A Unified and Understandable Summary of Non-transactional
Consistency Levels and Protocols for Distributed Replication

Guanzhou Hu
UW-Madison
guanzhou.hu@wisc.edu

1 INTRODUCTION

The crucial first step towards designing distributed replication pro-
tocols and building reliable distributed storage systems is to define
their consistency semantics!. However, apart from the purely for-
mal summary by Viotti and Vukoli¢ [50], there has been no unified,
condensed definition of existing consistency levels in the context of
distributed replication systems. This is largely due to the rich and
convoluted history of research that contributed to this field. Many
of the fundamental works stemmed from various research areas,
including distributed system modeling [21, 28, 32, 34, 35, 39, 48],
multiprocessor shared memory consistency [1-3, 29, 41, 44, 47],
network reliability modeling [10, 13, 17, 19, 22], and database trans-
action processing [23, 25, 43]. They use different names within
different contexts, leading to plentiful but sometimes blurry termi-
nology when applied to distributed replication.

This report presents a unified, understandable, and sufficiently
complete summary of non-transactional consistency levels in the
context of a shared object store service. Compared to previous
work [50], this report aims to achieve the following three goals.
First, we propose a minimal yet self-contained theoretical frame-
work — the Shared Object Pool (SOP) model — which unifies the
definition of common consistency levels in a way that is under-
standable to protocol designers and system engineers. Second, we
restrict our discussion to a set of selected non-transactional con-
sistency levels that are interesting for real object storage imple-
mentations. Third, to further improve understandability, we use
examples extensively to explain the practical differences between
consistency levels, and give a mapping between consistency levels
and well-known replication protocols.

Section 2 describes our problem model setup, defines logical
ordering and validity constraints, and explains the meaning of non-
transactional consistency within this context. Section 3 describes
all levels of ordering validity constraints. Section 4 presents the
hierarchy of selected consistency levels, dissects their ordering
validity constraint guarantees, and explains their practical differ-
ences. Section 5 presents the availability upper bound of each level
in the presence of network partitioning. Section 6 gives examples
of distributed replication protocols/systems that belong to one or
multiple consistency levels.

2 PROBLEM MODEL

We model our problem setup as a conceptual storage service, which
we term a Shared Object Pool (SOP). In this section, we define the
SOP model and explain the meaning of consistency.

1By consistency, we refer to the constraints that restrict which orderings of operations
on shared data objects are considered valid, as defined in §2. This is not to be confused
with the “C” in ACID [23, 25], which refers to application-level integrity invariants. In
fact, consistency in our context maps to the “I” (isolation) in ACID, as we explain in §2.

[Client ¢] [Client d] [Client e]

\ \ \

Issue
Operation Ack

Y Y 4

cRx:1 — cWxZ£2 \

Ordering: cWxZ1 (eRx(2.3} -

dRx:1 — dWxZ£3 /

Object Pool: @ @

Figure 1: Shared Object Pool (SOP) Model.

Storage Service

2.1 Shared Object Pool (SOP) Model

We consider a storage service shared by multiple clients, as shown in
Figure 1. The service appears to be a pool of objects. Each object has
a unique name and contains a value. The only way to learn about an
object’s value is through the result of a client read operation, which
we introduce below. Objects are not necessarily stored as physical
bytes on physical machines; in other words, the SOP model is
entirely conceptual and is agnostic to any actual design of protocols
and implementation of systems.

Clients are single-threaded entities that invoke operations on
the service. When a client c issues an operation p, it will block until
the acknowledgement of p by the service. An operation is of one
of the following three types:

e Read (R): we use |[cRx:0| to denote client ¢ reading object x
and getting the result value v upon acknowledgement. A read
operation may also return a set of values, or some arbitrarily
reduced value by applying a function f to a set of values. We
denote this as |cRx:f({v1,v2})], or just |cRx:{v1, v2}| for short.

e Write (W): we use |cWx /o] to denote client ¢ overwriting object
x’s value with value v.

e Read-Modify-Write (RMW): we use |c(RMWx:0 /0’| to denote
a compound read-modify-write operation on object x, which
reads the value of x, getting v, and writes back a new value
o’ based on some arbitrary computation over the result of the
read. One representative RMW operation is conditional write,
e.g., compare-and-swap (CAS), which reads the current value,
compares it against a given value v, and writes a new value v’ if
the comparison shows equality or writes v’ = v back otherwise.

