot ⩾ 2

CommitNoticeOnAssumption ∆
= CommitNoticeOn ∈ boolean

NodeFailuresOnAssumption ∆
= NodeFailuresOn ∈ boolean

assume ∧ReplicasAssumption
∧WritesAssumption
∧ReadsAssumption
∧MaxBallotAssumption
∧CommitNoticeOnAssumption
∧NodeFailuresOnAssumption

Useful constants & typedefs.

Commands ∆
= Writes ∪Reads

NumCommands ∆
= Cardinality(Commands)

Population ∆
= Cardinality(Replicas)

MajorityNum ∆
= (Population÷2)+1

Shards ∆
= Replicas

NumDataShards ∆
= MajorityNum

Range(func) ∆
= {func[i] : i ∈ domain func}

Client observable events.

ClientEvents ∆
= [type : {“Req”}, cmd : Commands]
∪ [type : {“Ack”}, cmd : Commands ,

val : {“nil”}∪Writes]

ReqEvent(c) ∆
= [type 7→ “Req”, cmd 7→ c]

AckEvent(c, v) ∆
= [type 7→ “Ack”, cmd 7→ c, val 7→ v]

val is the old value for a write command

InitPending ∆
= (choose ws ∈ [1 . . Cardinality(Writes)→Writes]

: Range(ws) = Writes)
◦ (choose rs ∈ [1 . . Cardinality(Reads)→ Reads]

187

: Range(rs) = Reads)
W .L.O .G ., choose any sequence concatenating writes

commands and read commands as the sequence of reqs;

all other cases are either symmetric or less useful

than this one

Server-side constants & states.

Ballots ∆
= 1 . . MaxBallot

Slots ∆
= 1 . . NumCommands

Statuses ∆
= {“Preparing”, “Accepting”, “Committed”}

InstStates ∆
= [status : {“Empty”}∪Statuses ,

cmd : {“nil”}∪Commands ,
shards : subset Shards ,
voted : [bal : {0}∪Ballots ,

cmd : {“nil”}∪Commands ,
shards : subset Shards]]

NullInst ∆
= [status 7→ “Empty”,

cmd 7→ “nil”,
shards 7→ {},

voted 7→ [bal 7→ 0, cmd 7→ “nil”, shards 7→ {}]]

NodeStates ∆
= [leader : {“none”}∪Replicas ,

kvalue : {“nil”} ∪Writes ,
commitUpTo : {0}∪Slots ,
balPrepared : {0}∪Ballots ,
balMaxKnown : {0}∪Ballots ,
insts : [Slots → InstStates]]

NullNode ∆
= [leader 7→ “none”,

kvalue 7→ “nil”,
commitUpTo 7→ 0,

balPrepared 7→ 0,

balMaxKnown 7→ 0,

insts 7→ [s ∈ Slots 7→ NullInst]]

FirstEmptySlot(insts) ∆
=

choose s ∈ Slots :
∧ insts[s].status = “Empty”
∧ ∀ t ∈ 1 . . (s −1) : insts[t].status ̸= “Empty”

Erasure-coding related expressions.

188

BigEnoughUnderFaults(g , u) ∆
=

Is g a large enough subset of u under promised fault-tolerance?

Cardinality(g)⩾ (Cardinality(u)+MajorityNum −Population)

SubsetsUnderFaults(u) ∆
=

Set of subsets of u we consider under promised fault-tolerance.

{g ∈ subset u : BigEnoughUnderFaults(g , u)}

IsGoodCoverageSet(cs) ∆
=

Is cs a coverage set (i .e ., a set of sets of shards) from which

we can reconstruct the original data?

Cardinality(union cs)⩾ NumDataShards

ShardToIdx ∆
= choose map ∈ [Shards → 1 . . Cardinality(Shards)] :

Cardinality(Range(map)) = Cardinality(Shards)

IdxToShard ∆
= [i ∈ 1 . . Cardinality(Shards) 7→

choose r ∈ Shards : ShardToIdx [r] = i]

ValidAssignments ∆
=

Set of all valid shard assignments.

{[r ∈ Replicas 7→ {IdxToShard [((i −1)%Cardinality(Shards))+1] :

i ∈ (ShardToIdx [r]) . . (ShardToIdx [r]+na −1)}] :

na ∈ 1 . . MajorityNum}

Service-internal messages.

PrepareMsgs ∆
= [type : {“Prepare”}, src : Replicas ,

bal : Ballots]

PrepareMsg(r , b) ∆
= [type 7→ “Prepare”, src 7→ r ,

bal 7→ b]

InstsVotes ∆
= [Slots → [bal : {0}∪Ballots ,

cmd : {“nil”}∪Commands ,
shards : subset Shards]]

VotesByNode(n) ∆
= [s ∈ Slots 7→ n .insts[s].voted]

PrepareReplyMsgs ∆
= [type : {“PrepareReply”}, src : Replicas ,

bal : Ballots ,
votes : InstsVotes]

PrepareReplyMsg(r , b, iv) ∆
=

[type 7→ “PrepareReply”, src 7→ r ,
bal 7→ b,
votes 7→ iv]

189

PreparedConditionAndCommand(prs , s) ∆
=

examines a set of PrepareReplies and returns a tuple:

(if the given slot can be decided as prepared,

the prepared command if forced,

known shards of the command if forced)

let ppr ∆
= choose ppr ∈ prs :

∀pr ∈ prs : pr .votes[s].bal ⩽ ppr .votes[s].bal
in if ∧BigEnoughUnderFaults(prs , Replicas)

∧∀pr ∈ prs : pr .votes[s].bal = 0

then [prepared 7→ true, cmd 7→ “nil”, shards 7→ {}]

prepared, can choose any

else if ∧BigEnoughUnderFaults(prs , Replicas)
∧ IsGoodCoverageSet(

{pr .votes[s].shards :
pr ∈ {pr ∈ prs :

pr .votes[s].cmd = ppr .votes[s].cmd }})
then [prepared 7→ true,

cmd 7→ ppr .votes[s].cmd ,
shards 7→ union

{pr .votes[s].shards :
pr ∈ {pr ∈ prs :

pr .votes[s].cmd = ppr .votes[s].cmd }}]
prepared, command forced

else if ∧BigEnoughUnderFaults(prs , Replicas)
∧¬IsGoodCoverageSet(

{pr .votes[s].shards :
pr ∈ {pr ∈ prs :

pr .votes[s].cmd = ppr .votes[s].cmd }})
then [prepared 7→ true, cmd 7→ “nil”, shards 7→ {}]

prepared, can choose any

else [prepared 7→ false, cmd 7→ “nil”, shard 7→ {}]

not prepared

AcceptMsgs ∆
= [type : {“Accept”}, src : Replicas ,

dst : Replicas ,
bal : Ballots ,
slot : Slots ,
cmd : Commands ,
shards : subset Shards]

AcceptMsg(r , d , b, s , c, sds) ∆
= [type 7→ “Accept”, src 7→ r ,

dst 7→ d ,
bal 7→ b,

190

slot 7→ s ,
cmd 7→ c,
shards 7→ sds]

AcceptReplyMsgs ∆
= [type : {“AcceptReply”}, src : Replicas ,

bal : Ballots ,
slot : Slots ,
shards : subset Shards]

AcceptReplyMsg(r , b, s , sds) ∆
=

[type 7→ “AcceptReply”, src 7→ r ,
bal 7→ b,
slot 7→ s ,
shards 7→ sds]

CommittedCondition(ars , s) ∆
=

the condition which decides if a set of AcceptReplies makes an

instance committed

∧BigEnoughUnderFaults(ars , Replicas)
∧∀group ∈ SubsetsUnderFaults(ars) :

IsGoodCoverageSet({ar .shards : ar ∈ group})

CommitNoticeMsgs ∆
= [type : {“CommitNotice”}, upto : Slots]

CommitNoticeMsg(u) ∆
= [type 7→ “CommitNotice”, upto 7→ u]

Messages ∆
= PrepareMsgs
∪ PrepareReplyMsgs
∪ AcceptMsgs
∪ AcceptReplyMsgs
∪ CommitNoticeMsgs

Main algorithm in PlusCal .

algorithm Crossword

variable msgs = {}, messages in the network

node = [r ∈ Replicas 7→ NullNode], replica node state

pending = InitPending , sequence of pending reqs

observed = ⟨⟩, client observed events

crashed = [r ∈ Replicas 7→ false] ; replica crashed flag

define

UnseenPending(insts) ∆
=

let filter(c) ∆
= c /∈ {insts[s].cmd : s ∈ Slots}

191

in SelectSeq(pending , filter)

RemovePending(cmd) ∆
=

let filter(c) ∆
= c ̸= cmd

in SelectSeq(pending , filter)

reqsMade ∆
= {e .cmd : e ∈ {e ∈ Range(observed) : e .type = “Req”}}

acksRecv ∆
= {e .cmd : e ∈ {e ∈ Range(observed) : e .type = “Ack”}}

terminated ∆
= ∧Len(pending) = 0

∧Cardinality(reqsMade) = NumCommands
∧Cardinality(acksRecv) = NumCommands

numCrashed ∆
= Cardinality({r ∈ Replicas : crashed [r]})

end define ;

Send a set of messages helper.

macro Send(set) begin
msgs := msgs ∪ set ;

end macro ;

Observe a client event helper.

macro Observe(e) begin
if e /∈ Range(observed) then

observed := Append(observed , e) ;
end if ;

end macro ;

Resolve a pending command helper.

macro Resolve(c) begin
pending := RemovePending(c) ;

end macro ;

Someone steps up as leader and sends Prepare message to followers.

macro BecomeLeader(r) begin
if I’m not a leader

await node[r].leader ̸= r ;
pick a greater ballot number

with b ∈ Ballots do

await ∧ b > node[r].balMaxKnown
∧¬∃m ∈ msgs : (m .type = “Prepare”)∧ (m .bal = b) ;

W .L.O .G ., using this clause to model that ballot

numbers from different proposers be unique

update states and restart Prepare phase for in-progress instances

192

node[r].leader := r
node[r].balPrepared := 0

node[r].balMaxKnown := b
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if@= “Accepting”
then “Preparing”
else @]] ;

broadcast Prepare and reply to myself instantly

Send({PrepareMsg(r , b),
PrepareReplyMsg(r , b, VotesByNode(node[r]))}) ;

end with ;

end macro ;

Replica replies to a Prepare message.

macro HandlePrepare(r) begin
if receiving a Prepare message with larger ballot than ever seen

with m ∈ msgs do

await ∧m .type = “Prepare”
∧m .bal > node[r].balMaxKnown ;

update states and reset statuses

node[r].leader := m .src
node[r].balMaxKnown := m .bal
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if@= “Accepting”
then “Preparing”
else @]] ;

send back PrepareReply with my voted list

Send({PrepareReplyMsg(r , m .bal , VotesByNode(node[r]))}) ;
end with ;

end macro ;

Leader gathers PrepareReply messages until condition met, then marks the corresponding ballot as

prepared and saves highest voted commands.

macro HandlePrepareReplies(r) begin
if I’m waiting for PrepareReplies
await ∧node[r].leader = r

∧node[r].balPrepared = 0 ;

when there are a set of PrepareReplies of desired ballot that satisfy

the prepared condition

193

with prs = {m ∈ msgs : ∧m .type = “PrepareReply”
∧m .bal = node[r].balMaxKnown},

exam = [s ∈ Slots 7→ PreparedConditionAndCommand(prs , s)]
do

await ∀s ∈ Slots : exam[s].prepared ;

marks this ballot as prepared and saves highest voted command

in each slot if any

node[r].balPrepared := node[r].balMaxKnown
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if ∧ ∨@= “Empty”
∨@= “Preparing”
∨@= “Accepting”

∧ exam[s].cmd ̸= “nil”
then “Accepting”

else if @= “Committed”
then “Committed”

else “Empty”,
! .cmd = exam[s].cmd ,
! .shards = exam[s].shards]] ;

pick a reasonable shard assignment and send Accept messages for

in-progress instances according to it

with assign ∈ ValidAssignments do

Send({AcceptMsg(r , d , node[r].balPrepared , s ,
node[r].insts[s].cmd , assign[d]) :

s ∈ {s ∈ Slots :
node[r].insts[s].status = “Accepting”},

d ∈ Replicas}
∪ {AcceptReplyMsg(r , node[r].balPrepared , s , assign[r]) :

s ∈ {s ∈ Slots :
node[r].insts[s].status = “Accepting”}}) ;

end with ;

end with ;

end macro ;

A prepared leader takes a new request to fill the next empty slot.

macro TakeNewRequest(r) begin
if I’m a prepared leader and there’s pending request

await ∧node[r].leader = r
∧node[r].balPrepared = node[r].balMaxKnown
∧∃s ∈ Slots : node[r].insts[s].status = “Empty”

194

∧Len(UnseenPending(node[r].insts))> 0 ;

find the next empty slot and pick a pending request

with s = FirstEmptySlot(node[r].insts),
c = Head(UnseenPending(node[r].insts))

W .L.O .G ., only pick a command not seen in current

prepared log to have smaller state space; in practice,

duplicated client requests should be treated by some

idempotency mechanism such as using request IDs
do

update slot status and voted

node[r].insts[s].status := “Accepting”
node[r].insts[s].cmd := c
node[r].insts[s].voted .bal := node[r].balPrepared
node[r].insts[s].voted .cmd := c
node[r].insts[s].voted .shards := Shards ;
pick a reasonable shard assignment, send Accept messages, and

reply to myself instantly

with assign ∈ ValidAssignments do

Send({AcceptMsg(r , d , node[r].balPrepared , s , c, assign[d]) :
d ∈ Replicas}

∪ {AcceptReplyMsg(r , node[r].balPrepared , s , assign[r])}) ;
end with ;

append to observed events sequence if haven’t yet

Observe(ReqEvent(c)) ;
end with ;

end macro ;

Replica replies to an Accept message.

macro HandleAccept(r) begin
if receiving an unreplied Accept message with valid ballot

with m ∈ msgs do

await ∧m .type = “Accept”
∧m .dst = r
∧m .bal ⩾ node[r].balMaxKnown
∧m .bal > node[r].insts[m .slot].voted .bal ;

update node states and corresponding instance’s states

node[r].leader := m .src
node[r].balMaxKnown := m .bal
node[r].insts[m .slot].status := “Accepting”
node[r].insts[m .slot].cmd := m .cmd
node[r].insts[m .slot].shards := m .shards
node[r].insts[m .slot].voted .bal := m .bal

195

node[r].insts[m .slot].voted .cmd := m .cmd
node[r].insts[m .slot].voted .shards := m .shards ;
send back AcceptReply
Send({AcceptReplyMsg(r , m .bal , m .slot , m .shards)}) ;

end with ;

end macro ;

Leader gathers AcceptReply messages for a slot until condition met, then marks the slot as committed

and acknowledges the client.

macro HandleAcceptReplies(r) begin
if I think I’m a current leader

await ∧node[r].leader = r
∧node[r].balPrepared = node[r].balMaxKnown
∧node[r].commitUpTo < NumCommands
∧node[r].insts[node[r].commitUpTo+1].status = “Accepting” ;

W .L.O .G ., only enabling the next slot after commitUpTo
here to make the body of this macro simpler

for this slot, when there is a set of AcceptReplies that satisfy the

committed condition

with s = node[r].commitUpTo+1,

c = node[r].insts[s].cmd ,
v = node[r].kvalue ,
ars = {m ∈ msgs : ∧m .type = “AcceptReply”

∧m .slot = s
∧m .bal = node[r].balPrepared }

do

await CommittedCondition(ars , s) ;
marks this slot as committed and apply command

node[r].insts[s].status := “Committed”
node[r].commitUpTo := s
node[r].kvalue := if c ∈Writes then c else @ ;

append to observed events sequence if haven’t yet, and remove

the command from pending

Observe(AckEvent(c, v)) ;
Resolve(c) ;
broadcast CommitNotice to followers

Send({CommitNoticeMsg(s)}) ;
end with ;

end macro ;

Replica receives new commit notification.

macro HandleCommitNotice(r) begin
if I’m a follower waiting on CommitNotice

196

await ∧node[r].leader ̸= r
∧node[r].commitUpTo < NumCommands
∧node[r].insts[node[r].commitUpTo+1].status = “Accepting” ;

W .L.O .G ., only enabling the next slot after commitUpTo
here to make the body of this macro simpler

for this slot, when there’s a CommitNotice message

with s = node[r].commitUpTo+1,

c = node[r].insts[s].cmd ,
m ∈ msgs

do

await ∧m .type = “CommitNotice”
∧m .upto = s ;

marks this slot as committed and apply command

node[r].insts[s].status := “Committed”
node[r].commitUpTo := s
node[r].kvalue := if c ∈Writes then c else @ ;

end with ;

end macro ;

Replica node crashes itself under promised conditions.

macro ReplicaCrashes(r) begin
if less than (N − majority) number of replicas have failed

await ∧MajorityNum +numCrashed < Population
∧¬crashed [r]
∧node[r].balMaxKnown < MaxBallot ;

this clause is needed only because we have an upper

bound ballot number for modeling checking; in practice

someone else could always come up with a higher ballot

mark myself as crashed

crashed [r] := true ;

end macro ;

Replica server node main loop.

process Replica ∈ Replicas
begin

rloop : while (¬terminated)∧ (¬crashed [self]) do
either

BecomeLeader(self) ;
or

HandlePrepare(self) ;
or

HandlePrepareReplies(self) ;

197

or

TakeNewRequest(self) ;
or

HandleAccept(self) ;
or

HandleAcceptReplies(self) ;
or

if CommitNoticeOn then

HandleCommitNotice(self) ;
end if ;

or

if NodeFailuresOn then

ReplicaCrashes(self) ;
end if ;

end either ;

end while ;

end process ;

end algorithm ;

A.2.2 Invariants Specification

module Crossword MC
extends Crossword

TLC config-related defs.

ConditionalPerm(set) ∆
= if Cardinality(set)> 1

then Permutations(set)
else {}

SymmetricPerms ∆
= ConditionalPerm(Replicas)
∪ ConditionalPerm(Writes)
∪ ConditionalPerm(Reads)

ConfigEmptySet ∆
= {}

ConstMaxBallot ∆
= 2

Type check invariant.