The service maintains a possibly partial ordering O of all oper-
ations that have been acknowledged. The ordering O captures all
dependencies between operations enforced by the service and there-
fore materializes the result of each operation. Given a workload of
operations, whether an ordering is acceptable or not is decided by
its validity constraints. Modeling the ordering validity constraints

UW-Madison, January 05, 2023, Madison, W1

guaranteed by the service effectively models its interface semantics,
hence its consistency level. The following three subsections explain
the meaning of workload, ordering, and consistency, respectively.

2.2 Physical Timeline Workload

In the SOP model, each client is a single-threaded entity. For a con-
crete collection of client operations, we can visualize the physical
timeline T of when each operation is issued and acknowledged.
Every row represents a client, while the x-axis represents the real-
world time at which an operation is issued or acknowledged.

For example, below is a physical timeline of two clients, ¢ and d,
performing operations on two objects, x and y:

cWx/1 cWx/3 cRy

dRx dWy /2

d:

A physical timeline effectively depicts a concrete history of client
activity. We can think of it as a specific “workload” that drives
the storage service. Given a physical timeline, the storage service
chooses a final ordering (from the set of all possible valid order-
ings allowed by its consistency level) that connects together all
operations in the timeline.

Results of read values in R and RMW operations are not included
in the physical timeline workload. Rather, they are materialized
in the final ordering decided by the service. Everything else about
client operations activity are included in the physical timeline.

Values of writes are part of the workload. Although we use
concrete numeric values as examples throughout this report, they
can also be symbolic values that capture the program logic of client
applications. For instance, |[dWy/2| in the example above may be
|dWy zv], where v is a symbolic value that represents applying a
function over the return value of d’s preceding read of object x.
The write value of a RMW operation is typically a symbolic value
that depends on the result of the read.

2.3 Definition of Ordering

An ordering is a directed acyclic graph (DAG), where nodes are
operations in a physical timeline workload. Each operation that has
been acknowledged appears exactly once in an ordering. Pending
operations that have not been acknowledged are not interesting in
our definition of consistency and are thus not explicitly discussed.
A directed edge connecting two operations represents an “ordered
before” relationship between the two.

We say an operation op; is ordered before opa (denoted op; ~>
op2) in ordering O iff. there exists either an edge in O pointing from
op1 to opz, or an operation op” such that op; ~» op” and op’ ~> opa
(transitivity). If neither operation is ordered before the other, that is,
op1 ~b opy and opa ~4 op1, then we say op and opz are unordered
with each other (denoted op; <% opy).

Given a physical timeline, an ordering is valid on the timeline
with respect to a consistency level if it satisfies the validity con-
straints enforced by that level. We will explain validity constraints
in detail in Section 3.

Early Literature Terminology. Similar definitions of “ordered
before” relationship have appeared in many early literature [6, 20,

Guanzhou Hu

28, 32, 34], where it was often termed “happens before” relation-
ship. Unordered operations in a partial ordering was often termed
“concurrent” operations. In this report, we use “ordered before” and
“happens before” interchangeably, and use “unordered” and “concur-
rent” interchangeably. We would like to emphasize that an ordering
is a logical representation of how the storage service thinks client
operations take effect. It is completely decoupled from the physical
timeline workload.

2.4 Meaning of Consistency

The consistency level of the storage service is determined by
which orderings of operations are considered valid given any physi-
cal timeline workload. In other words, the consistency level enforces
what validity constraints must be held on the ordering given any
workload. A stronger consistency level imposes more constraints
than a weaker one and therefore disallows more orderings, expos-
ing an interface that is more restrictive in the protocol design space
and in the meantime easier to use by clients. In contrast, a weaker
consistency level relaxes certain constraints and opens up new op-
portunities in the protocol design space, however providing weaker
semantic guarantees for clients.

An ordering represents logical dependencies among operations,
similar to Lamport’s definition of logical clock [34], and does not
necessarily capture physical time relationships in the timeline. In
fact, whether physical time is respected or not is one of the va-
lidity constraints that differentiate several consistency levels, as
we demonstrate in Section 4. Our SOP model shares similarities
with the specification framework for replicated data types proposed
by Burckhardt et al. [20]; the differences are that we simplify the
notion of ordering (at the cost of being less expressive in corner
cases) and cover stronger consistency levels (rather than focusing
only on causal and eventual consistency models).

Note that the SOP model is oblivious to any system design and
implementation details of the service, including but not limited to
how the service is constructed out of servers, what the network
topology looks like, and how are client-server connections estab-
lished. These internal design choices should not affect the interface
semantic exposed to clients. Different replication protocols may
make different assumptions of the system and end up providing
different consistency levels and availability guarantees. Section 5
presents the availability upper bound of each level in a system of
symmetric replicas, and Section 6 gives a mapping between well-
known replication protocols and consistency levels.

We only consider a non-transactional storage service interface,
where each operation touches exactly one object. Transactional
operations, which group multiple single-object operations together,
open up a new dimension in the consistency level space and are
essential to distributed database systems. A common practice in
modern database systems is to deploy sharded concurrency con-
trol mechanisms atop replicated data objects, effectively layering
transaction isolation guarantees separately from single-object con-
sistency. In spite of this, transaction isolation levels can indeed
be integrated into the same unified theoretical framework with
single-object consistency [7, 30] (because they are both rooted in
the validity of orderings). We leave such integration as future work.

A Unified and Understandable Summary of Non-transactional Consistency Levels and Protocols for Distributed Replication

Early Literature Terminology. In early literature on shared mem-
ory consistency, operations are further decomposed into events [28].
The invocation and acknowledgment of an operation are consid-
ered two separate events. All events form a strictly serial sequence,
named a history. Consistency levels are then defined on the validity
of well-formed histories. In this report, we simplify this notation
and choose not to use the words “event” and “history”. Instead,
we consider each operation op as a contiguous timespan from its
start (when the client issues op) to its end (when the service ac-
knowledges op and returns a result to the client). When discussing
ordering of operations, we use partial ordering to depict incompara-
bility if necessary, instead of merging them into a serial history of
events. We found this approach easier to understand and visualize.

3 ORDERING VALIDITY CONSTRAINTS

In this section, we list two sets of validity constraints that determine
which orderings are acceptable in a consistency level. Specifically,
the two sets are: 1) convergence constraints, which bound the “shape”
of the ordering, and 2) relationship constraints, which bound the
“placement” of operations with respect to each other within the
ordering given any physical timeline workload.

3.1 Convergence Constraints

The convergence constraints restrict whether a valid ordering must
be a serial order or can be a partial order, and in the latter case,
whether reads must observe convergent results. The three levels of
convergence constraints are, from the strongest to the weakest, Se-
rial Order (SO), Convergent Partial Order (CPO), and Non-convergent
Partial Order (NPO).

3.1.1 Serial Order (SO)

An SO ordering must be a total order of operations, forming a single
serial chain.

The result of a read (or RMW) on object x is determined by the
latest write (of RMW) operation that immediately precedes the read.
We say an operation op; immediately precedes operation op; iff.:

o they are on the same object x, and
® 0p ~> opz, and
e there is no other write (or RMW) operation op’ on object x s.t.
op1 ~ op’ ~> opa.
If there is no immediately-preceding operation for a read, we as-
sume a special initial value, e.g. 0, for every object.
Below is an example ordering that satisfies SO:

|cWx /1] — |dWx /2| — |cRx:2| — [dWy 2| — |cRy:2|

SO is the strongest convergence constraint that any consistency
level can enforce. Every operation has a relative position w.r.t. any
other operation in the total order. It implies that the service must
maintain a centralized view, e.g. a log, of all operations [35, 36]; an
operation from a client can never be acknowledged solely on its
own will.

Cluster of Reads. We make one exception to the seriality of op-
erations in an SO ordering: any cluster of pure read operations in
between two writes are allowed to be unordered with each other.
For example, the following ordering is a valid SO ordering:

UW-Madison, January 05, 2023, Madison, W1

[cWx /1] — |cWy/2] — |cRx:1| — [cWx /3|

N

|dRy:2|

|eRx:1|

Without loss of generality, in this report, we always present a serial
chain when giving SO ordering examples for clarity.