TypeOK ∆
= ∧∀m ∈ msgs : m ∈ Messages

∧∀r ∈ Replicas : node[r] ∈ NodeStates

198

∧Len(pending)⩽ NumCommands
∧Cardinality(Range(pending)) = Len(pending)
∧∀c ∈ Range(pending) : c ∈ Commands
∧Len(observed)⩽ 2∗NumCommands
∧Cardinality(Range(observed)) = Len(observed)
∧Cardinality(reqsMade)⩾ Cardinality(acksRecv)
∧∀e ∈ Range(observed) : e ∈ ClientEvents
∧∀r ∈ Replicas : crashed [r] ∈ boolean

theorem Spec⇒2TypeOK

Linearizability constraint.

ReqPosOfCmd(c) ∆
= choose i ∈ 1 . . Len(observed) :

∧observed [i].type = “Req”
∧observed [i].cmd = c

AckPosOfCmd(c) ∆
= choose i ∈ 1 . . Len(observed) :

∧observed [i].type = “Ack”
∧observed [i].cmd = c

ResultOfCmd(c) ∆
= observed [AckPosOfCmd(c)].val

OrderIdxOfCmd(order , c) ∆
= choose j ∈ 1 . . Len(order) : order [j] = c

LastWriteBefore(order , j) ∆
=

let k ∆
= choose k ∈ 0 . . (j −1) :

∧ (k = 0∨order [k] ∈Writes)
∧∀ l ∈ (k +1) . . (j −1) : order [l] ∈ Reads

in if k = 0 then “nil” else order [k]

IsLinearOrder(order) ∆
=

∧{order [j] : j ∈ 1 . . Len(order)}= Commands
∧∀ j ∈ 1 . . Len(order) :

ResultOfCmd(order [j]) = LastWriteBefore(order , j)

ObeysRealTime(order) ∆
=

∀c1, c2 ∈ Commands :
(AckPosOfCmd(c1)< ReqPosOfCmd(c2))
⇒ (OrderIdxOfCmd(order , c1)< OrderIdxOfCmd(order , c2))

Linearizability ∆
=

terminated ⇒
∃order ∈ [1 . . NumCommands → Commands] :

∧ IsLinearOrder(order)

199

∧ObeysRealTime(order)

theorem Spec⇒ Linearizability

A.2.3 Model Checking Parameters

Crossword MC.cfg

SPECIFICATION Spec

CONSTANTS
Replicas = {s1, s2, s3}
Writes = {w1, w2, w3}
Reads <- ConfigEmptySet
MaxBallot <- ConstMaxBallot
CommitNoticeOn <- FALSE
NodeFailuresOn <- TRUE

SYMMETRY SymmetricPerms

INVARIANTS
TypeOK
Linearizability

CHECK_DEADLOCK TRUE

A.3 TLA
+
Specification of Bodega

A.3.1 Bodega Protocol Specification

module Bodega

extends FiniteSets , Sequences , Integers , TLC

Model inputs & assumptions.

constant Replicas , symmetric set of server nodes

Writes , symmetric set of write commands (each w/ unique value)

Reads , symmetric set of read commands

MaxBallot , maximum ballot pickable for leader preemption

200

NodeFailuresOn if true, turn on node failures injection

ReplicasAssumption ∆
= ∧ IsFiniteSet(Replicas)
∧Cardinality(Replicas)⩾ 1

∧ “none” /∈ Replicas

Population ∆
= Cardinality(Replicas)

MajorityNum ∆
= (Population÷2)+1

WritesAssumption ∆
= ∧ IsFiniteSet(Writes)

∧Cardinality(Writes)⩾ 1

∧ “nil” /∈Writes
a write command model value serves as both the

ID of the command and the value to be written

ReadsAssumption ∆
= ∧ IsFiniteSet(Reads)
∧Cardinality(Reads)⩾ 0

∧ “nil” /∈Writes

MaxBallotAssumption ∆
= ∧MaxBallot ∈ Nat
∧MaxBallot ⩾ 2

NodeFailuresOnAssumption ∆
= NodeFailuresOn ∈ boolean

assume ∧ReplicasAssumption
∧WritesAssumption
∧ReadsAssumption
∧MaxBallotAssumption
∧NodeFailuresOnAssumption

Useful constants & typedefs.

Commands ∆
= Writes ∪Reads

NumWrites ∆
= Cardinality(Writes)

NumReads ∆
= Cardinality(Reads)

NumCommands ∆
= Cardinality(Commands)

Range(seq) ∆
= {seq [i] : i ∈ 1 . . Len(seq)}

Client observable events.

ClientEvents ∆
= [type : {“Req”}, cmd : Commands]
∪ [type : {“Ack”}, cmd : Commands ,

val : {“nil”}∪Writes ,

201

by : Replicas]

ReqEvent(c) ∆
= [type 7→ “Req”, cmd 7→ c]

AckEvent(c, v , n) ∆
= [type 7→ “Ack”, cmd 7→ c, val 7→ v , by 7→ n]

val is the old value for a write command

InitPending ∆
= (choose ws ∈ [1 . . Cardinality(Writes)→Writes]

: Range(ws) = Writes)
◦ (choose rs ∈ [1 . . Cardinality(Reads)→ Reads]

: Range(rs) = Reads)
W .L.O .G ., choose any sequence concatenating writes

commands and read commands as the sequence of reqs;

all other cases are either symmetric or less useful

than this one

Server-side constants & states.

Ballots ∆
= 1 . . MaxBallot

Slots ∆
= 1 . . NumWrites

Statuses ∆
= {“Preparing”, “Accepting”, “Committed”}

InstStates ∆
= [status : {“Empty”}∪Statuses ,

write : {“nil”}∪Writes ,
voted : [bal : {0}∪Ballots ,

write : {“nil”}∪Writes]]

NullInst ∆
= [status 7→ “Empty”,

write 7→ “nil”,
voted 7→ [bal 7→ 0, write 7→ “nil”]]

NodeStates ∆
= [leader : {“none”}∪Replicas ,

commitUpTo : {0}∪Slots ,
commitPrev : {0}∪Slots ∪ {NumWrites +1},

balPrepared : {0}∪Ballots ,
balMaxKnown : {0}∪Ballots ,
insts : [Slots → InstStates]]

NullNode ∆
= [leader 7→ “none”,

commitUpTo 7→ 0,

commitPrev 7→ 0,

balPrepared 7→ 0,

balMaxKnown 7→ 0,

insts 7→ [s ∈ Slots 7→ NullInst]]
commitPrev is the last slot which might have been

202

committed by an old leader; a newly prepared leader

can safely serve reads locally only after its log has

been committed up to this slot. The time before this

condition becomes satisfied may be considered the

“recovery” or “ballot transfer” time

FirstEmptySlot(insts) ∆
=

if ∀s ∈ Slots : insts[s].status ̸= “Empty”
then NumWrites +1

else choose s ∈ Slots :
∧ insts[s].status = “Empty”
∧∀ t ∈ 1 . . (s −1) : insts[t].status ̸= “Empty”

LastNonEmptySlot(insts) ∆
=

if ∀s ∈ Slots : insts[s].status = “Empty”
then 0

else choose s ∈ Slots :
∧ insts[s].status ̸= “Empty”
∧∀ t ∈ (s +1) . . NumWrites : insts[t].status = “Empty”
note that this is not the same as FirstEmptySlot −1

due to possible existence of holes

Service-internal messages.

PrepareMsgs ∆
= [type : {“Prepare”}, src : Replicas ,

bal : Ballots]

PrepareMsg(r , b) ∆
= [type 7→ “Prepare”, src 7→ r ,

bal 7→ b]

InstsVotes ∆
= [Slots → [bal : {0}∪Ballots ,

write : {“nil”}∪Writes]]

VotesByNode(n) ∆
= [s ∈ Slots 7→ n .insts[s].voted]

PrepareReplyMsgs ∆
= [type : {“PrepareReply”}, src : Replicas ,

bal : Ballots ,
votes : InstsVotes]

PrepareReplyMsg(r , b, iv) ∆
= [type 7→ “PrepareReply”, src 7→ r ,

bal 7→ b,
votes 7→ iv]

PeakVotedWrite(prs , s) ∆
=

if ∀pr ∈ prs : pr .votes[s].bal = 0

then “nil”
else let ppr ∆

=

203

choose ppr ∈ prs :
∀pr ∈ prs : pr .votes[s].bal ⩽ ppr .votes[s].bal

in ppr .votes[s].write

LastTouchedSlot(prs) ∆
=

if ∀s ∈ Slots : PeakVotedWrite(prs , s) = “nil”
then 0

else choose s ∈ Slots :
∧PeakVotedWrite(prs , s) ̸= “nil”
∧∀ t ∈ (s +1) . . NumWrites : PeakVotedWrite(prs , t) = “nil”

PrepareNoticeMsgs ∆
= [type : {“PrepareNotice”}, src : Replicas ,

bal : Ballots ,
commit prev : {0}∪Slots]

PrepareNoticeMsg(r , b, cp) ∆
= [type 7→ “PrepareNotice”, src 7→ r ,

bal 7→ b,
commit prev 7→ cp]

this messasge is added to allow

followers to learn about commitPrev

AcceptMsgs ∆
= [type : {“Accept”}, src : Replicas ,

bal : Ballots ,
slot : Slots ,
write : Writes]

AcceptMsg(r , b, s , c) ∆
= [type 7→ “Accept”, src 7→ r ,

bal 7→ b,
slot 7→ s ,
write 7→ c]

AcceptReplyMsgs ∆
= [type : {“AcceptReply”}, src : Replicas ,

bal : Ballots ,
slot : Slots]

AcceptReplyMsg(r , b, s) ∆
= [type 7→ “AcceptReply”, src 7→ r ,

bal 7→ b,
slot 7→ s]

no need to carry command ID in

AcceptReply because ballot and

slot uniquely identifies the write

CommitNoticeMsgs ∆
= [type : {“CommitNotice”}, upto : Slots]

CommitNoticeMsg(u) ∆
= [type 7→ “CommitNotice”, upto 7→ u]

204

Messages ∆
= PrepareMsgs
∪ PrepareReplyMsgs
∪ PrepareNoticeMsgs
∪ AcceptMsgs
∪ AcceptReplyMsgs
∪ CommitNoticeMsgs

Roster lease related typedefs.

Rosters ∆
= {ros ∈ [bal : Ballots , leader : Replicas , responders : subset Replicas] :

ros .leader /∈ ros .responders}

Roster(b, l , resps) ∆
= [bal 7→ b, leader 7→ l , responders 7→ resps]

each new ballot number maps to a new roster ; this
includes the change of leader (as in classic

MultiPaxos) and/or the change of who’re responders

LeaseGrants ∆
= [from : Replicas , roster : Rosters]

LeaseGrant(f , ros) ∆
= [from 7→ f , roster 7→ ros]

this is the only type of message that may be

“removed” from the global set of messages to make

a “cheated” model of leasing: if a LeaseGrant
message is removed, it means that promise has

expired and the grantor did not refresh, probably

making way for switching to a different roster

Main algorithm in PlusCal .

algorithm Bodega

variable msgs = {}, messages in the network

grants = {}, lease msgs in the network

node = [r ∈ Replicas 7→ NullNode], replica node state

pending = InitPending , sequence of pending reqs

observed = ⟨⟩, client observed events

crashed = [r ∈ Replicas 7→ false] ; replica crashed flag

define

CurrentRoster ∆
=

let leased(b) ∆
= Cardinality({g ∈ grants :

g .roster .bal = b})⩾ MajorityNum
in if ¬∃b ∈ Ballots : leased(b)

then Roster(0, “none”, 0)
else (choose g ∈ grants : leased(g .roster .bal)).roster

205

the leasing mechanism ensures that at any

time, there’s at most one leader

ThinkAmLeader(r) ∆
= ∧node[r].leader = r
∧node[r].balPrepared = node[r].balMaxKnown
∧CurrentRoster .bal > 0

∧CurrentRoster .bal = node[r].balMaxKnown
∧CurrentRoster .leader = r

ThinkAmFollower(r) ∆
= ∧node[r].leader ̸= r
∧CurrentRoster .bal > 0

∧CurrentRoster .bal = node[r].balMaxKnown
∧CurrentRoster .leader ̸= r

ThinkAmResponder(r) ∆
= ∧ThinkAmFollower(r)
∧ r ∈ CurrentRoster .responders

BallotTransfered(r) ∆
= node[r].commitUpTo ⩾ node[r].commitPrev

WriteCommittable(ars) ∆
=

∧Cardinality({ar .src : ar ∈ ars})⩾ MajorityNum
∧CurrentRoster .responders ⊆ {ar .src : ar ∈ ars}

reqsMade ∆
= {e .cmd : e ∈ {e ∈ Range(observed) : e .type = “Req”}}

acksRecv ∆
= {e .cmd : e ∈ {e ∈ Range(observed) : e .type = “Ack”}}

AppendObserved(seq) ∆
=

let filter(e) ∆
= if e .type = “Req” then e .cmd /∈ reqsMade

else e .cmd /∈ acksRecv
in observed ◦SelectSeq(seq , filter)

UnseenPending(r) ∆
=

let filter(c) ∆
= ∀s ∈ Slots : node[r].insts[s].write ̸= c

in SelectSeq(pending , filter)

RemovePending(cmd) ∆
=

let filter(c) ∆
= c ̸= cmd

in SelectSeq(pending , filter)

terminated ∆
= ∧Len(pending) = 0

∧Cardinality(reqsMade) = NumCommands
∧Cardinality(acksRecv) = NumCommands

numCrashed ∆
= Cardinality({r ∈ Replicas : crashed [r]})

end define ;

206

Send a set of messages helper.

macro Send(set) begin
msgs := msgs ∪ set ;

end macro ;

Expire existing lease grant from f , and make a new repeatedly refreshed

lease grant to new roster ros .
macro Lease(f , ros) begin

grants := {g ∈ grants : g .from ̸= f }∪ {LeaseGrant(f , ros)} ;
end macro ;

Observe client events helper.

macro Observe(seq) begin
observed := AppendObserved(seq) ;

end macro ;

Resolve a pending command helper.

macro Resolve(c) begin
pending := RemovePending(c) ;

end macro ;

Someone steps up as leader and sends Prepare message to followers.

To simplify this spec W .L.O .G ., we change the responders roster only when

a new leader steps up; in practice, a separate and independent type of

trigger will be used to change the roster .
macro BecomeLeader(r) begin

if I’m not a current leader

await node[r].leader ̸= r ;
pick a greater ballot number and a roster
with b ∈ Ballots ,

resps ∈ subset {f ∈ Replicas : f ̸= r },
do

await ∧ b > node[r].balMaxKnown
∧¬∃m ∈ msgs : (m .type = “Prepare”)∧ (m .bal = b) ;

W .L.O .G ., using this clause to model that ballot

numbers from different proposers be unique

update states and restart Prepare phase for in-progress instances

node[r].leader := r
node[r].commitPrev := NumWrites +1

node[r].balPrepared := 0

node[r].balMaxKnown := b
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

207

except ! .status = if@= “Accepting”
then “Preparing”
else @]] ;

broadcast Prepare and reply to myself instantly

Send({PrepareMsg(r , b),
PrepareReplyMsg(r , b, VotesByNode(node[r]))}) ;

expire my old lease grant if any and grant to myself

Lease(r , Roster(b, r , resps)) ;
end with ;

end macro ;

Replica replies to a Prepare message.

macro HandlePrepare(r) begin
if receiving a Prepare message with larger ballot than ever seen

with m ∈ msgs do

await ∧m .type = “Prepare”
∧m .bal > node[r].balMaxKnown ;

update states and reset statuses

node[r].leader := m .src
node[r].commitPrev := NumWrites +1

node[r].balMaxKnown := m .bal
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if@= “Accepting”
then “Preparing”
else @]] ;

send back PrepareReply with my voted list

Send({PrepareReplyMsg(r , m .bal , VotesByNode(node[r]))}) ;
expire my old lease grant if any and grant to new leader

remember that we simplify this spec by merging responders
roster change into leader change Prepares

Lease(r , (choose g ∈ grants : g .from = m .src).roster) ;
end with ;

end macro ;

Leader gathers PrepareReply messages until condition met, then marks

the corresponding ballot as prepared and saves highest voted commands.

macro HandlePrepareReplies(r) begin
if I’m waiting for PrepareReplies
await ∧node[r].leader = r

∧node[r].balPrepared = 0 ;

when there are enough number of PrepareReplies of desired ballot

208

with prs = {m ∈ msgs : ∧m .type = “PrepareReply”
∧m .bal = node[r].balMaxKnown}

do

await Cardinality({pr .src : pr ∈ prs})⩾ MajorityNum ;

marks this ballot as prepared and saves highest voted command

in each slot if any

node[r].balPrepared := node[r].balMaxKnown
node[r].insts :=

[s ∈ Slots 7→
[node[r].insts[s]

except ! .status = if ∨@= “Preparing”
∨ ∧@= “Empty”

∧PeakVotedWrite(prs , s) ̸= “nil”
then “Accepting”
else @,

!.write = PeakVotedWrite(prs , s)]]
node[r].commitPrev := LastTouchedSlot(prs) ;
send Accept messages for in-progress instances and reply to myself

instantly; send PrepareNotices as well

Send(union
{{AcceptMsg(r , node[r].balPrepared , s , node[r].insts[s].write),

AcceptReplyMsg(r , node[r].balPrepared , s)} :
s ∈ {s ∈ Slots : node[r].insts[s].status = “Accepting”}}

∪ {PrepareNoticeMsg(r , node[r].balPrepared , LastTouchedSlot(prs))}) ;
end with ;

end macro ;

Follower receives PrepareNotice from a prepared and recovered leader, and

updates its commitPrev accordingly.

macro HandlePrepareNotice(r) begin
if I’m a follower waiting on PrepareNotice
await ∧ThinkAmFollower(r)

∧node[r].commitPrev = NumWrites +1 ;

when there’s a PrepareNotice message in effect

with m ∈ msgs do

await ∧m .type = “PrepareNotice”
∧m .bal = node[r].balMaxKnown ;

update my commitPrev
node[r].commitPrev := m .commit prev ;

end with ;

end macro ;

A prepared leader takes a new write request into the next empty slot.