3.1.2 Convergent Partial Order (CPO)

A CPO ordering can be a partial order of operations. Writes may be
unordered with some other operations, forming branches.

In addition, the result of a read must be strongly convergent [50],
meaning that it must observe all operations to the same object
that immediately precede it. If multiple operations with different
values to the same object all immediately precede the read and they
are unordered with each other, then the read must return the set
of all these values (or a reduced value over the set by applying a
convergent reduction function, as described in Section 2.1).

Below is an example ordering that satisfies CPO (but does not
satisfy SO):

[cWx /1] — |dRx:1] — |¢Wy 2| — |cWy/3| — |eRy:{3, 4}]

I

|dWy 24|

|fRy:{3,4}|

Notice how certain operations are unordered with each other, for
example, |cWy /2| ¢ |[dWy 4| and |cWy /3| ¢ |dWy/4]. Also no-
tice that |eRy:{3,4}| and |eRy:{3, 4}| must observe both values 3
and 4.

CPO opens the opportunity to allow temporarily diverging states
of object values, as long as they collapse into a convergent state at
some read. This typically gives protocol designers more space to
improve the scalability and availability of the service.

3.1.3 Non-convergent Partial Order (NPO)

An NPO ordering can be a partial order of operations, just like
in CPO. Furthermore, reads (and RMWs) do not have to be con-
vergent. They are allowed to only observe a subset of values from
immediately-preceding operations, or apply a diverging reduction
function that may produce different values on different clients given
the same set of input values. Reads still have to be well-formed,
meaning they cannot observe values that come from nowhere?.

Below is an example ordering that satisfies NPO (but does not
satisfy CPO):

[cWx /1] — |dRx:1| — [¢Wy /2| — |cWy /3] — |eRy:3|
|fRy:4|

|dWy /4]
Notice that |eRy:3| is now allowed to only observe value 3 and know
nothing about the existence of value 4; similarly for |fRy:4|.

2For more complex object types such as counters or queues, this means values observed
must all obey return value consistency of the object semantic [50]. We assume return
value consistency for all consistency levels discussed in this report.

UW-Madison, January 05, 2023, Madison, W1

NPO allows clients to observe forever-diverging values of the
same object. Without careful assistance from the relationship con-
straints side, a service that only guarantees NPO can hardly provide
a reasonable consistency semantic.

3.2 Relationship Constraints

The relationship constraints restrict how operations are placed
with respect to each other in the final ordering. More specifically,
they determine what properties in the physical timeline workload
must be reflected in the ordering. The four levels of relationship
constraints are, from the strongest to the weakest, Real-Time (RT),
Causal (CASL), First-In-First-Out (FIFO), and None.

3.2.1 Real-Time (RT)

In an RT ordering, if operation op; ends before operation opy starts
in physical time (regardless of whether they come from different
clients or are on different objects), then the ordering must contain
op1 ~ op2.

For example, given the physical timeline below:

cWx/1 cWx/2
dRx dWy /3
d: — o
o eWx /3 eRy

The following is an ordering that is SO and RT:

[cWx /1] - |eWx 23] = [cWx /2] - |dRx:2| » |[dWy/3| - |eRy:3|

And the following is an ordering that is CPO and RT:
[cWx 21| — [¢Wx 22| — |dRx:{2,3}| — |dWys3| — |eRy:3|

|eWx 23|

RT is the strongest relationship constraint that any consistency
level can enforce. For each client, its operations exhibit the same
order as how the client issues them, because an operation naturally
finishes before the start of the one that follows it on the same client.
Across different clients, RT ensures that an operation observes all
operations that have been acknowledged before its start.

The RT guarantee implies that the service must deploy a mech-
anism to synchronize across all clients’ operations; an operation
from a client can never be acknowledged solely on its own will.

3.2.2 Causal (CASL)

The causal guarantee relaxes RT by allowing more cases of re-
ordering between cross-client operations. If operation opy causally
depends on operation op1 [3, 38, 39], then the ordering must contain
op1 ~> opy. Specifically, op, causally depends on op; iff.:

e opj and opy are from the same client and op; follows opy, or

® opj is a write (or RMW), op3 is a write (or RMW), and op3 returns
the written value of opy, or

o there is an operation op’ s.t. opy causally depends on op” and
op’ causally depends on op; (transitivity).