209

macro TakeNewWriteRequest(r) begin
if I’m a prepared leader and there’s pending write request

await ∧ThinkAmLeader(r)
∧∃s ∈ Slots : node[r].insts[s].status = “Empty”
∧Len(UnseenPending(r))> 0

∧Head(UnseenPending(r)) ∈Writes ;
find the next empty slot and pick a pending request

with s = FirstEmptySlot(node[r].insts),
c = Head(UnseenPending(r))

W .L.O .G ., only pick a command not seen in current

prepared log to have smaller state space; in practice,

duplicated client requests should be treated by some

idempotency mechanism such as using request IDs
do

update slot status and voted

node[r].insts[s].status := “Accepting”
node[r].insts[s].write := c
node[r].insts[s].voted .bal := node[r].balPrepared
node[r].insts[s].voted .write := c ;
broadcast Accept and reply to myself instantly

Send({AcceptMsg(r , node[r].balPrepared , s , c),
AcceptReplyMsg(r , node[r].balPrepared , s)}) ;

append to observed events sequence if haven’t yet

Observe(⟨ReqEvent(c)⟩) ;
end with ;

end macro ;

Replica replies to an Accept message.

macro HandleAccept(r) begin
if I’m a follower

await ThinkAmFollower(r) ;
if receiving an unreplied Accept message with valid ballot

with m ∈ msgs do

await ∧m .type = “Accept”
∧m .bal ⩾ node[r].balMaxKnown
∧m .bal ⩾ node[r].insts[m .slot].voted .bal ;

update node states and corresponding instance’s states

node[r].leader := m .src
node[r].balMaxKnown := m .bal
node[r].insts[m .slot].status := “Accepting”
node[r].insts[m .slot].write := m .write
node[r].insts[m .slot].voted .bal := m .bal

210

node[r].insts[m .slot].voted .write := m .write ;
send back AcceptReply
Send({AcceptReplyMsg(r , m .bal , m .slot)}) ;

end with ;

end macro ;

Leader gathers AcceptReply messages for a slot until condition met,

then marks the slot as committed and acknowledges the client.

macro HandleAcceptReplies(r) begin
if I’m a prepared leader

await ∧ThinkAmLeader(r)
∧node[r].commitUpTo < NumWrites
∧node[r].insts[node[r].commitUpTo+1].status = “Accepting” ;

W .L.O .G ., only enabling the next slot after commitUpTo
here to make the body of this macro simpler; in practice,

messages are received proactively and there should be a

separate “Executed” status

for this slot, when there is a good set of AcceptReplies that is at

least a majority number and that covers all responders
with s = node[r].commitUpTo+1,

c = node[r].insts[s].write ,
ls = s −1,

v = if ls = 0 then “nil” else node[r].insts[ls].write ,
ars = {m ∈ msgs : ∧m .type = “AcceptReply”

∧m .slot = s
∧m .bal = node[r].balPrepared }

do

await WriteCommittable(ars) ;
marks this slot as committed and apply command

node[r].insts[s].status := “Committed”
node[r].commitUpTo := s ;
append to observed events sequence if haven’t yet, and remove

the command from pending

Observe(⟨AckEvent(c, v , r)⟩) ;
Resolve(c) ;
broadcast CommitNotice to followers

Send({CommitNoticeMsg(s)}) ;
end with ;

end macro ;

Replica receives new commit notification.

macro HandleCommitNotice(r) begin
if I’m a follower waiting on CommitNotice

211

await ∧ThinkAmFollower(r)
∧node[r].commitUpTo < NumWrites
∧node[r].insts[node[r].commitUpTo+1].status = “Accepting” ;

W .L.O .G ., only enabling the next slot after commitUpTo
here to make the body of this macro simpler

for this slot, when there’s a CommitNotice message

with s = node[r].commitUpTo+1,

c = node[r].insts[s].write ,
m ∈ msgs

do

await ∧m .type = “CommitNotice”
∧m .upto = s ;

marks this slot as committed and apply command

node[r].insts[s].status := “Committed”
node[r].commitUpTo := s ;

end with ;

end macro ;

A prepared leader or a responder follower takes a new read request and

serves it locally.

macro TakeNewReadRequest(r) begin
if I’m a caught-up leader or responder follower

await ∧ ∨ThinkAmLeader(r)
∨ThinkAmResponder(r)

∧BallotTransfered(r)
∧Len(UnseenPending(r))> 0

∧Head(UnseenPending(r)) ∈ Reads ;
pick a pending request; examine my log and find the last non-empty

slot, check its status

with s = LastNonEmptySlot(node[r].insts),
v = if s = 0 then “nil” else node[r].insts[s].write ,
c = Head(UnseenPending(r))

W .L.O .G ., only pick a command not seen in current

prepared log to have smaller state space; in practice,

duplicated client requests should be treated by some

idempotency mechanism such as using request IDs
do

if the latest value is in Committed status, can directly reply;

otherwise, should hold until I’ve received enough broadcasted

AcceptReplies indicating that the write is surely to be committed

await ∨ s = 0

∨ s > 0∧node[r].insts[s].status = “Committed”

212

∨ let ars ∆
= {m ∈ msgs : ∧m .type = “AcceptReply”

∧m .slot = s
∧m .bal = node[r].balMaxKnown}

in WriteCommittable(ars) ;
acknowledge client with the latest value, and remove the command

from pending

Observe(⟨ReqEvent(c), AckEvent(c, v , r)⟩) ;
Resolve(c) ;

end with ;

end macro ;

Replica node crashes itself under promised conditions.

macro ReplicaCrashes(r) begin
if less than (N − majority) number of replicas have failed

await ∧MajorityNum +numCrashed < Cardinality(Replicas)
∧¬crashed [r]
∧node[r].balMaxKnown < MaxBallot ;

this clause is needed only because we have an upper

bound ballot number for modeling checking; in practice

someone else could always come up with a higher ballot

mark myself as crashed

crashed [r] := true ;

end macro ;

Replica server node main loop.

process Replica ∈ Replicas
begin

rloop : while (¬terminated)∧ (¬crashed [self]) do
either

BecomeLeader(self) ;
or

HandlePrepare(self) ;
or

HandlePrepareReplies(self) ;
or

HandlePrepareNotice(self) ;
or

TakeNewWriteRequest(self) ;
or

HandleAccept(self) ;
or

HandleAcceptReplies(self) ;
or

213

HandleCommitNotice(self) ;
or

TakeNewReadRequest(self) ;
or

if NodeFailuresOn then

ReplicaCrashes(self) ;
end if ;

end either ;

end while ;

end process ;

end algorithm ;

A.3.2 Invariants Specification

module Bodega MC
extends Bodega

TLC roster-related defs.

ConditionalPerm(set) ∆
= if Cardinality(set)> 1

then Permutations(set)
else {}

SymmetricPerms ∆
= ConditionalPerm(Replicas)
∪ ConditionalPerm(Writes)
∪ ConditionalPerm(Reads)

ConstMaxBallot ∆
= 3

Type check invariant.

TypeOK ∆
= ∧∀m ∈ msgs : m ∈ Messages

∧∀g ∈ grants : g ∈ LeaseGrants
∧Cardinality({g .from : g ∈ grants}) = Cardinality(grants)
∧∀r ∈ Replicas : node[r] ∈ NodeStates
∧Len(pending)⩽ NumCommands
∧Cardinality(Range(pending)) = Len(pending)
∧∀c ∈ Range(pending) : c ∈ Commands
∧Len(observed)⩽ 2∗NumCommands
∧Cardinality(Range(observed)) = Len(observed)
∧Cardinality(reqsMade)⩾ Cardinality(acksRecv)

214

∧∀e ∈ Range(observed) : e ∈ ClientEvents
∧∀r ∈ Replicas : crashed [r] ∈ boolean

theorem Spec⇒2TypeOK

Linearizability constraint.

ReqPosOfCmd(c) ∆
= choose i ∈ 1 . . Len(observed) :

∧observed [i].type = “Req”
∧observed [i].cmd = c

AckPosOfCmd(c) ∆
= choose i ∈ 1 . . Len(observed) :

∧observed [i].type = “Ack”
∧observed [i].cmd = c

ResultOfCmd(c) ∆
= observed [AckPosOfCmd(c)].val

OrderIdxOfCmd(order , c) ∆
= choose j ∈ 1 . . Len(order) : order [j] = c

LastWriteBefore(order , j) ∆
=

let k ∆
= choose k ∈ 0 . . (j −1) :

∧ (k = 0∨order [k] ∈Writes)
∧∀ l ∈ (k +1) . . (j −1) : order [l] ∈ Reads

in if k = 0 then “nil” else order [k]

IsLinearOrder(order) ∆
=

∧{order [j] : j ∈ 1 . . Len(order)}= Commands
∧∀ j ∈ 1 . . Len(order) :

ResultOfCmd(order [j]) = LastWriteBefore(order , j)

ObeysRealTime(order) ∆
=

∀c1, c2 ∈ Commands :
(AckPosOfCmd(c1)< ReqPosOfCmd(c2))
⇒ (OrderIdxOfCmd(order , c1)< OrderIdxOfCmd(order , c2))

Linearizability ∆
=

terminated ⇒
∃order ∈ [1 . . NumCommands → Commands] :

∧ IsLinearOrder(order)
∧ObeysRealTime(order)

theorem Spec⇒ Linearizability

215

A.3.3 Model Checking Parameters

Bodega MC.cfg

SPECIFICATION Spec

CONSTANTS
Replicas = {s1, s2, s3}
Writes = {w1, w2}
Reads = {r1, r2}
MaxBallot <- ConstMaxBallot
NodeFailuresOn <- TRUE

SYMMETRY SymmetricPerms

INVARIANTS
TypeOK
Linearizability

CHECK_DEADLOCK TRUE

216

Bibliography

[1] Michael Abd-El-Malek, Gregory R. Ganger, Garth R. Goodson, Michael K. Reiter, and

Jay J. Wylie. Fault-scalable byzantine fault-tolerant services. In Proceedings of the

Twentieth ACM Symposium on Operating Systems Principles, SOSP ’05, page 59–74,

New York, NY, USA, 2005. Association for Computing Machinery.

[2] S.V. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial.

Computer, 29(12):66–76, 1996.

[3] Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations

for Distributed Transactions. Ph.D., MIT, Cambridge, MA, USA, March 1999. Also as

Technical Report MIT/LCS/TR-786.

[4] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani,

Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon, Larry

Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari. Slicer: Auto-Sharding for

datacenter applications. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), pages 739–753, Savannah, GA, November 2016. USENIX

Association.

[5] Marcos K. Aguilera, Naama Ben-David, Rachid Guerraoui, Virendra J. Marathe,

Athanasios Xygkis, and Igor Zablotchi. Microsecond consensus for microsecond

applications. In 14th USENIX Symposium on Operating Systems Design and Implemen-

tation (OSDI 20), pages 599–616. USENIX Association, November 2020.

Bibliography 217

[6] Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger. The

power of processor consistency. In Proceedings of the 5th Annual ACM Symposium on

Parallel Algorithms and Architectures, SPAA 1993, Proceedings of the 5th Annual ACM

Symposium on Parallel Algorithms and Architectures, SPAA 1993, pages 251–260.

Association for Computing Machinery, Inc, August 1993. Funding Information: * Thk

work was supported in part by the National Science Foundation under grants CCR-

8619S86, CCR-8909663j and CCR-9106627. Authors’ address: College of Computing,

Georgia Institute of Technology Atlanta, Georgia 30332-0280. t Tlds author was

supported in part by a scholarship Hariri Foundation. Publisher Copyright: © 1993

ACM.; 5th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA

1993 ; Conference date: 30-06-1993 Through 02-07-1993.

[7] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.

Causal memory: definitions, implementation, and programming. Distributed Com-

puting, 9(1):37–49, Mar 1995.

[8] Ailidani Ailijiang, Aleksey Charapko, and Murat Demirbas. Consensus in the cloud:

Paxos systems demystified. In 2016 25th International Conference on Computer Com-

munication and Networks (ICCCN), pages 1–10, 2016.

[9] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar. Wpaxos:

Wide area network flexible consensus. IEEE Trans. Parallel Distrib. Syst.,

31(1):211–223, January 2020.

[10] Ramnatthan Alagappan, Aishwarya Ganesan, Jing Liu, Andrea Arpaci-Dusseau, and

Remzi Arpaci-Dusseau. Fault-Tolerance, fast and slow: Exploiting failure asynchrony

in distributed systems. In 13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 18), pages 390–408, Carlsbad, CA, October 2018. USENIX

Association.

[11] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany. To-

ward a generic fault tolerance technique for partial network partitioning. In Proceed-

ings of the 14th USENIX Conference on Operating Systems Design and Implementation,

OSDI’20, USA, 2020. USENIX Association.

[12] Sérgio Almeida, João Leitão, and Luís Rodrigues. Chainreaction: a causal+ consis-

tent datastore based on chain replication. In Proceedings of the 8th ACM European

Conference on Computer Systems, EuroSys ’13, page 85–98, New York, NY, USA, 2013.

Association for Computing Machinery.

[13] Peter Alvaro, Joshua Rosen, and Joseph M. Hellerstein. Lineage-driven fault injection.

In Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’15, page 331–346, New York, NY, USA, 2015. Association for

Computing Machinery.

Bibliography 218

[14] Amazon Web Services. Amazon elastic block store (ebs).

urlhttps://aws.amazon.com/ebs/, 2024. High-performance block storage service for

EC2.

[15] Apache Software Foundation. Apache CouchDB. https://couchdb.apache.org/,
2025. Accessed: 2025-06-08.

[16] Artem on StackOverflow. Is zookeeper always consistent in terms of cap theorem?

https://stackoverflow.com/questions/35387774, 2017. Accessed: 2024-12-

01.

[17] Balaji Arun, Sebastiano Peluso, Roberto Palmieri, Giuliano Losa, and Binoy Ravindran.

Speeding up consensus by chasing fast decisions. In 47th IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages 49–60, 2017.

[18] Anish Athalye. Testing distributed systems for linearizability, 2017. https://anis
hathalye.com/testing-distributed-systems-for-linearizability/, Last
accessed on 2025-05-26.

[19] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in

message-passing systems. J. ACM, 42(1):124–142, jan 1995.

[20] Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability.

ACM Trans. Comput. Syst., 12(2):91–122, may 1994.

[21] AWS. Amazon s3 replication, 2023. https://aws.amazon.com/s3/features/rep
lication/, Last accessed on 2023-11-25.

[22] AWS. Amazon ec2 instance network bandwidth, 2024. https://docs.aws.amazo
n.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html,
Last accessed on 2024-09-06.

[23] AWS. Aws global infrastructure, 2024. https://aws.amazon.com/about-aws/g
lobal-infrastructure/, Last accessed on 2024-04-28.

[24] AWS. Workload characteristics. https://docs.aws.amazon.com/prescriptive
-guidance/latest/oracle-exadata-blueprint/workload-characteristics
.html, 2024. Accessed: 2024-12-01.

[25] Microsoft Azure. Azure global infrastructure experience, 2025. https://datacent
ers.microsoft.com/globe/explore/, Last accessed on 2025-06-08.

[26] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. Highly available transactions: Virtues and limitations. Proc. VLDB Endow.,

7(3):181–192, nov 2013.

https://couchdb.apache.org/
https://stackoverflow.com/questions/35387774
https://anishathalye.com/testing-distributed-systems-for-linearizability/
https://anishathalye.com/testing-distributed-systems-for-linearizability/
https://aws.amazon.com/s3/features/replication/
https://aws.amazon.com/s3/features/replication/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-network-bandwidth.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/prescriptive-guidance/latest/oracle-exadata-blueprint/workload-characteristics.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/oracle-exadata-blueprint/workload-characteristics.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/oracle-exadata-blueprint/workload-characteristics.html
https://datacenters.microsoft.com/globe/explore/
https://datacenters.microsoft.com/globe/explore/

Bibliography 219

[27] Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Bolt-on causal

consistency. In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’13, page 761–772, New York, NY, USA, 2013. Associa-

tion for Computing Machinery.

[28] Jason Baker, Chris Bond, James C. Corbett, JJ Furman, Andrey Khorlin, James Larson,

Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore:

Providing scalable, highly available storage for interactive services. In Proceedings of

the Conference on Innovative Data system Research (CIDR), pages 223–234, 2011.

[29] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mihir Dharamshi, Ahmed Jafri, Xiao

Shi, Santosh Ghosh, Hazem Hassan, Aaryaman Sagar, Rhed Shi, Jingming Liu, Filip

Gruszczynski, Xianan Zhang, Huy Hoang, Ahmed Yossef, Francois Richard, and

Yee Jiun Song. Virtual consensus in delos. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages 617–632. USENIX Association,

November 2020.

[30] Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran, Michael

Wei, and Ted Wobber. Corfu: A distributed shared log. ACM Trans. Comput. Syst.,

31(4), December 2013.

[31] Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran,

MichaelWei, John D. Davis, Sriram Rao, Tao Zou, andAviad Zuck. Tango: Distributed

data structures over a shared log. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ’13, page 325–340, New York, NY, USA, 2013.

Association for Computing Machinery.

[32] Mahesh Balakrishnan, Chen Shen, Ahmed Jafri, Suyog Mapara, David Geraghty, Jason

Flinn, Vidhya Venkat, Ivailo Nedelchev, Santosh Ghosh, Mihir Dharamshi, Jingming

Liu, Filip Gruszczynski, Jun Li, Rounak Tibrewal, Ali Zaveri, Rajeev Nagar, Ahmed

Yossef, Francois Richard, and Yee Jiun Song. Log-structured protocols in delos. In

Proceedings of the ACM 28th Symposium on Operating Systems Principles, SOSP ’21,

page 538–552, New York, NY, USA, 2021. Association for Computing Machinery.

[33] Jeff Barr. Amazon s3 update – strong read-after-write consistency, 2023. https:
//aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-wri
te-consistency/, Last accessed on 2023-11-19.