Guanzhou Hu

For instance, the following is an SO ordering that satisfies CASL
(but does not satisfy RT), given the same example timeline presented
in the RT section:

|[eWx /3] = |cWx /1| = |dRx:1| — |[dWy/3| — |eRy:3| - |[cWx 22|

Notice that |cWx /2| ends before |[dRx:1| starts in physical time, yet
|cWx /2| ~b |dRx:1| in the ordering. Also notice that e’s read |eRy:3|
causally depends on d’s write [dWy /3| (and therefore traces back
to ¢’s first write |cWx /1]), but has nothing to do with ¢’s second
write [cWx/2|. In other words, the potential “cause” of e reading
value 3 out of y (and any future operations made by e after this
read, if any) traces back to ¢’s write of value 1 to x.

We can in fact visualize the causal dependencies captured by
this ordering by drawing arrows that represent potential causality
between operations on the timeline:

cWx/1— cWx /2

d \—> dRx —» AWy /3
\i eRy

eWx/3

The following is another valid ordering that is CPO and CASL on
the same timeline example, in which case |dRx:{1, 3}| also observes
|eWx 23|, setting up an additional causal dependency:

|[cWx /1| - |dRx:{1,3}| > |dWy /3| - |eRy:3| > |cWx /2|

|eWx 23|

CASL is weaker than RT. For each client, its own operations still
exhibit the same order as how the client issues them. Across differ-
ent clients, however, CASL is less restrictive than RT. An operation
opa (or a group of operations) from a client can be reordered before
another operation op; from a different client, even though op; is
ahead of op in physical time, as long as op, does not causally de-
pend on op;. This tolerates certain forms of divergence and allows
certain operations to be processed concurrently without knowing
the existence of others.

Session Guarantees. A popular approach to interpreting causality,
as first described in [48], is to think from each client’s perspective
(termed a session) and decompose the CASL constraint into four
session guarantees:

e Read My Writes: if a write op; and a read op, are from the same
client and opy follows op1, then opa must observe op;.

e Monotonic Writes: writes by a client must happen in the same
order as they are issued by the client.

e Monotonic Reads: if two reads are from the same client, then
the latter read cannot observe an older state prior to what the
former read has observed. This means if a client issues a read op;
followed by another read opz, then op, must be ordered after
all writes that op; observes. In this report, we assume a slightly
stricter version of this guarantee, where op; must be ordered
after the read op itself.

e Writes Follow Reads, i.e., Session Causality: if a client issued a
read op’ that observed a write op1, and later issues a write ops,

A Unified and Understandable Summary of Non-transactional Consistency Levels and Protocols for Distributed Replication

then op, must become visible after op;. In this report, we assume
a slightly stricter version of this guarantee, where ops must be
ordered after the read op’ itself3.

The CASL guarantee can be defined exactly as the combination
of the four session guarantees [11, 30].

3.2.3 First-In-First-Out (FIFO)

The FIFO guarantee further relaxes CASL by removing write causal-
ity dependencies across clients. Specifically, if a read operation op,
from client ¢ observes a write op,, by a different client, now write
operations from client ¢ following op, are allowed to be ordered
before op, and op,,. In other words, writes by different clients do
not have to maintain their causality order anymore.

For instance, the following is an SO ordering that satisfies FIFO
(but does not satisfy CASL), given the same example timeline pre-
sented in the RT section:

|eWx 23| » |dWy /3| - |eRy:3| —» |cWx /1] - |[dRx:1| — [cWx /2|

Notice that [dWy/3| is now ordered before [cWx /1| and |dRx:1],
breaking the causality chain. Imagine that another client f is read-
ing objects x and y, it may then observe d’s write to y before seeing
¢’s write to x. This may lead to counter-intuitive results for client
applications, for example, letting a user see an updated profile page
before observing that the user has been removed from the access
control list.

The name FIFO comes from the fact that this level of relationship
constraint is equivalent to the following definition: writes from
each client must be observed by everyone in the same order as they
are issued by the client. Writes from different clients are allowed to
be unordered with each other. It is as if each client pushes its own
writes into a separate FIFO queue.