[34] Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke Kosewski, Justin

Reynolds, and Casey Rosenthal. Chaos engineering. IEEE Softw., 33(3):35–41, May

2016.

https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/

Bibliography 220

[35] Nalini Belaramani, Mike Dahlin, Lei Gao, Amol Nayate, Arun Venkataramani, Praveen

Yalagandula, and Jiandan Zheng. Practi replication. In Proceedings of the 3rd

Conference on Networked Systems Design & Implementation - Volume 3, NSDI’06,

page 5, USA, 2006. USENIX Association.

[36] Michael Ben-Or. Another advantage of free choice (extended abstract): Completely

asynchronous agreement protocols. In Proceedings of the Second Annual ACM Sympo-

sium on Principles of Distributed Computing, PODC ’83, page 27–30, New York, NY,

USA, 1983. Association for Computing Machinery.

[37] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. Up-

paal—a tool suite for automatic verification of real-time systems. In Proceedings of the

DIMACS/SYCON Workshop on Hybrid Systems III: Verification and Control: Verification

and Control, page 232–243, Berlin, Heidelberg, 1996. Springer-Verlag.

[38] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. A critique of ansi sql isolation levels. In Proceedings of the 1995 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’95, page 1–10, New York,

NY, USA, 1995. Association for Computing Machinery.

[39] Christian Berger, Hans P. Reiser, and Alysson Bessani. Making reads in bft state

machine replication fast, linearizable, and live. In 2021 40th International Symposium

on Reliable Distributed Systems (SRDS), pages 1–12, 2021.

[40] E.R. Berlekamp. The technology of error-correcting codes. Proceedings of the IEEE,

68(5):564–593, 1980.

[41] Alysson Bessani, Paulo Sousa, and Miguel Correia. Active quorum systems. In

Proceedings of the Sixth International Conference on Hot Topics in System Dependability,

HotDep’10, page 1–8, USA, 2010. USENIX Association.

[42] Carlos Eduardo Bezerra, Fernando Pedone, and Robbert Van Renesse. Scalable

state-machine replication. In 2014 44th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, pages 331–342, 2014.

[43] Changyu Bi, Vassos Hadzilacos, and Sam Toueg. Parameterized algorithm for repli-

cated objects with local reads, 2022.

[44] Martin Biely, Zarko Milosevic, Nuno Santos, and André Schiper. S-paxos: Offloading

the leader for high throughput state machine replication. In 2012 IEEE 31st Symposium

on Reliable Distributed Systems, pages 111–120, 2012.

Bibliography 221

[45] William J. Bolosky, Dexter Bradshaw, Randolph B. Haagens, Norbert P. Kusters, and

Peng Li. Paxos replicated state machines as the basis of a High-Performance data

store. In 8th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 11), Boston, MA, March 2011. USENIX Association.

[46] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza. On verifying

causal consistency. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles

of Programming Languages, POPL ’17, page 626–638, New York, NY, USA, 2017.

Association for Computing Machinery.

[47] Manuel Bravo, Alexey Gotsman, Borja de Régil, and Hengfeng Wei. UniStore: A

fault-tolerant marriage of causal and strong consistency. In 2021 USENIX Annual

Technical Conference (USENIX ATC 21), pages 923–937. USENIX Association, July

2021.

[48] M. Scot Breitenfeld, Neil Fortner, Jordan Henderson, Jérome Soumagne, Mohamad

Chaarawi, Johann Lombardi, and Quincey Koziol. Daos for extreme-scale systems in

scientific applications. ArXiv, abs/1712.00423, 2017.

[49] Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the

Nineteenth Annual ACM Symposium on Principles of Distributed Computing, PODC

’00, page 7, New York, NY, USA, 2000. Association for Computing Machinery.

[50] Marc Brooker, Tao Chen, and Fan Ping. Millions of tiny databases. In NSDI 2020,

2020.

[51] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to causal

consistency. In 12th Euromicro Conference on Parallel, Distributed and Network-Based

Processing, 2004. Proceedings., pages 152–158, 2004.

[52] Sebastian Burckhardt, PraveshKothari, MadanlalMusuvathi, and SantoshNagarakatte.

A randomized scheduler with probabilistic guarantees of finding bugs. In Proceedings

of the Fifteenth International Conference on Architectural Support for Programming

Languages and Operating Systems, ASPLOS XV, page 167–178, New York, NY, USA,

2010. Association for Computing Machinery.

[53] Matthew Burke, Audrey Cheng, and Wyatt Lloyd. Gryff: Unifying consensus and

shared registers. In 17th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 20), pages 591–617, Santa Clara, CA, February 2020. USENIX

Association.

[54] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In

Proceedings of the 7th Symposium on Operating Systems Design and Implementation,

OSDI ’06, page 335–350, USA, 2006. USENIX Association.

Bibliography 222

[55] Vitalik Buterin. Ethereum White Paper: A Next Generation Smart Contract &

Decentralized Application Platform. Technical report, Ethereum, 2013.

[56] Georgia Butler. Google cloud accidentally deleted unisuper’s private cloud subscrip-

tion. Data Center Dynamics, 2024.

[57] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui Wang,

and Guoqing Ma. Polarfs: An ultra-low latency and failure resilient distributed file

system for shared storage cloud database. Proc. VLDB Endow., 11(12):1849–1862, aug

2018.

[58] Zhichao Cao, Siying Dong, Sagar Vemuri, and David H.C. Du. Characterizing,

modeling, and benchmarking RocksDB Key-Value workloads at facebook. In 18th

USENIX Conference on File and Storage Technologies (FAST 20), pages 209–223, Santa

Clara, CA, February 2020. USENIX Association.

[59] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Third

Symposium on Operating Systems Design and Implementation (OSDI), New Orleans,

Louisiana, February 1999. USENIX Association, Co-sponsored by IEEE TCOS and

ACM SIGOPS.

[60] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive

recovery. ACM Trans. Comput. Syst., 20(4):398–461, November 2002.

[61] Data Centre. Alibaba cloud hit by digital realty fire in singapore. Frontier Enterprise,

2024.

[62] Tej Chajed, Joseph Tassarotti, Mark Theng, M. Frans Kaashoek, and Nickolai Zel-

dovich. Verifying the DaisyNFS concurrent and crash-safe file system with sequential

reasoning. In 16th USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 22), pages 447–463, Carlsbad, CA, July 2022. USENIX Association.

[63] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: An

engineering perspective. In Proceedings of the Twenty-Sixth Annual ACM Symposium

on Principles of Distributed Computing, PODC ’07, page 398–407, New York, NY, USA,

2007. Association for Computing Machinery.

[64] Tushar D. Chandra, Vassos Hadzilacos, and Sam Toueg. An algorithm for replicated

objects with efficient reads. In Proceedings of the 2016 ACM Symposium on Princi-

ples of Distributed Computing, PODC ’16, page 325–334, New York, NY, USA, 2016.

Association for Computing Machinery.

Bibliography 223

[65] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2), jun

2008.

[66] Fay Chang and Garth A. Gibson. Automatic i/o hint generation through speculative

execution. In Proceedings of the Third Symposium on Operating Systems Design and

Implementation, OSDI ’99, page 1–14, USA, 1999. USENIX Association.

[67] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. Linearizable quorum

reads in paxos. In 11th USENIX Workshop on Hot Topics in Storage and File Systems

(HotStorage 19), Renton, WA, July 2019. USENIX Association.

[68] Aleksey Charapko, Ailidani Ailijiang, and Murat Demirbas. Pigpaxos: Devouring

the communication bottlenecks in distributed consensus. In Proceedings of the 2021

International Conference on Management of Data, SIGMOD ’21, page 235–247, New

York, NY, USA, 2021. Association for Computing Machinery.

[69] Yong Chen, Surendra Byna, Xian-He Sun, Rajeev Thakur, and William Gropp. Explor-

ing parallel i/o concurrency with speculative prefetching. In 2008 37th International

Conference on Parallel Processing, pages 422–429. IEEE, 2008.

[70] Sanket Chintapalli, Derek Dagit, Robert Evans, Reza Farivar, Zhuo Liu, Kyle Nus-

baum, Kishorkumar Patil, and Boyang Peng. Pacemaker: When zookeeper arteries

get clogged in storm clusters. In 2016 IEEE 9th International Conference on Cloud

Computing (CLOUD), pages 448–455, 2016.

[71] Inho Choi, Ellis Michael, Yunfan Li, Dan R. K. Ports, and Jialin Li. Hydra: Serialization-

Free network ordering for strongly consistent distributed applications. In 20th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 23), pages 293–320,

Boston, MA, April 2023. USENIX Association.

[72] Google Cloud. Google cloud locations, 2025. https://cloud.google.com/about
/locations, Last accessed on 2025-06-08.

[73] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip

Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.

Pnuts: Yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1:1277–1288, 2008.

[74] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. Benchmarking cloud serving systems with ycsb. In Proceedings of the 1st ACM

Symposium on Cloud Computing, SoCC ’10, page 143–154, New York, NY, USA, 2010.

Association for Computing Machinery.

https://cloud.google.com/about/locations
https://cloud.google.com/about/locations

Bibliography 224

[75] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J.

Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild,

Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey

Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Ya-

sushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale Woodford.

Spanner: Google’s globally distributed database. ACM Trans. Comput. Syst., 31(3),

aug 2013.

[76] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Rodrigues, and Liuba Shrira.

Hq replication: a hybrid quorum protocol for byzantine fault tolerance. In Proceedings

of the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06,

page 177–190, USA, 2006. USENIX Association.

[77] Heming Cui, Rui Gu, Cheng Liu, Tianyu Chen, and Junfeng Yang. Paxos made

transparent. In Proceedings of the 25th Symposium on Operating Systems Principles,

SOSP ’15, page 105–120, New York, NY, USA, 2015. Association for Computing

Machinery.

[78] Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin Avanes,

Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel, JianshengHuang,

Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley, Peter Povinec, Greg

Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. The snowflake elastic data

warehouse. In Proceedings of the 2016 International Conference on Management of Data,

SIGMOD ’16, page 215–226, New York, NY, USA, 2016. Association for Computing

Machinery.

[79] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth, Andrea

Arpaci-Dusseau, and Remzi Arpaci-Dusseau. From WiscKey to bourbon: A learned

index for Log-Structured merge trees. In 14th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 20), pages 155–171. USENIX Association,

November 2020.

[80] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zilberman, Hakim

Weatherspoon, Marco Canini, Fernando Pedone, and Robert Soulé. P4xos: Consensus

as a network service. IEEE/ACM Trans. Netw., 28(4):1726–1738, August 2020.

[81] Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert Soulé.

Netpaxos: consensus at network speed. In Proceedings of the 1st ACM SIGCOMM

Symposium on Software Defined Networking Research, SOSR ’15, New York, NY, USA,

2015. Association for Computing Machinery.

Bibliography 225

[82] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris van Doorn, and Jakob von

Raumer. The lean theorem prover (system description). In Automated Deduction —

CADE-25, volume 9195 of Lecture Notes in Computer Science, pages 378–388. Springer,

2015.

[83] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. Z3: An efficient smt solver. In

Tools and Algorithms for the Construction and Analysis of Systems (TACAS), volume

4963 of Lecture Notes in Computer Science, pages 337–340. Springer, 2008.

[84] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and

Werner Vogels. Dynamo: Amazon’s highly available key-value store. In Proceedings

of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles, SOSP ’07,

page 205–220, New York, NY, USA, 2007. Association for Computing Machinery.

[85] P Developers. P language: A state machine based programming language, 2023. Last

accessed 30 May 2025.

[86] Diem Association. State Machine Replication for DiemBFT. Technical report, Diem

Association, April 2020. Describes DiemBFT consensus based on HotStuff with

liveness optimizations and reconfiguration support.

[87] Cong Ding, David Chu, Evan Zhao, Xiang Li, Lorenzo Alvisi, and Robbert Van Renesse.

Scalog: Seamless reconfiguration and total order in a scalable shared log. In 17th

USENIX Symposium on Networked Systems Design and Implementation (NSDI 20), pages

325–338, Santa Clara, CA, February 2020. USENIX Association.

[88] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew

Renzelmann, Alex Shamis, Anirudh Badam, and Miguel Castro. No compromises:

distributed transactions with consistency, availability, and performance. In Proceed-

ings of the 25th Symposium on Operating Systems Principles, SOSP ’15, page 54–70,

New York, NY, USA, 2015. Association for Computing Machinery.

[89] Jiaqing Du, Daniele Sciascia, Sameh Elnikety, Willy Zwaenepoel, and Fernando Pe-

done. Clock-rsm: Low-latency inter-datacenter state machine replication using

loosely synchronized physical clocks. In 2014 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, pages 343–354, 2014.

[90] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig,

Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella,

Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Em-

manuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. The design and operation of

CloudLab. In Proceedings of the USENIX Annual Technical Conference (ATC), pages

1–14, July 2019.

Bibliography 226

[91] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of

partial synchrony. Journal of the ACM, 35(2):288–323, 1988.

[92] EdH on StackOverflow. Confused about the consistency guarantee of zookeeper

(sequential vs eventual consistency). https://stackoverflow.com/questions/
73840374/confused-about-the-consistency-guarantee-of-zookeeper-s
equential-vs-eventual-co, 2022. Accessed: 2024-12-01.

[93] Mostafa Elhemali, Niall Gallagher, Nick Gordon, Joseph Idziorek, Richard Krog, Colin

Lazier, Erben Mo, Akhilesh Mritunjai, Somasundaram Perianayagam, Tim Rath,

Swami Sivasubramanian, James Christopher Sorenson III, Sroaj Sosothikul, Doug

Terry, and Akshat Vig. Amazon DynamoDB: A scalable, predictably performant, and

fully managed NoSQL database service. In 2022 USENIX Annual Technical Conference

(USENIX ATC 22), pages 1037–1048, Carlsbad, CA, July 2022. USENIX Association.

[94] Patricia T. Endo, Moisés Rodrigues, Glauco E. Gonçalves, Judith Kelner, Djamel H.

Sadok, and Calin Curescu. High availability in clouds: systematic review and research

challenges. J. Cloud Comput., 5(1), December 2016.

[95] Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu Perrin,

and Pierre Sutra. State-machine replication for planet-scale systems. In Proceedings

of the Fifteenth European Conference on Computer Systems, EuroSys ’20, New York,

NY, USA, 2020. Association for Computing Machinery.

[96] etcd. etcd: A distributed, reliable key-value store for the most critical data of a

distributed system, 2023. https://etcd.io/, Last accessed on 2023-11-13.

[97] Keir Faser and Fay Chang. Operating system i/o speculation: How two invocations

are faster than one. In USENIX Annual Technical Conference, General Track, pages

325–338, 2003.

[98] João Ferreira Loff, Daniel Porto, João Garcia, Jonathan Mace, and Rodrigo Rodrigues.

Antipode: Enforcing cross-service causal consistency in distributed applications. In

Proceedings of the 29th Symposium on Operating Systems Principles, SOSP ’23, page

298–313, New York, NY, USA, 2023. Association for Computing Machinery.

[99] Colin J. Fidge. Timestamps in message-passing systems that preserve the partial

ordering. In Proceedings of the 11th Australian Computing Conference, pages 56–66,

1988.

[100] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of

distributed consensus with one faulty process. J. ACM, 32(2):374–382, apr 1985.

https://stackoverflow.com/questions/73840374/confused-about-the-consistency-guarantee-of-zookeeper-sequential-vs-eventual-co
https://stackoverflow.com/questions/73840374/confused-about-the-consistency-guarantee-of-zookeeper-sequential-vs-eventual-co
https://stackoverflow.com/questions/73840374/confused-about-the-consistency-guarantee-of-zookeeper-sequential-vs-eventual-co
https://etcd.io/

Bibliography 227

[101] Pedro Fouto, Nuno Preguiça, and Joao Leitão. High throughput replication with

integrated membership management. In 2022 USENIX Annual Technical Conference

(USENIX ATC 22), pages 575–592, Carlsbad, CA, July 2022. USENIX Association.

[102] Reginald Frank, Octavio Lomeli, Neil Giridharan, Soujanya Ponnapalli, Marcos K.

Aguilera, and Natacha Crooks. Real life is uncertain. consensus should be too! In

Proceedings of the 20th Workshop on Hot Topics in Operating Systems, HOTOS ’25, New

York, NY, USA, 2025. Association for Computing Machinery.

[103] Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, and Shivaram Venkatara-

man. Tuna: Tuning unstable and noisy cloud applications. In Proceedings of the

Twentieth European Conference on Computer Systems, EuroSys ’25, page 954–973, New

York, NY, USA, 2025. Association for Computing Machinery.

[104] Frank Gadban and Julian Kunkel. Analyzing the performance of the s3 object storage

api for hpc workloads. Applied Sciences, 11(18), 2021.

[105] Eli Gafni and Leslie Lamport. Disk paxos. In Proceedings of the 14th International

Conference on Distributed Computing, DISC ’00, page 330–344, Berlin, Heidelberg,

2000. Springer-Verlag.

[106] Lennard Gäher, Michael Sammler, Ralf Jung, Robbert Krebbers, and Derek Dreyer.

Refinedrust: A type system for high-assurance verification of rust programs. Proc.

ACM Program. Lang., 8(PLDI), June 2024.

[107] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea Arpaci-Dusseau, and Remzi

Arpaci-Dusseau. Strong and efficient consistency with Consistency-Aware durability.

In 18th USENIX Conference on File and Storage Technologies (FAST 20), pages 323–337,

Santa Clara, CA, February 2020. USENIX Association.

[108] Aishwarya Ganesan, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau, and

Remzi H. Arpaci-Dusseau. Exploiting nil-externality for fast replicated storage.

In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles,

SOSP ’21, page 440–456, New York, NY, USA, 2021. Association for Computing

Machinery.

[109] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin Serwe. Cadp 2011: a

toolbox for the construction and analysis of distributed processes. Int. J. Softw. Tools

Technol. Transf., 15(2):89–107, April 2013.

[110] Jinkun Geng, Anirudh Sivaraman, Balaji Prabhakar, and Mendel Rosenblum. Nezha:

Deployable and high-performance consensus using synchronized clocks. Proc. VLDB

Endow., 16(4):629–642, dec 2022.

Bibliography 228

[111] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In

Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages 20–43,

Bolton Landing, NY, 2003.

[112] David K. Gifford. Weighted voting for replicated data. In Proceedings of the Seventh

ACM Symposium on Operating Systems Principles, SOSP ’79, page 150–162, New York,

NY, USA, 1979. Association for Computing Machinery.

[113] David Kenneth Gifford. Information Storage in a Decentralized Computer System. PhD

thesis, Stanford University, Stanford, CA, USA, 1981. AAI8124072.

[114] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, jun 2002.

[115] Neil Giridharan, Florian Suri-Payer, Ittai Abraham, Lorenzo Alvisi, and Natacha

Crooks. Autobahn: Seamless high speed bft. In Proceedings of the ACM SIGOPS 30th

Symposium on Operating Systems Principles, SOSP ’24, page 1–23, New York, NY, USA,

2024. Association for Computing Machinery.

[116] Giuliano Losa and TLA+ Community. MultiPaxos Specification in TLA+ Examples

Repository. https://github.com/tlaplus/Examples/tree/master/specific
ations/MultiPaxos, 2020. Accessed: 2025-06-06.

[117] Brian L. Gorman. Azure storage ecosystem: Overview and development with azure

blob storage. In Developing Solutions for Microsoft Azure Certification Companion,

Certification Study Companion Series, pages 3–41. Apress, Berkeley, CA, 2023.

[118] Alexey Gotsman, Hongseok Yang, Marek Zawirski, and Sebastian Burckhardt. Repli-

cated data types: Specification, verification, optimality. In 41st Symposium on Princi-

ples of Programming Languages (POPL). ACM SIGPLAN, January 2014.

[119] V. Gramoli, N. Nicolaou, and A.A. Schwarzmann. Consistent Distributed Storage.

Synthesis Lectures on Distributed Computing Theory Series. Morgan & Claypool

Publishers, 2021.

[120] C. Gray and D. Cheriton. Leases: an efficient fault-tolerant mechanism for distributed

file cache consistency. In Proceedings of the Twelfth ACM Symposium on Operating

Systems Principles, SOSP ’89, page 202–210, New York, NY, USA, 1989. Association

for Computing Machinery.

[121] Jim Gray. Why do computers stop and what can be done about it?, 1985. https:
//www.hpl.hp.com/techreports/tandem/TR-85.7.pdf, Last accessed on

2023-01-05.

https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos
https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos
https://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf
https://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf

Bibliography 229

[122] Jim Gray. The Transaction Concept: Virtues and Limitations, page 140–150. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

[123] Guanzhou Hu and TLA+ Community. MultiPaxos-SMR Specification in TLA+ Exam-

ples Repository. https://github.com/tlaplus/Examples/tree/master/spec
ifications/MultiPaxos-SMR, 2020. Accessed: 2025-06-06.

[124] Joshua Guarnieri and Aleksey Charapko. Linearizable low-latency reads at the

edge. In Proceedings of the 10th Workshop on Principles and Practice of Consistency for

Distributed Data, PaPoC ’23, page 77–83, New York, NY, USA, 2023. Association for

Computing Machinery.

[125] Rachid Guerraoui, Antoine Murat, Javier Picorel, Athanasios Xygkis, Huabing Yan,

and Pengfei Zuo. uKharon: A membership service for microsecond applications. In

2022 USENIX Annual Technical Conference (ATC 22), pages 101–120, Carlsbad, CA,

July 2022. USENIX Association.

[126] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa, Tiratat Patana-

anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar, Agung Laksono, Jeffrey F.

Lukman, Vincentius Martin, and Anang D. Satria. What bugs live in the cloud? a

study of 3000+ issues in cloud systems. In Proceedings of the ACM Symposium on

Cloud Computing, SOCC ’14, page 1–14, New York, NY, USA, 2014. Association for

Computing Machinery.

[127] Jing Guo, Zihao Chang, Sa Wang, Haiyang Ding, Yihui Feng, Liang Mao, and Yungang

Bao. Who limits the resource efficiency of my datacenter: an analysis of alibaba

datacenter traces. In Proceedings of the International Symposium on Quality of Service,

IWQoS ’19, New York, NY, USA, 2019. Association for Computing Machinery.

[128] Jinwei Guo, Peng Cai, Jiahao Wang, Weining Qian, and Aoying Zhou. Adaptive

optimistic concurrency control for heterogeneous workloads. Proc. VLDB Endow.,

12(5):584–596, January 2019.

[129] Zhihan Guo, Xinyu Zeng, Kan Wu, Wuh-Chwen Hwang, Ziwei Ren, Xiangyao Yu,

Mahesh Balakrishnan, and Philip A. Bernstein. Cornus: Atomic commit for a cloud

dbms with storage disaggregation. Proc. VLDB Endow., 16(2):379–392, nov 2022.

[130] Finn Hackett, Shayan Hosseini, Renato Costa, Matthew Do, and Ivan Beschastnikh.

Compiling distributed system models with pgo. In Proceedings of the 28th ACM

International Conference on Architectural Support for Programming Languages and

Operating Systems, Volume 2, ASPLOS 2023, page 159–175, New York, NY, USA, 2023.

Association for Computing Machinery.

https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos-SMR
https://github.com/tlaplus/Examples/tree/master/specifications/MultiPaxos-SMR

Bibliography 230

[131] Apache Hadoop. S3guard: Consistency and metadata caching for s3a, 2023. https:
//hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/s3gua
rd.html, Last accessed on 2023-11-19.

[132] Theo Haerder and Andreas Reuter. Principles of transaction-oriented database

recovery. ACM Comput. Surv., 15(4):287–317, dec 1983.

[133] Rachael Harding, Dana Van Aken, Andrew Pavlo, and Michael Stonebraker. An

evaluation of distributed concurrency control. Proc. VLDB Endow., 10(5):553–564, Jan

2017.

[134] HashiCorp. Identity-based networking with consul, 2020. https://www.consul.i
o/, Last accessed on 2024-10-16.

[135] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath Setty, and Brian Zill. Ironfleet: Proving practical dis-

tributed systems correct. In Proceedings of the 25th Symposium on Operating Systems

Principles, SOSP ’15, page 1–17, New York, NY, USA, 2015. Association for Computing

Machinery.

[136] Thomas Haynes and David Noveck. Network File System (NFS) Version 4 Protocol.

RFC 7530, Internet Engineering Task Force, March 2015. Obsoletes RFC 3530.

[137] Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt Lloyd. Regular sequential

serializability and regular sequential consistency. In Proceedings of the ACM SIGOPS

28th Symposium on Operating Systems Principles, SOSP ’21, page 163–179, New York,

NY, USA, 2021. Association for Computing Machinery.

[138] M. Herlihy. Apologizing versus asking permission: optimistic concurrency control

for abstract data types. ACM Trans. Database Syst., 15(1):96–124, March 1990.

[139] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Elsevier Science,

2011.

[140] Maurice Herlihy. Dynamic quorum adjustment for partitioned data. ACM Trans.

Database Syst., 12(2):170–194, Jun 1987.

[141] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness condition

for concurrent objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, jul 1990.

[142] Dean Hildebrand and Denis Serenyi. Colossus under the hood: a peek into google’s

scalable storage system, 2023. https://cloud.google.com/blog/products/sto
rage-data-transfer/a-peek-behind-colossus-googles-file-system, Last
accessed on 2023-11-19.

https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/s3guard.html
https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/s3guard.html
https://hadoop.apache.org/docs/r3.0.3/hadoop-aws/tools/hadoop-aws/s3guard.html
https://www.consul.io/
https://www.consul.io/
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system
https://cloud.google.com/blog/products/storage-data-transfer/a-peek-behind-colossus-googles-file-system

Bibliography 231

[143] M.D. Hill. Multiprocessors should support simple memory consistency models.

Computer, 31(8):28–34, 1998.

[144] Long Hoang Le, Enrique Fynn, Mojtaba Eslahi-Kelorazi, Robert Soulé, and Fernando

Pedone. Dynastar: Optimized dynamic partitioning for scalable state machine

replication. In 2019 IEEE 39th International Conference on Distributed Computing

Systems (ICDCS), pages 1453–1465, 2019.

[145] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of

the ACM, 12(10):576–580, 583, October 1969.

[146] AlexHorn andDaniel Kroening. Faster linearizability checking via p-compositionality.

In Susanne Graf and Mahesh Viswanathan, editors, Formal Techniques for Distributed

Objects, Components, and Systems, pages 50–65, Cham, 2015. Springer International

Publishing.

[147] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible paxos: Quorum

intersection revisited, 2016.

[148] Heidi Howard, Malte Schwarzkopf, Anil Madhavapeddy, and Jon Crowcroft. Raft

refloated: Do we have consensus? SIGOPS Oper. Syst. Rev., 49(1):12–21, January 2015.

[149] Guanzhou Hu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. A unified,

practical, and understandable summary of non-transactional consistency levels in

distributed replication, 2024.

[150] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and Pan Zhou. Ncscale: Toward

optimal storage scaling via network coding. IEEE/ACM Trans. Netw., 30(1):271–284,

August 2021.

[151] Zhisheng Hu, Pengfei Zuo, Yizou Chen, Chao Wang, Junliang Hu, and Ming-Chang

Yang. Aceso: Achieving efficient fault tolerance in memory-disaggregated key-value

stores. In Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Prin-

ciples, SOSP ’24, page 127–143, New York, NY, USA, 2024. Association for Computing

Machinery.

[152] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit

Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in windows azure storage. In

2012 USENIX Annual Technical Conference (USENIX ATC 12), pages 15–26, Boston,

MA, June 2012. USENIX Association.

Bibliography 232

[153] Dongxu Huang, Qi Liu, Qiu Cui, Zhuhe Fang, Xiaoyu Ma, Fei Xu, Li Shen, Liu

Tang, Yuxing Zhou, Menglong Huang, Wan Wei, Cong Liu, Jian Zhang, Jianjun Li,

Xuelian Wu, Lingyu Song, Ruoxi Sun, Shuaipeng Yu, Lei Zhao, Nicholas Cameron,

Liquan Pei, and Xin Tang. Tidb: A raft-based htap database. Proc. VLDB Endow.,

13(12):3072–3084, aug 2020.

[154] Peng Huang, Chuanxiong Guo, Lidong Zhou, Jacob R. Lorch, Yingnong Dang, Murali

Chintalapati, and Randolph Yao. Gray failure: The achilles’ heel of cloud-scale

systems. In Proceedings of the 16th Workshop on Hot Topics in Operating Systems,

HotOS ’17, page 150–155, New York, NY, USA, 2017. Association for Computing

Machinery.

[155] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:

Wait-free coordination for internet-scale systems. In Proceedings of the 2010 USENIX

Conference on USENIX Annual Technical Conference, USENIXATC’10, page 11, USA,

2010. USENIX Association.

[156] Randall Hunt. Keeping time with amazon time sync service. https://aws.amaz
on.com/blogs/aws/keeping-time-with-amazon-time-sync-service/, 2017.
Accessed: 2017-11-29.

[157] Darby Huye, Yuri Shkuro, and Raja R. Sambasivan. Lifting the veil on Meta’s

microservice architecture: Analyses of topology and request workflows. In 2023

USENIX Annual Technical Conference (USENIX ATC 23), pages 419–432, Boston, MA,

July 2023. USENIX Association.

[158] Amir Ilkhechi, Andrew Crotty, Alex Galakatos, Yicong Mao, Grace Fan, Xiran Shi,

and Ugur Cetintemel. Deepsqueeze: Deep semantic compression for tabular data.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management

of Data, SIGMOD ’20, page 1733–1746, New York, NY, USA, 2020. Association for

Computing Machinery.

[159] Redpanda Data Inc. Firescroll: The config database to deploy everywhere, 2023.

https://github.com/FireScroll/FireScroll, Last accessed on 2024-09-05.

[160] Nicholas Jacek, Meng-Chieh Chiu, Benjamin M. Marlin, and J. Eliot B. Moss. Optimal

choice of when to garbage collect. ACM Trans. Program. Lang. Syst., 41(1), January

2019.

[161] Jepsen. Jepsen consistency models, 2016. https://jepsen.io/consistency, Last
accessed on 2023-01-05.

[162] Jepsen. Jepsen: A framework for distributed systems verification, with fault injection,

2025. https://github.com/jepsen-io/jepsen, Last accessed on 2025-05-25.

https://aws.amazon.com/blogs/aws/keeping-time-with-amazon-time-sync-service/
https://aws.amazon.com/blogs/aws/keeping-time-with-amazon-time-sync-service/
https://github.com/FireScroll/FireScroll
https://jepsen.io/consistency
https://github.com/jepsen-io/jepsen

Bibliography 233

[163] Jepsen. Knossos: Verifies the linearizability of experimentally accessible histories,

2025. https://github.com/jepsen-io/knossos, Last accessed on 2025-05-26.

[164] Sagar Jha, Jonathan Behrens, Theo Gkountouvas, Mae Milano, Weijia Song, Edward

Tremel, Robbert Van Renesse, Sydney Zink, and Kenneth P. Birman. Derecho: Fast

state machine replication for cloud services. ACM Trans. Comput. Syst., 36(2), apr

2019.

[165] Yulei Jia, Guangping Xu, Chi Wan Sung, Salwa Mostafa, and Yulei Wu. Hraft:

Adaptive erasure coded data maintenance for consensus in distributed networks. In

2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages

1316–1326, 2022.

[166] Tian Jiang, Xiangdong Huang, Shaoxu Song, Chen Wang, Jianmin Wang, Ruibo Li,

and Jincheng Sun. Non-blocking raft for high throughput iot data. In 2023 IEEE 39th

International Conference on Data Engineering (ICDE), pages 1140–1152, 2023.

[167] Xue Jiang, Hengfeng Wei, and Yu Huang. Tunable causal consistency: Specification

and implementation, 2022.

[168] Saurabh Kadekodi, Shashwat Silas, David Clausen, and Arif Merchant. Practical

design considerations for wide locally recoverable codes (LRCs). In 21st USENIX

Conference on File and Storage Technologies (FAST 23), pages 1–16, Santa Clara, CA,

February 2023. USENIX Association.

[169] Jonathan Kaldor, Jonathan Mace, Michał Bejda, Edison Gao, Wiktor Kuropatwa,

Joe O’Neill, Kian Win Ong, Bill Schaller, Pingjia Shan, Brendan Viscomi, Vinod

Venkataraman, Kaushik Veeraraghavan, and Yee Jiun Song. Canopy: An end-to-end

performance tracing and analysis system. In Proceedings of the 26th Symposium

on Operating Systems Principles, SOSP ’17, page 34–50, New York, NY, USA, 2017.

Association for Computing Machinery.

[170] Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Müller, Carlo Curino, and

Shivaram Venkataraman. Llamatune: sample-efficient dbms configuration tuning.

Proc. VLDB Endow., 15(11):2953–2965, July 2022.

[171] Antonios Katsarakis, Vasilis Gavrielatos, M.R. Siavash Katebzadeh, Arpit Joshi, Alek-

sandar Dragojevic, Boris Grot, and Vijay Nagarajan. Hermes: A fast, fault-tolerant

and linearizable replication protocol. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Operating Systems,

ASPLOS ’20, page 201–217, New York, NY, USA, 2020. Association for Computing

Machinery.

https://github.com/jepsen-io/knossos

Bibliography 234

[172] Kyle Kingsbury and Peter Alvaro. Elle: inferring isolation anomalies from experi-

mental observations. Proc. VLDB Endow., 14(3):268–280, November 2020.

[173] Gerwin Klein, June Andronick, Matthew Fernandez, Ihor Kuz, Toby Murray, and

Gernot Heiser. Formally verified software in the real world. Commun. ACM,

61(10):68–77, September 2018.

[174] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,

Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal verification of an

os kernel. In Proceedings of the 22nd ACM Symposium on Operating Systems Principles

(SOSP), pages 207–220, Big Sky, MT, USA, October 2009. ACM.

[175] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz

Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. Spectre

attacks: Exploiting speculative execution. arXiv e-prints, arXiv:1801.01203, January

2018. CVE-2017-5753, CVE-2017-5715.

[176] Donald Kossmann, Tim Kraska, and Simon Loesing. An evaluation of alternative

architectures for transaction processing in the cloud. In Proceedings of the 2010 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’10, page 579–590,

New York, NY, USA, 2010. Association for Computing Machinery.

[177] KRaft. Kraft: Apache kafka without zookeeper, 2025. https://developer.conflu
ent.io/learn/kraft/, Last accessed on 2025-04-12.

[178] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. The case

for learned index structures. In Proceedings of the 2018 International Conference

on Management of Data, SIGMOD ’18, page 489–504, New York, NY, USA, 2018.

Association for Computing Machinery.

[179] Jay Kreps, Neha Narkhede, Jun Rao, et al. Kafka: A distributed messaging system for

log processing. In Proceedings of the NetDB, volume 11, pages 1–7. Athens, Greece,

2011.

[180] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick Eaton, Dennis

Geels, Ramakrishan Gummadi, Sean Rhea, Hakim Weatherspoon, Westley Weimer,

Chris Wells, and Ben Zhao. Oceanstore: an architecture for global-scale persistent

storage. SIGPLAN Not., 35(11):190–201, November 2000.

[181] H. T. Kung and John T. Robinson. On optimistic methods for concurrency control.

ACM Trans. Database Syst., 6(2):213–226, jun 1981.

[182] CMU PASTA Lab. Fray: A controlled concurrency testing framework for the jvm,

2025. https://github.com/cmu-pasta/fray, Last accessed on 2025-06-08.

https://developer.confluent.io/learn/kraft/
https://developer.confluent.io/learn/kraft/
https://github.com/cmu-pasta/fray

Bibliography 235

[183] AWS Labs. Shuttle is a library for testing concurrent rust code, 2025. https:
//github.com/awslabs/shuttle, Last accessed on 2025-06-01.

[184] Rivka Ladin, Barbara Liskov, Liuba Shrira, and Sanjay Ghemawat. Providing high

availability using lazy replication. ACM Trans. Comput. Syst., 10(4):360–391, nov

1992.

[185] Ming-Yee Lai and W. Kevin Wilkinson. Distributed transaction management in

jasmin. In Umeshwar Dayal, Gunter Schlageter, and Lim Huat Seng, editors, Tenth

International Conference on Very Large Data Bases, August 27-31, 1984, Singapore,

Proceedings, pages 466–470. Morgan Kaufmann, 1984.

[186] Avinash Lakshman and PrashantMalik. Cassandra: a decentralized structured storage

system. SIGOPS Oper. Syst. Rev., 44(2):35–40, apr 2010.

[187] L. Lamport and M. Massa. Cheap paxos. In International Conference on Dependable

Systems and Networks, 2004, pages 307–314, 2004.

[188] Leslie Lamport. The implementation of reliable distributed multiprocess systems.

Computer Networks, 2:95–114, August 1978.

[189] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.

Commun. ACM, 21(7):558–565, July 1978.

[190] Leslie Lamport. How to make a multiprocessor computer that correctly executes

multiprocess programs. IEEE Transactions on Computers C-28, 9:690–691, September

1979.

[191] Leslie Lamport. Introduction to tla. Technical Report 1994-001, Microsoft Research,

December 1994. The Annals of Statistics.

[192] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169,

may 1998.

[193] Leslie Lamport. Paxos made simple. ACM SIGACT News (Distributed Computing

Column) 32, 4 (Whole Number 121, December 2001), pages 51–58, December 2001.

[194] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and

Software Engineers. Addison-Wesley Longman Publishing Co., Inc., USA, 2002.

[195] Leslie Lamport. Generalized consensus and paxos. Microsoft Research Technical

Report, 2005.

[196] Leslie Lamport. Fast paxos. Distrib. Comput., 19(2):79–103, oct 2006.

https://github.com/awslabs/shuttle
https://github.com/awslabs/shuttle

Bibliography 236

[197] Leslie Lamport. Byzantizing paxos by refinement. In Proceedings of the 25th Interna-

tional Conference on Distributed Computing, DISC’11, page 211–224, Berlin, Heidelberg,

2011. Springer-Verlag.

[198] Leslie Lamport. The pluscal tutorial, 2021. Last accessed 30 May 2025.

[199] Leslie Lamport. Learning tla+. https://lamport.azurewebsites.net/tla/le
arning.html, 2024. Accessed: 2025-06-05.

[200] Leslie Lamport and TLA+ Community. Paxos how to win a turing award specification

in tla+ examples repository. https://github.com/tlaplus/Examples/tree
/master/specifications/PaxosHowToWinATuringAward, 2020. Accessed:

2025-06-06.

[201] Leslie Lamport and TLA+Community. Paxos specification in tla+ examples repository.

https://github.com/tlaplus/Examples/tree/master/specifications/Pax
os, 2020. Accessed: 2025-06-06.

[202] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-backup

replication. In Proceedings of the 28th ACM Symposium on Principles of Distributed

Computing, PODC ’09, page 312–313, New York, NY, USA, 2009. Association for

Computing Machinery.

[203] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.

ACM Transactions on Programming Languages and Systems, 4(3):382–401, 1982.

[204] Butler Lampson. The abcd’s of paxos. In Proceedings of the Twentieth Annual ACM

Symposium on Principles of Distributed Computing, PODC ’01, page 13, New York, NY,

USA, 2001. Association for Computing Machinery.

[205] Per-Åke Larson, Spyros Blanas, Cristian Diaconu, Craig Freedman, Jignesh M. Patel,

and Mike Zwilling. High-performance concurrency control mechanisms for main-

memory databases. Proc. VLDB Endow., 5(4):298–309, December 2011.

[206] Andrea Lattuada, Travis Hance, Jay Bosamiya, Matthias Brun, Chanhee Cho, Hayley

LeBlanc, Pranav Srinivasan, Reto Achermann, Tej Chajed, Chris Hawblitzel, Jon

Howell, Jacob R. Lorch, Oded Padon, and Bryan Parno. Verus: A practical foundation

for systems verification. In Proceedings of the ACM SIGOPS 30th Symposium on

Operating Systems Principles, SOSP ’24, page 438–454, New York, NY, USA, 2024.

Association for Computing Machinery.

[207] Hayley LeBlanc, Nathan Taylor, James Bornholt, and Vijay Chidambaram. SquirrelFS:

using the rust compiler to check file-system crash consistency. In 18th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 24), pages 387–

404, Santa Clara, CA, July 2024. USENIX Association.

https://lamport.azurewebsites.net/tla/learning.html
https://lamport.azurewebsites.net/tla/learning.html
https://github.com/tlaplus/Examples/tree/master/specifications/PaxosHowToWinATuringAward
https://github.com/tlaplus/Examples/tree/master/specifications/PaxosHowToWinATuringAward
https://github.com/tlaplus/Examples/tree/master/specifications/Paxos
https://github.com/tlaplus/Examples/tree/master/specifications/Paxos

Bibliography 237

[208] Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and John Ousterhout.

Implementing linearizability at large scale and low latency. In Proceedings of the 25th

Symposium on Operating Systems Principles, SOSP ’15, page 71–86, New York, NY,

USA, 2015. Association for Computing Machinery.

[209] Edward K. F. Lee and Chandramohan A. Thekkath. Petal: distributed virtual disks.

In ASPLOS VII, 1996.

[210] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon. Globally

synchronized time via datacenter networks. In Proceedings of the 2016 ACM SIGCOMM

Conference, SIGCOMM ’16, page 454–467, New York, NY, USA, 2016. Association for

Computing Machinery.

[211] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.

In Logic for Programming, Artificial Intelligence, and Reasoning (LPAR-16), volume

6355 of Lecture Notes in Computer Science, pages 348–370. Springer, 2010.

[212] Viktor Leis, Michael Haubenschild, and Thomas Neumann. Optimistic lock coupling:

A scalable and efficient general-purpose synchronization method. IEEE Data Eng.

Bull., 42(1):73–84, 2019.

[213] Carl Lerche and Tokio Contributors. Tokio: An asynchronous runtime for the rust

programming language. https://tokio.rs/, 2025.

[214] Mihai Letia, Nuno Preguiça, and Marc Shapiro. Crdts: Consistency without concur-

rency control, 2009.

[215] Scott T. Leutenegger and Daniel Dias. A modeling study of the tpc-c benchmark.

In Proceedings of the 1993 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’93, page 22–31, New York, NY, USA, 1993. Association for Computing

Machinery.

[216] Jialin Li, Andrea Lattuada, Yi Zhou, Jonathan Cameron, Jon Howell, Bryan Parno,

and Chris Hawblitzel. Linear types for large-scale systems verification. Proc. ACM

Program. Lang., 6(OOPSLA1), April 2022.

[217] Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.

Just say NO to paxos overhead: Replacing consensus with network ordering. In 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pages

467–483, Savannah, GA, November 2016. USENIX Association.

[218] Mingqiang Li and Patrick P. C. Lee. STAIR codes: A general family of erasure codes

for tolerating device and sector failures in practical storage systems. In 12th USENIX

Conference on File and Storage Technologies (FAST 14), pages 147–162, Santa Clara, CA,

February 2014. USENIX Association.

https://tokio.rs/

Bibliography 238

[219] Tianyu Li, Badrish Chandramouli, Philip A. Bernstein, and Samuel Madden. Dis-

tributed speculative execution for resilient cloud applications, 2024.

[220] Xiaolu Li, Runhui Li, Patrick P. C. Lee, and Yuchong Hu. OpenEC: Toward unified

and configurable erasure coding management in distributed storage systems. In 17th

USENIX Conference on File and Storage Technologies (FAST 19), pages 331–344, Boston,

MA, February 2019. USENIX Association.

[221] Xin Li, Michael C. Huang, Kai Shen, and Lingkun Chu. A realistic evaluation of

memory hardware errors and software system susceptibility. In Proceedings of the

2010 USENIX Conference on USENIX Annual Technical Conference, USENIXATC’10,

page 6, USA, 2010. USENIX Association.

[222] Yuliang Li, Gautam Kumar, Hema Hariharan, Hassan Wassel, Peter Hochschild, Dave

Platt, Simon Sabato, Minlan Yu, Nandita Dukkipati, Prashant Chandra, and Amin

Vahdat. Sundial: Fault-tolerant clock synchronization for datacenters. In 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 20), pages

1171–1186. USENIX Association, November 2020.

[223] Wei Lin, Mao Yang, Lintao Zhang, and Lidong Zhou. Pacifica: Replication in log-based

distributed storage systems. In Microsoft Research Technical Report, 2008.

[224] Linux man pages. tc-netem(8) — linux manual page. https://man7.org/linux/m
an-pages/man8/tc-netem.8.html, 2011. [Online; accessed 29-November-2023].

[225] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan

Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. Meltdown.

arXiv e-prints, arXiv:1801.01207, January 2018. CVE-2017-5754.

[226] Richard J. Lipton and Jonathan Sandberg. Pram: A scalable sharedmemory. Princeton

CS Techical Report, 08 1988.

[227] Ming Liu, Arvind Krishnamurthy, Harsha V. Madhyastha, Rishi Bhardwaj, Karan

Gupta, Chinmay Kamat, Huapeng Yuan, Aditya Jaltade, Roger Liao, Pavan Konka,

and Anoop Jawahar. Fine-Grained replicated state machines for a cluster storage

system. In 17th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20), pages 305–323, Santa Clara, CA, February 2020. USENIX Association.

[228] Qixiao Liu and Zhibin Yu. The elasticity and plasticity in semi-containerized co-

locating cloud workload: a view from alibaba trace. In Proceedings of the ACM

Symposium on Cloud Computing, SoCC ’18, page 347–360, New York, NY, USA, 2018.

Association for Computing Machinery.

https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html

Bibliography 239

[229] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t

settle for eventual: scalable causal consistency for wide-area storage with cops. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,

SOSP ’11, page 401–416, New York, NY, USA, 2011. Association for Computing

Machinery.

[230] Joshua Lockerman, Jose M. Faleiro, Juno Kim, Soham Sankaran, Daniel J. Abadi,

James Aspnes, Siddhartha Sen, and Mahesh Balakrishnan. The FuzzyLog: A partially

ordered shared log. In 13th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 18), pages 357–372, Carlsbad, CA, October 2018. USENIX

Association.

[231] Gavin Lowe. Testing for linearizability. Concurrency and Computation: Practice and

Experience, 29(4):e3928, 2017. e3928 cpe.3928.

[232] Henry Lucas. Performance evaluation and monitoring. ACM Comput. Surv.,

3(3):79–91, sep 1971.

[233] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang, Yu Ding,

Jian He, and Chengzhong Xu. Characterizing microservice dependency and per-

formance: Alibaba trace analysis. In Proceedings of the ACM Symposium on Cloud

Computing, SoCC ’21, page 412–426, New York, NY, USA, 2021. Association for

Computing Machinery.

[234] Xuhao Luo, Shreesha G. Bhat, Jiyu Hu, Ramnatthan Alagappan, and Aishwarya

Ganesan. Lazylog: A new shared log abstraction for low-latency applications. In

Proceedings of the ACM SIGOPS 30th Symposium on Operating Systems Principles, SOSP

’24, page 296–312, New York, NY, USA, 2024. Association for Computing Machinery.

[235] Xuhao Luo, Weihai Shen, Shuai Mu, and Tianyin Xu. DepFast: Orchestrating code

of quorum systems. In 2022 USENIX Annual Technical Conference (ATC 22), pages

557–574. USENIX Association, July 2022.

[236] Haojun Ma, Hammad Ahmad, Aman Goel, Eli Goldweber, Jean-Baptiste Jeannin,

Manos Kapritsos, and Baris Kasikci. Sift: Using refinement-guided automation to

verify complex distributed systems. In 2022 USENIX Annual Technical Conference

(USENIX ATC 22), pages 151–166, Carlsbad, CA, July 2022. USENIX Association.

[237] Haojun Ma, Aman Goel, Jean-Baptiste Jeannin, Manos Kapritsos, Baris Kasikci, and

Karem A. Sakallah. I4: Incremental inference of inductive invariants for verification

of distributed protocols. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles, SOSP ’19, page 370–384, New York, NY, USA, 2019. Association

for Computing Machinery.

Bibliography 240

[238] Kai Ma, Cheng Li, Enzuo Zhu, Ruichuan Chen, Feng Yan, and Kang Chen. Noctua:

Towards automated and practical fine-grained consistency analysis. In Proceedings of

the Nineteenth European Conference on Computer Systems, EuroSys ’24, page 704–719,

New York, NY, USA, 2024. Association for Computing Machinery.

[239] John Maccormick, Chandramohan A. Thekkath, Marcus Jager, Kristof Roomp, Lidong

Zhou, and Ryan Peterson. Niobe: A practical replication protocol. ACM Trans.

Storage, 3(4), feb 2008.

[240] Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. Consistency, availability, and

convergence. UT-Austin Technical Report, 05 2012.

[241] Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi, Mike

Dahlin, and Michael Walfish. Depot: Cloud storage with minimal trust. ACM Trans.

Comput. Syst., 29(4), dec 2011.

[242] Hatem A. Mahmoud, Vaibhav Arora, Faisal Nawab, Divyakant Agrawal, and Amr

El Abbadi. Maat: effective and scalable coordination of distributed transactions in

the cloud. Proc. VLDB Endow., 7(5):329–340, January 2014.

[243] Jenny Mankin. Memory consistency models: A survey in past and present research.

CSG280, 2007.

[244] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. Mencius: Building efficient

replicated state machines for wans. In Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation, OSDI’08, page 369–384, USA, 2008.

USENIX Association.

[245] Parisa Jalili Marandi, Marco Primi, Nicolas Schiper, and Fernando Pedone. Ring

paxos: A high-throughput atomic broadcast protocol. In 2010 IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN), pages 527–536, 2010.

[246] Jim Martin, Jack Burbank, William Kasch, and Professor David L. Mills. Network

Time Protocol Version 4: Protocol and Algorithms Specification. RFC 5905, June 2010.

[247] Friedemann Mattern. Virtual time and global states of distributed systems. In Parallel

and Distributed Algorithms (P&DA), pages 215–226. North-Holland, 1988.

[248] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan Bronson,

and Wyatt Lloyd. I Can’t believe It’s not causal! scalable causal consistency with

no slowdown cascades. In 14th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 17), pages 453–468, Boston, MA, March 2017. USENIX

Association.

Bibliography 241

[249] Microsoft. Consistency levels in azure cosmos db, 2022. https://learn.micr
osoft.com/en-us/azure/cosmos-db/consistency-levels, Last accessed on

2023-01-06.

[250] C. Mohan, B. Lindsay, and R. Obermarck. Transaction management in the r* dis-

tributed database management system. ACM Trans. Database Syst., 11(4):378–396,

dec 1986.

[251] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay

Chidambaram. Finding Crash-Consistency bugs with bounded Black-Box crash

testing. In 13th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18), pages 33–50, Carlsbad, CA, October 2018. USENIX Association.

[252] E. F. Moore. Gedanken experiments on sequential machines. In Automata Studies,

pages 129–153. Princeton University Press, 1956.

[253] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more consensus

in egalitarian parliaments. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ’13, page 358–372, New York, NY, USA, 2013.

Association for Computing Machinery.

[254] Iulian Moraru, David G. Andersen, and Michael Kaminsky. Paxos quorum leases:

Fast reads without sacrificing writes. Carnegie Mellon University PDL Technical Report,

2014.

[255] Iulian Moraru, David G. Andersen, and Michael Kaminsky. Paxos quorum leases:

Fast reads without sacrificing writes. In Proceedings of the ACM Symposium on

Cloud Computing, SOCC ’14, page 1–13, New York, NY, USA, 2014. Association for

Computing Machinery.

[256] David Mosberger. Memory consistency models. SIGOPS Oper. Syst. Rev., 27(1):18–26,

jan 1993.

[257] Achour Mostefaoui, Matthieu Perrin, and Julien Weibel. Brief announcement: Ran-

domized consensus: Common coins are not the holy grail! In Proceedings of the 43rd

ACM Symposium on Principles of Distributed Computing, PODC ’24, page 36–39, New

York, NY, USA, 2024. Association for Computing Machinery.

[258] Shuai Mu, Kang Chen, Yongwei Wu, and Weimin Zheng. When paxos meets erasure

code: Reduce network and storage cost in state machine replication. In Proceedings of

the 23rd International Symposium on High-Performance Parallel and Distributed Com-

puting, HPDC ’14, page 61–72, New York, NY, USA, 2014. Association for Computing

Machinery.

https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels

Bibliography 242

[259] Antoine Murat, Clément Burgelin, Athanasios Xygkis, Igor Zablotchi, Marcos Kawa-

zoe Aguilera, and Rachid Guerraoui. Swarm: Replicating shared disaggregated-

memory data in no time. In Proceedings of the ACM SIGOPS 30th Symposium on

Operating Systems Principles, SOSP ’24, page 24–45. ACM, November 2024.

[260] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Technical report,

Bitcoin, May 2009.

[261] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Dpaxos: Managing data

closer to users for low-latency and mobile applications. In Proceedings of the 2018

International Conference on Management of Data, SIGMOD ’18, page 1221–1236, New

York, NY, USA, 2018. Association for Computing Machinery.

[262] Parimarjan Negi, Matteo Interlandi, Ryan Marcus, Mohammad Alizadeh, Tim Kraska,

Marc Friedman, and Alekh Jindal. Steering query optimizers: A practical take on big

data workloads. In Proceedings of the 2021 International Conference on Management

of Data, SIGMOD ’21, page 2557–2569, New York, NY, USA, 2021. Association for

Computing Machinery.

[263] Damien Neil. Testing concurrent code with testing/synctest, 2025. https://go.dev
/blog/synctest, Last accessed on 2025-06-08.

[264] Khiem Ngo, Siddhartha Sen, and Wyatt Lloyd. Tolerating slowdowns in replicated

state machines using copilots. In 14th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 20), pages 583–598. USENIX Association, November

2020.

[265] Edmund B Nightingale, Peter M Chen, and Jason Flinn. Speculative execution in a

distributed file system. ACM SIGOPS operating systems review, 39(5):191–205, 2005.

[266] Edmund B Nightingale, Kaushik Veeraraghavan, Peter M Chen, and Jason Flinn.

Rethink the sync. ACM Transactions on Computer Systems (TOCS), 26(3):1–26, 2008.

[267] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof

Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.

Springer, Berlin & New York, 2002.

[268] Brian M. Oki and Barbara H. Liskov. Viewstamped replication: A new primary copy

method to support highly-available distributed systems. In Proceedings of the Seventh

Annual ACM Symposium on Principles of Distributed Computing, PODC ’88, page 8–17,

New York, NY, USA, 1988. Association for Computing Machinery.

[269] Diego Ongaro. Consensus: Bridging Theory and Practice. PhD thesis, Stanford

University, Stanford, CA, USA, 2014. AAI28121474.

https://go.dev/blog/synctest
https://go.dev/blog/synctest

Bibliography 243

[270] Diego Ongaro. LogCabin: A distributed storage system built on Raft. https:
//github.com/logcabin/logcabin, 2015. C++11 reference implementation of the

Raft consensus algorithm. Released under the ISC license. Accessed 3 June 2025.

[271] Diego Ongaro and John Ousterhout. In search of an understandable consensus

algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical

Conference, USENIX ATC’14, page 305–320, USA, 2014. USENIX Association.

[272] Team Live Optics. Live optics basics: Read / write ratio. https://support.liveop
tics.com/hc/en-us/articles/229590547-Live-Optics-Basics-Read-Wri
te-Ratio, 2021. Accessed: 2024-12-01.

[273] Haochen Pan, Jesse Tuglu, Neo Zhou, Tianshu Wang, Yicheng Shen, Xiong Zheng,

Joseph Tassarotti, Lewis Tseng, and Roberto Palmieri. Rabia: Simplifying state-

machine replication through randomization. In Proceedings of the ACM SIGOPS 28th

Symposium on Operating Systems Principles, SOSP ’21, page 472–487, New York, NY,

USA, 2021. Association for Computing Machinery.

[274] Christos H. Papadimitriou. The serializability of concurrent database updates. J.

ACM, 26(4):631–653, October 1979.

[275] Dimitris S. Papailiopoulos and Alexandros G. Dimakis. Locally repairable codes,

2014.

[276] Anjaly Parayil, Jue Zhang, Xiaoting Qin, Íñigo Goiri, Lexiang Huang, Timothy Zhu,

and Chetan Bansal. Towards cloud efficiency with large-scale workload characteriza-

tion, 2024.

[277] Seo Jin Park and John Ousterhout. Exploiting commutativity for practical fast repli-

cation. In 16th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 19), pages 47–64, Boston, MA, February 2019. USENIX Association.

[278] Suraj Pasuparthy and Lokesh Agarwal. Benchmarking spanner’s price-performance

for key-value workloads. https://cloud.google.com/blog/products/datab
ases/benchmarking-spanner-for-key-value-workloads/, 2023. Accessed:

2024-12-01.

[279] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays

of inexpensive disks (raid). In Proceedings of the 1988 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’88, page 109–116, New York, NY, USA,

1988. Association for Computing Machinery.

[280] R Hugo Patterson, Garth A Gibson, Eka Ginting, Daniel Stodolsky, and Jim Zelenka.

Informed prefetching and caching. In Proceedings of the fifteenth ACM symposium on

Operating systems principles, pages 79–95, 1995.

https://github.com/logcabin/logcabin
https://github.com/logcabin/logcabin
https://support.liveoptics.com/hc/en-us/articles/229590547-Live-Optics-Basics-Read-Write-Ratio
https://support.liveoptics.com/hc/en-us/articles/229590547-Live-Optics-Basics-Read-Write-Ratio
https://support.liveoptics.com/hc/en-us/articles/229590547-Live-Optics-Basics-Read-Write-Ratio
https://cloud.google.com/blog/products/databases/benchmarking-spanner-for-key-value-workloads/
https://cloud.google.com/blog/products/databases/benchmarking-spanner-for-key-value-workloads/

Bibliography 244

[281] Yuke Peng, Hongliang Tian, Zhang Junyang, Ruihan Li, Chengjun Chen, Jianfeng

Jiang, Jinyi Xian, Xiaolin Wang, Chenren Xu, Diyu Zhou, Yingwei Luo, Shoumeng

Yan, and Yinqian Zhang. Asterinas: A linux abi-compatible, rust-based framekernel

os with a small and sound tcb, 2025.

[282] Karin Petersen, Mike J. Spreitzer, Douglas B. Terry, Marvin M. Theimer, and Alan J.

Demers. Flexible update propagation forweakly consistent replication. In Proceedings

of the Sixteenth ACM Symposium on Operating Systems Principles, SOSP ’97, page

288–301, New York, NY, USA, 1997. Association for Computing Machinery.

[283] Marius Poke, Torsten Hoefler, and Colin W. Glass. Allconcur: Leaderless con-

current atomic broadcast. In Proceedings of the 26th International Symposium on

High-Performance Parallel and Distributed Computing, HPDC ’17, page 205–218, New

York, NY, USA, 2017. Association for Computing Machinery.

[284] Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, Dahlia Malkhi, Amy Tai, Vijay

Chidambaram, and Michael Wei. RainBlock: Faster transaction processing in public

blockchains. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages

333–347. USENIX Association, July 2021.

[285] Dan R. K. Ports, Jialin Li, Vincent Liu, Naveen Kr. Sharma, and Arvind Krishnamurthy.

Designing distributed systems using approximate synchrony in data center networks.

In 12th USENIX Symposium on Networked Systems Design and Implementation (NSDI

15), pages 43–57, Oakland, CA, May 2015. USENIX Association.

[286] Ji Qi, Xusheng Chen, Yunpeng Jiang, Jianyu Jiang, Tianxiang Shen, Shixiong Zhao, Sen

Wang, Gong Zhang, Li Chen, Man Ho Au, and Heming Cui. Bidl: A high-throughput,

low-latency permissioned blockchain framework for datacenter networks. In Pro-

ceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP

’21, page 18–34, New York, NY, USA, 2021. Association for Computing Machinery.

[287] RabbitMQ. Rabbitmq: One broker to queue them all, 2025. https://www.rabbitmq
.com/, Last accessed on 2025-04-08.

[288] Michael O. Rabin. Randomized byzantine generals. In 24th Annual Symposium on

Foundations of Computer Science (sfcs 1983), pages 403–409, 1983.

[289] Anthony Rebello, Yuvraj Patel, Ramnatthan Alagappan, Andrea C. Arpaci-Dusseau,

and Remzi H. Arpaci-Dusseau. Can applications recover from fsync failures? In

2020 USENIX Annual Technical Conference (USENIX ATC 20), pages 753–767. USENIX

Association, July 2020.

[290] Redpanda. Redpanda: The unified streaming data platform, 2024. https://www.re
dpanda.com/, Last accessed on 2024-09-05.

https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://www.redpanda.com/
https://www.redpanda.com/

Bibliography 245

[291] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal of the

Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[292] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A.

Kozuch. Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In

Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, New York,

NY, USA, 2012. Association for Computing Machinery.

[293] Donglin Ren, Jun Tu, and Wei Xie. An improved raft protocol combined with cauchy

reed-solomon codes. In 2022 5th International Conference on Artificial Intelligence and

Big Data (ICAIBD), pages 563–568, 2022.

[294] Donglin Ren, Jun Tu, Wei Xie, and Changyin Wu. An optimized raft protocol

combinedwith redundant residue number system. In 2022 5th International Conference

on Data Science and Information Technology (DSIT), pages 1–6, 2022.

[295] Robbert Van Renesse and Fred B. Schneider. Chain replication for supporting

high throughput and availability. In 6th Symposium on Operating Systems Design &

Implementation (OSDI 04), San Francisco, CA, December 2004. USENIX Association.

[296] David K. Rensin. Kubernetes - Scheduling the Future at Cloud Scale. O’Reilly and

Associates, 1005 Gravenstein Highway North Sebastopol, CA 95472, 2015.

[297] John C. Reynolds. Separation logic: A logic for shared mutable data structures. In

Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science (LICS),

pages 55–74, 2002.

[298] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. Canopus: A scalable and mas-

sively parallel consensus protocol. In Proceedings of the 13th International Conference

on Emerging Networking EXperiments and Technologies, CoNEXT ’17, page 426–438,

New York, NY, USA, 2017. Association for Computing Machinery.

[299] Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Gün Sirer.

Snowflake to Avalanche: A Novel Metastable Consensus Protocol Family for Cryp-

tocurrencies. Technical report, Team Rocket (IPFS), 2018. Introduces the metastable

Snow consensus family.

[300] Liana V. Rodriguez, Farzana Yusuf, Steven Lyons, Eysler Paz, Raju Rangaswami, Jason

Liu, Ming Zhao, and Giri Narasimhan. Learning cache replacement with CACHEUS.

In 19th USENIX Conference on File and Storage Technologies (FAST 21), pages 341–354.

USENIX Association, February 2021.

[301] rqlite. rqlite is a distributed relational database that combines the simplicity of

sqlite with the robustness of a fault-tolerant, highly available system, 2024. https:
//rqlite.io/, Last accessed on 2024-11-13.

https://rqlite.io/
https://rqlite.io/

Bibliography 246

[302] Fedor Ryabinin, Alexey Gotsman, and Pierre Sutra. SwiftPaxos: Fast Geo-Replicated

state machines. In 21st USENIX Symposium on Networked Systems Design and Imple-

mentation (NSDI 24), pages 345–369, Santa Clara, CA, April 2024. USENIX Association.

[303] Anna Sasak-Okoń and Marek Tudruj. Speculative query execution in rdbms based

on analysis of query stream multigraphs. In Proceedings of the 24th Symposium on

International Database Engineering & Applications, IDEAS ’20, New York, NY, USA,

2020. Association for Computing Machinery.

[304] Sambhav Satija, Chenhao Ye, Ranjitha Kosgi, Aditya Jain, Romit Kankaria, Yiwei

Chen, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and Kiran Srinivasan.

Cloudscape: A study of storage services in modern cloud architectures. In 23rd

USENIX Conference on File and Storage Technologies (FAST 25), pages 103–121, Santa

Clara, CA, February 2025. USENIX Association.

[305] Fred B. Schneider. Implementing fault-tolerant services using the state machine

approach: A tutorial. ACM Comput. Surv., 22(4):299–319, dec 1990.

[306] Michael D. Schroeder, Andrew D. Birrell, and Roger M. Needham. Experience with

grapevine: the growth of a distributed system. ACM Trans. Comput. Syst., 2(1):3–23,

feb 1984.

[307] ScyllaDB. Beyond legacy nosql: 7 design principles behind scylladb, 2023. https:
//lp.scylladb.com/real-time-big-data-database-principles-thanks.
html, Last accessed on 2023-11-13.

[308] Korakit Seemakhupt, Brent E. Stephens, Samira Khan, Sihang Liu, Hassan Wassel,

Soheil Hassas Yeganeh, Alex C. Snoeren, Arvind Krishnamurthy, David E. Culler,

and Henry M. Levy. A cloud-scale characterization of remote procedure calls. In

Proceedings of the 29th Symposium on Operating Systems Principles, SOSP ’23, page

498–514, New York, NY, USA, 2023. Association for Computing Machinery.

[309] Yingdi Shan, Kang Chen, Tuoyu Gong, Lidong Zhou, Tai Zhou, and Yongwei Wu.

Geometric partitioning: Explore the boundary of optimal erasure code repair. In

Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP

’21, page 457–471, New York, NY, USA, 2021. Association for Computing Machinery.

[310] Marc Shapiro, Nuno Preguiça, Carlos Baquero, andMarek Zawirski. A comprehensive

study of Convergent and Commutative Replicated Data Types. Research Report RR-

7506, Inria – Centre Paris-Rocquencourt ; INRIA, January 2011.

[311] Ge Shi, Ziyi Yan, and TianzhengWang. Optiql: Robust optimistic locking for memory-

optimized indexes. Proc. ACM Manag. Data, 1(3), November 2023.

https://lp.scylladb.com/real-time-big-data-database-principles-thanks.html
https://lp.scylladb.com/real-time-big-data-database-principles-thanks.html
https://lp.scylladb.com/real-time-big-data-database-principles-thanks.html

Bibliography 247

[312] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, Jakub Szefer, and Hakim Weath-

erspoon. Towards weakly consistent local storage systems. In Proceedings of the

Seventh ACM Symposium on Cloud Computing, SoCC ’16, page 294–306, New York,

NY, USA, 2016. Association for Computing Machinery.

[313] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins,

Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, John Cieslewicz,

Ian Rae, Traian Stancescu, and Himani Apte. F1: A distributed sql database that

scales. In VLDB, 2013.

[314] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Symposium on

Mass Storage Systems and Technologies (MSST), pages 1–10. IEEE, 2010.

[315] J.E. Smith and G.S. Sohi. The microarchitecture of superscalar processors. Proceed-

ings of the IEEE, 83(12):1609–1624, 1995.

[316] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency

and Cache Coherence. Morgan & Claypool Publishers, 1st edition, 2011.

[317] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolić. State machine

replication scalability made simple. In Proceedings of the Seventeenth European

Conference on Computer Systems, EuroSys ’22, page 17–33, New York, NY, USA, 2022.

Association for Computing Machinery.

[318] Jovan Stojkovic, Pulkit A. Misra, Íñigo Goiri, Sam Whitlock, Esha Choukse, Mayukh

Das, Chetan Bansal, Jason Lee, Zoey Sun, Haoran Qiu, Reed Zimmermann, Savyasachi

Samal, Brijesh Warrier, Ashish Raniwala, and Ricardo Bianchini. Smartoclock:

Workload- and risk-aware overclocking in the cloud. In 2024 ACM/IEEE 51st Annual

International Symposium on Computer Architecture (ISCA), pages 437–451, 2024.

[319] Xudong Sun, Wenjie Ma, Jiawei Tyler Gu, ZichengMa, Tej Chajed, Jon Howell, Andrea

Lattuada, Oded Padon, Lalith Suresh, Adriana Szekeres, and Tianyin Xu. Anvil:

Verifying liveness of cluster management controllers. In 18th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 24), pages 649–666, Santa Clara,

CA, July 2024. USENIX Association.

[320] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi, and

Natacha Crooks. Basil: Breaking up bft with acid (transactions). In Proceedings of the

ACM SIGOPS 28th Symposium on Operating Systems Principles, SOSP ’21, page 1–17,

New York, NY, USA, 2021. Association for Computing Machinery.

[321] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.

The MIT Press, Cambridge, MA, second edition, 2018.

Bibliography 248

[322] Nikhil Swamy, Aseem Rastogi, Jonathan Protzenko, Cédric Fournet, and Karthikeyan

Bhargavan. F: A verified functional programming language. In Proceedings of the 43rd

Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), pages 316–330. ACM, 2016.

[323] Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, and Samer Al-Kiswany. FLAIR:

Accelerating reads with Consistency-Aware network routing. In 17th USENIX Sym-

posium on Networked Systems Design & Implementation (NSDI 20), pages 723–737, CA,

February 2020. USENIX Association.

[324] Jeff Terrace and Michael J. Freedman. Object storage on CRAQ: High-Throughput

chain replication for Read-Mostly workloads. In 2009 USENIX Annual Technical

Conference (USENIX ATC 09), San Diego, CA, June 2009. USENIX Association.

[325] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M.

Theimer, and Brent B. Welch. Session guarantees for weakly consistent replicated

data. In Proceedings of the Third International Conference on on Parallel and Distributed

Information Systems, PDIS ’94, page 140–150, Washington, DC, USA, 1994. IEEE

Computer Society Press.

[326] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrishnan,

Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service level

agreements for cloud storage. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles, SOSP ’13, page 309–324, New York, NY, USA, 2013.

Association for Computing Machinery.

[327] The Coq development team. The Coq Proof Assistant. Inria, 2024. Reference Manual.

[328] Myles Thiessen, Aleksey Panas, Guy Khazma, and Eyal de Lara. Towards reconfig-

urable linearizable reads, 2024.

[329] Alexander Thomson, Thaddeus Diamond, Shu-ChunWeng, Kun Ren, Philip Shao, and

Daniel J. Abadi. Calvin: fast distributed transactions for partitioned database systems.

In Proceedings of the 2012 ACM SIGMOD International Conference on Management of

Data, SIGMOD ’12, page 1–12, New York, NY, USA, 2012. Association for Computing

Machinery.

[330] TigerBeetle. Tigerbeetle: The financial transactions database, 2024. https://tige
rbeetle.com/, Last accessed on 2024-11-12.

[331] Stefan Tilkov. Se radio 263: Camille fournier on real-world distributed systems, July

2016.

[332] Tokio. Turmoil: Add hardship to your tests, 2025. https://github.com/tokio-r
s/turmoil, Last accessed on 2025-06-01.

https://tigerbeetle.com/
https://tigerbeetle.com/
https://github.com/tokio-rs/turmoil
https://github.com/tokio-rs/turmoil

Bibliography 249

[333] Sarah Tollman, Seo Jin Park, and John Ousterhout. EPaxos revisited. In 18th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 21), pages 613–632.

USENIX Association, April 2021.

[334] Sam Toueg. Randomized byzantine agreements. In Proceedings of the Third Annual

ACM Symposium on Principles of Distributed Computing, PODC ’84, page 163–178,

New York, NY, USA, 1984. Association for Computing Machinery.

[335] Bohdan Trach, Rasha Faqeh, Oleksii Oleksenko, Wojciech Ozga, Pramod Bhatotia,

and Christof Fetzer. T-lease: a trusted lease primitive for distributed systems. In

Proceedings of the 11th ACM Symposium on Cloud Computing, SoCC ’20, page 387–400,

New York, NY, USA, 2020. Association for Computing Machinery.

[336] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.

Speedy transactions in multicore in-memory databases. In Proceedings of the Twenty-

Fourth ACM Symposium on Operating Systems Principles, SOSP ’13, page 18–32, New

York, NY, USA, 2013. Association for Computing Machinery.

[337] A.K. Uht, V. Sindagi, and K. Hall. Disjoint eager execution: an optimal form of

speculative execution. In Proceedings of the 28th Annual International Symposium on

Microarchitecture, pages 313–325, 1995.

[338] Muhammed Uluyol, Anthony Huang, Ayush Goel, Mosharaf Chowdhury, and Har-

sha V. Madhyastha. Near-Optimal latency versus cost tradeoffs in Geo-Distributed

storage. In 17th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20), pages 157–180, Santa Clara, CA, February 2020. USENIX Association.

[339] Nathan VanBenschoten, Arul Ajmani, Marcus Gartner, Andrei Matei, Aayush Shah,

Irfan Sharif, Alexander Shraer, Adam Storm, Rebecca Taft, Oliver Tan, Andy Woods,

and Peyton Walters. Enabling the next generation of multi-region applications with

cockroachdb. In Proceedings of the 2022 International Conference on Management

of Data, SIGMOD ’22, page 2312–2325, New York, NY, USA, 2022. Association for

Computing Machinery.

[340] Kaushik Veeraraghavan, Justin Meza, Scott Michelson, Sankaralingam Panneerselvam,

Alex Gyori, David Chou, Sonia Margulis, Daniel Obenshain, Shruti Padmanabha,

Ashish Shah, Yee Jiun Song, and Tianyin Xu. Maelstrom: Mitigating datacenter-level

disasters by draining interdependent traffic safely and efficiently. In 13th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 18), pages 373–389,

Carlsbad, CA, October 2018. USENIX Association.

Bibliography 250

[341] Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam, Kamal

Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz Kharatishvili,

and Xiaofeng Bao. Amazon aurora: Design considerations for high throughput cloud-

native relational databases. In Proceedings of the 2017 ACM International Conference

on Management of Data, SIGMOD ’17, page 1041–1052, New York, NY, USA, 2017.

Association for Computing Machinery.

[342] Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed storage

systems. ACM Comput. Surv., 49(1), jun 2016.

[343] Werner Vogels. Eventually consistent: Building reliable distributed systems at a

worldwide scale demands trade-offs between consistency and availability. Queue,

6(6):14–19, oct 2008.

[344] Cheng Wang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. Apus: fast

and scalable paxos on rdma. In Proceedings of the 2017 Symposium on Cloud Comput-

ing, SoCC ’17, page 94–107, New York, NY, USA, 2017. Association for Computing

Machinery.

[345] Tianzheng Wang and Hideaki Kimura. Mostly-optimistic concurrency control for

highly contended dynamic workloads on a thousand cores. Proc. VLDB Endow.,

10(2):49–60, October 2016.

[346] Yang Wang, Lorenzo Alvisi, and Mike Dahlin. Gnothi: Separating data and metadata

for efficient and available storage replication. In 2012 USENIX Annual Technical Con-

ference (USENIX ATC 12), pages 413–424, Boston, MA, June 2012. USENIX Association.

[347] Zhaoguo Wang, Changgeng Zhao, Shuai Mu, Haibo Chen, and Jinyang Li. On the

parallels between paxos and raft, and how to port optimizations. In Proceedings of

the 2019 ACM Symposium on Principles of Distributed Computing, PODC ’19, page

445–454, New York, NY, USA, 2019. Association for Computing Machinery.

[348] Zizhong Wang, Tongliang Li, Haixia Wang, Airan Shao, Yunren Bai, Shangming Cai,

Zihan Xu, and Dongsheng Wang. CRaft: An erasure-coding-supported version of

raft for reducing storage cost and network cost. In 18th USENIX Conference on File

and Storage Technologies (FAST 20), pages 297–308, Santa Clara, CA, February 2020.

USENIX Association.

[349] Hillel Wayne. Learn tla+. https://learntla.com/, 2022. Accessed: 2025-06-05.

[350] Xingda Wei, Rongxin Cheng, Yuhan Yang, Rong Chen, and Haibo Chen. Charac-

terizing off-path SmartNIC for accelerating distributed systems. In 17th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 23), pages 987–

1004, Boston, MA, July 2023. USENIX Association.

https://learntla.com/

Bibliography 251

[351] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long, and Carlos

Maltzahn. Ceph: A scalable, High-Performance distributed file system. In 7th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 06), Seattle, WA,

November 2006. USENIX Association.

[352] MattWelsh, DavidCuller, and Eric Brewer. Seda: An architecture forwell-conditioned,

scalable internet services. In Proceedings of the 18th ACM Symposium on Operating

Systems Principles (SOSP), pages 230–243. ACM, 2001.

[353] Michael Whittaker, Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, Neil

Giridharan, Joseph M. Hellerstein, Heidi Howard, Ion Stoica, and Adriana Szekeres.

Scaling replicated state machines with compartmentalization. Proc. VLDB Endow.,

14(11):2203–2215, jul 2021.

[354] Michael Whittaker, Aleksey Charapko, Joseph M. Hellerstein, Heidi Howard, and

Ion Stoica. Read-write quorum systems made practical. In Proceedings of the 8th

Workshop on Principles and Practice of Consistency for Distributed Data, PaPoC ’21,

New York, NY, USA, 2021. Association for Computing Machinery.

[355] Wikipedia contributors. Ordinary least squares — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/w/index.php?title=Ordinary_least_squares&
oldid=1184283716, 2023. [Online; accessed 28-November-2023].

[356] James R. Wilcox, DougWoos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D.

Ernst, and Thomas Anderson. Verdi: a framework for implementing and formally

verifying distributed systems. In Proceedings of the 36th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’15, page 357–368, New

York, NY, USA, 2015. Association for Computing Machinery.

[357] Jeannette M. Wing and Chun Gong. Testing and verifying concurrent objects.

Journal of Parallel and Distributed Computing, 17(1-2):164–182, 1993.

[358] WintelGuy. Wan latency estimator, 2020. https://wintelguy.com/wanlat.html,
Last accessed on 2024-04-29.

[359] Huanle Xu and Wing Cheong Lau. Optimization for speculative execution in a

mapreduce-like cluster. In 2015 IEEE Conference on Computer Communications (INFO-

COM), pages 1071–1079, 2015.

[360] Lianghong Xu, James Cipar, Elie Krevat, Alexey Tumanov, Nitin Gupta, Michael A.

Kozuch, and Gregory R. Ganger. SpringFS: Bridging agility and performance in

elastic distributed storage. In 12th USENIX Conference on File and Storage Technologies

(FAST 14), pages 243–255, Santa Clara, CA, February 2014. USENIX Association.

https://en.wikipedia.org/w/index.php?title=Ordinary_least_squares&oldid=1184283716
https://en.wikipedia.org/w/index.php?title=Ordinary_least_squares&oldid=1184283716
https://wintelguy.com/wanlat.html

Bibliography 252

[361] MingWei Xu, Yu Zhou, Yuan Yuan Qiao, Kai Xu, Yu Wang, and Jie Yang. Ecraft: A

raft based consensus protocol for highly available and reliable erasure-coded storage

systems. In 2021 IEEE 27th International Conference on Parallel and Distributed Systems

(ICPADS), pages 707–714, 2021.

[362] Xinan Yan, Arturo Pie Joa, Bernard Wong, Benjamin Cassell, Tyler Szepesi, Malek

Naouach, and Disney Lam. Specrpc: A general framework for performing speculative

remote procedure calls. In Proceedings of the 19th International Middleware Conference,

pages 266–278, 2018.

[363] Juncheng Yang, Ziming Mao, Yao Yue, and K. V. Rashmi. GL-Cache: Group-level

learning for efficient and high-performance caching. In 21st USENIX Conference on

File and Storage Technologies (FAST 23), pages 115–134, Santa Clara, CA, February

2023. USENIX Association.

[364] Jianan Yao, Runzhou Tao, Ronghui Gu, Jason Nieh, Suman Jana, and Gabriel Ryan.

DistAI: Data-Driven automated invariant learning for distributed protocols. In 15th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 21), pages

405–421. USENIX Association, July 2021.

[365] Chenhao Ye, Wuh-Chwen Hwang, Keren Chen, and Xiangyao Yu. Polaris: Enabling

transaction priority in optimistic concurrency control. Proc. ACM Manag. Data, 1(1),

may 2023.

[366] Jian Yi, Qing Li, Bin Zhang, Yong Jiang, Dan Zhao, Yuan Yang, and Zhenhui Yuan.

Gleaning the consensus for linearizable and conflict-free per-replica local reads. In

Proceedings of the 7th Asia-Pacific Workshop on Networking, APNet ’23, page 143–149,

New York, NY, USA, 2023. Association for Computing Machinery.

[367] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham.

Hotstuff: Bft consensus with linearity and responsiveness. In Proceedings of the 2019

ACM Symposium on Principles of Distributed Computing, PODC ’19, page 347–356,

New York, NY, USA, 2019. Association for Computing Machinery.

[368] Haifeng Yu. Design and evaluation of a continuous consistency model for replicated

services. In Fourth Symposium on Operating Systems Design and Implementation (OSDI

2000), San Diego, CA, October 2000. USENIX Association.

[369] Haifeng Yu and Amin Vahdat. Design and evaluation of a conit-based continuous

consistency model for replicated services. ACM Trans. Comput. Syst., 20(3):239–282,

aug 2002.

Bibliography 253

[370] Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. Tictoc: Time

traveling optimistic concurrency control. In Proceedings of the 2016 International

Conference on Management of Data, SIGMOD ’16, page 1629–1642, New York, NY,

USA, 2016. Association for Computing Machinery.

[371] Xinhao Yuan, Junfeng Yang, and Ronghui Gu. Partial order aware concurrency

sampling. In Hana Chockler and Georg Weissenbacher, editors, Computer Aided

Verification, pages 317–335, Cham, 2018. Springer International Publishing.

[372] Jonathan Zarnstorff, Lucas Lebow, Christopher Siems, Dillon Remuck, Colin Ruiz,

and Lewis Tseng. Racos: Improving erasure coding state machine replication using

leaderless consensus. In Proceedings of the 2024 ACM Symposium on Cloud Computing,

SoCC ’24, page 600–617, New York, NY, USA, 2024. Association for Computing

Machinery.

[373] ZeroMQ. Zeromq: An open-source universal messaging library, 2024. https:
//zeromq.org/, Last accessed on 2024-11-07.

[374] Hanze Zhang, Ke Cheng, Rong Chen, and Haibo Chen. Fast and scalable in-network

lock management using lock fission. In 18th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 24), pages 251–268, Santa Clara, CA, July

2024. USENIX Association.

[375] Heng Zhang, Mingkai Dong, and Haibo Chen. Efficient and available in-memory

KV-Store with hybrid erasure coding and replication. In 14th USENIX Conference on

File and Storage Technologies (FAST 16), pages 167–180, Santa Clara, CA, February

2016. USENIX Association.

[376] Irene Zhang, Naveen Kr. Sharma, Adriana Szekeres, Arvind Krishnamurthy, and

Dan R. K. Ports. Building consistent transactions with inconsistent replication. In

Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, page

263–278, New York, NY, USA, 2015. Association for Computing Machinery.

[377] Mi Zhang, Qihan Kang, and Patrick P. C. Lee. Minimizing network and storage costs

for consensus with flexible erasure coding. In Proceedings of the 52nd International

Conference on Parallel Processing, ICPP ’23, page 41–50, New York, NY, USA, 2023.

Association for Computing Machinery.

[378] Yunhao Zhang, Srinath Setty, Qi Chen, Lidong Zhou, and Lorenzo Alvisi. Byzantine

ordered consensus without byzantine oligarchy. In 14th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 20), pages 633–649. USENIX

Association, November 2020.

https://zeromq.org/
https://zeromq.org/

Bibliography 254

[379] Hanyu Zhao, Quanlu Zhang, Zhi Yang, Ming Wu, and Yafei Dai. Sdpaxos: Building

efficient semi-decentralized geo-replicated state machines. In Proceedings of the ACM

Symposium on Cloud Computing, SoCC ’18, page 68–81, New York, NY, USA, 2018.

Association for Computing Machinery.

[380] Jingyu Zhou, Meng Xu, Alexander Shraer, Bala Namasivayam, Alex Miller, Evan

Tschannen, Steve Atherton, Andrew J. Beamon, Rusty Sears, John Leach, Dave

Rosenthal, Xin Dong, Will Wilson, Ben Collins, David Scherer, Alec Grieser, Young

Liu, Alvin Moore, Bhaskar Muppana, Xiaoge Su, and Vishesh Yadav. Foundationdb:

A distributed unbundled transactional key value store. In Proceedings of the 2021

International Conference on Management of Data, SIGMOD ’21, page 2653–2666, New

York, NY, USA, 2021. Association for Computing Machinery.

[381] Siyuan Zhou and Shuai Mu. Fault-Tolerant replication with Pull-Based consen-

sus in MongoDB. In 18th USENIX Symposium on Networked Systems Design and

Implementation (NSDI 21), pages 687–703. USENIX Association, April 2021.

[382] Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. Electrode: Ac-

celerating distributed protocols with eBPF. In 20th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 23), pages 1391–1407, Boston, MA, April

2023. USENIX Association.

[383] Ziqiao Zhou, Anjali, Weiteng Chen, Sishuai Gong, Chris Hawblitzel, and Weidong

Cui. VeriSMo: A verified security module for confidential VMs. In 18th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 24), pages 599–614,

Santa Clara, CA, July 2024. USENIX Association.

	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Consensus in the Wild
	The ``4D'' Challenges of the Cloud Era
	Optimistic Connectivity: A Guiding Principle
	Contributions and Outline of Chapters
	Crossword: Optimistic Adaptation within a Quorum-Shards Tradeoff for Dynamic Data-Heavy Workloads
	Bodega: Optimistic Roster Composition Powered by Roster Leases for Always-Local Linearizable Reads
	Implementation: Summerset Key-Value Store
	Beyond Linearizability: A Unified Consistency Spectrum
	Enforcing Correctness: Testing and Formalization
	Outline of Chapters

	General Background
	State Machine Replication (SMR)
	Typical System Architecture
	Non-Byzantine Failure Model
	Consistency Requirements
	Availability Requirements

	Classic Consensus Protocols
	Paxos, MultiPaxos, and Variants
	Viewstamped Replication (VR)
	Raft and Practical Features

	Crossword: Adaptive Consensus for Dynamic Data-Heavy Workloads
	Specific Background
	Dynamic Data-Heavy Workloads
	Classic Consensus Protocols
	Erasure-Coded Consensus Protocols

	Design
	Reed-Solomon (RS) Codeword Space
	Shard Assignment Policies
	Availability Constraint Boundary
	Performance Tradeoff
	Follower Gossiping
	Crossword: The Complete Protocol

	Implementation
	Choosing the Best Configuration
	Follower Gossiping Implementation
	Other Practicality Features

	Evaluation
	Critical Path Performance
	Dynamic Adaptability
	Graceful Leader Failover
	Unbalanced Assignment Policy
	Gossiping-Related Parameters
	YCSB with Keyspace Partitioning
	TPC-C over CockroachDB
	RS Code Computation Overhead

	Supplementary Discussion
	Erasure-Coded Consensus
	Bandwidth-Aware Techniques
	High-End Network Hardware

	Optimistic Connectivity in the Form of Adaptive Quorum-Shards Tradeoff

	Bodega: Always-Local Linearizable Reads via Generalized Roster Leases
	Specific Background
	Distributed Lease
	Previous Work on Read Optimizations
	Summary of Goals

	Design
	The Roster
	Normal Case Operations
	Roster Leases
	Summary of the Bodega Algorithm

	Formal Comparison and Proof
	Comparison Across Protocols
	Proof

	Implementation
	Smart Roster Coverage
	Lightweight Heartbeats
	Other Practical Details

	Evaluation
	Normal Case Performance
	Detailed Performance Anatomy
	Roster Changes and Composition
	Overall Impact of Failures (Simulation)
	Macrobenchmark vs. etcd and ZooKeeper

	Supplementary Discussion
	Potential Extensions
	Notable Related Work

	Optimistic Connectivity in the Form of Lease-Protected Roster Composition

	Summerset Distributed Key-Value Store Implementation
	Protocol-Generic Replication Testbed
	Implementation Details
	Async Rust Programming Structure
	Modularization and Lock-less Channel-based Synchronization
	Example Protocol Module

	Supported Protocols and Features

	Beyond Linearizability: A Unified Consistency Levels Spectrum
	Problem Model
	Shared Object Pool (SOP) Model
	Physical Timeline Workload
	Definition of Ordering
	Meaning of Consistency

	Ordering Validity Constraints
	Convergence Constraints
	Relationship Constraints

	Consistency Levels
	Linearizability
	Sequential Consistency
	Causal+ Consistency
	Eventual Consistency
	Other Consistency Levels

	Availability Guarantees
	Symmetric Replicas System Model
	Meaning of Availability
	Availability Upper Bounds

	Summary of Consistency Modeling

	Enforcing Correctness and Availability
	Unified Checker for Jepsen Testing
	Checker Logic
	Analysis Results

	Formal TLA+ Specifications
	TLA+ Fundamentals
	Practical MultiPaxos Specification
	Crossword Specification
	Bodega Specification

	Related Work
	Distributed Replication and Consensus
	Classic Consensus Protocols
	Erasure-Coded Consensus
	Bandwidth-Aware Consensus Designs
	Leaderless or Multi-Leader Consensus
	Leases in Consensus Systems
	Other General Consensus Topics
	Byzantine Fault Tolerance (BFT)
	Weaker Consistency Levels

	Optimistic System Design Techniques
	Optimistic Concurrency Control (OCC)
	Optimistic Conflict Resolution Mechanisms
	Speculative Execution

	Cloud Studies and System Implementations
	Cloud Workload Studies and Architecture Surveys
	Representative System Implementations

	Testing and Formal Verification
	Empirical Testing
	Formal Modeling and Specification
	Formal Verification via Proofs

	Conclusion and Future Work
	Summary
	The Principle of Optimistic Connectivity
	Crossword: Optimistic Quorum-Shards Adaptivity
	Bodega: Optimistic Composition of Readers Roster
	Summerset Distributed KV-Store Implementation
	Unifying the Consistency Levels Spectrum
	Rigorous Testing and Formal Specification

	Future Work
	Asymmetric Erasure Coded Consensus
	General-Purpose Roster Leases for Distributed Systems
	Smart Policy Making at Runtime
	Abstractions for Formal Methods and Observability

	Lessons Learned
	Closing Remarks

	Appendix: TLA+ Specifications
	TLA+ Specification of MultiPaxos in SMR Style
	MultiPaxos SMR-Style Protocol Specification
	Invariants Specification
	Model Checking Parameters

	TLA+ Specification of Crossword
	Crossword Protocol Specification
	Invariants Specification
	Model Checking Parameters

	TLA+ Specification of Bodega
	Bodega Protocol Specification
	Invariants Specification
	Model Checking Parameters

	Bibliography