The FIFO guarantee can be defined exactly as the combination of
the Read My Writes, Monotonic Writes, and Monotonic Reads session
guarantees [30]. It relaxes CASL by removing Writes Follow Reads: a
write operation can now get reordered before reads that precede it
on the same client, as well as any writes from other clients observed
by those reads.

3.2.4 None Relationship

An ordering could of course place no restrictions on the relative
positions of operations. In this case, even operations issued by
the same client may get arbitrarily reordered. For example, writes
by the same client may be visible to another client in a different
order than issued, or that a client’s read may fail to observe its own
preceding write.

This level of relationship constraint demands the least amount
of synchronization across operations. Every operation may be pro-
cessed in a completely asynchronous manner.

4 CONSISTENCY LEVELS

We present the hierarchy of useful consistency levels and dissect
each level’s ordering validity constraints. We first explain the most

3Having the slightly stricter versions of Monotonic Reads and Writes Follow Reads
allows us to simplify the notion of causality and use a single ordering instead of two
(i.e., visibility order and arbitration order [50]) to define the selected consistency levels.

UW-Madison, January 05, 2023, Madison, W1

Strict Serializability transactional

non-transactional

Regular Sequential
Serializability Linearizability

(i.e., Strong Consistency,

Atomic Consistency)

/

Regular Sequential

(One-Copy)
Serializability

\ Real-time Causal
Sequential
T~
Causal+
(i.e., Causal with convergence)

— T

Causal Per-key Sequential

Bounded Staleness

Stronger than
and implies 6 é’

PRAM (i.e., FIFO) Eventual

\ Weak “/

Bold Common level

Figure 2: Hierarchy of Selected Consistency Levels.

Consistency Level ‘ Convergence ‘ Relationship

Linearizability SO RT
Regular Sequential SO RT-W & CASL-R
Sequential SO CASL
Bounded Staleness NPO Bounded-CASL
Real-time Causal CPO RT’
Causal+ CPO CASL
Causal NPO CASL
PRAM NPO FIFO
Per-key Sequential CPO CASL-per-key
Eventual CPO None
Weak NPO None

Table 1: Ordering Validity Constraints of Consistency Levels.

common consistency levels, namely linearizability, sequential con-
sistency, causal+ consistency, and eventual consistency, followed by
more subtle levels. We provide examples along the way to help
demonstrate their practical differences.

Figure 2 presents the hierarchy of selected consistency levels.
Arrows represent a “stronger than” relationship, where the source
level is strictly more restrictive than and implies the destination
level. Table 1 defines all these consistency levels by listing their
ordering validity constraints.

4.1 Linearizability

The strongest non-transactional consistency level is linearizability,
as defined by Herlihy and Wing in [28]. In our model, a linearizable
ordering can be defined as one that satisfies both SO and RT con-
straints given a physical timeline. It is a serial total order, where
each operation is ordered before all operations that start after its
acknowledgment in real time. A service that provides linearizability

UW-Madison, January 05, 2023, Madison, W1

is one that always gives a linearizable ordering for any physical
timeline workload.

Such a service must maintain some form of a serial log of all
operations, where each operation has a specific relative position
w.r.t. others. All clients agree on that same order of operations.
Furthermore, the service must keep a record of the acknowledgment
of each operation, so as to properly order all operations that start
after its acknowledgment to satisfy the real-time property.

Linearizability is often referred to as strong consistency, due to
the fact that it is the strongest possible non-transactional consis-
tency level. Linearizability is sometimes also referred to as atomic
consistency [28, 41], because a service that provides linearizability
appears to be a piece of shared memory where every client oper-
ation is an atomic memory operation. This convenient atomicity
semantic makes linearizability one of the easiest consistency levels
to reason about and verify against; we can just think of the service
as a single piece of memory and apply client operations as they
arrive, ignoring all internal details about complicated distributed
system implementation.

State Machine Replication (SMR). Since the ordering is a serial
total order, it is natural to model the object pool as a state machine
and model client operations as state-transfer commands. The service
acts as a coordinated set of replicated state machines (typically by
replicating the log of operations) and applies committed commands
in the decided serial order. This resembles the well-known State
Machine Replication (SMR) model [33, 46], which is widely used in
modeling distributed replication systems*.

Our Shared Object Pool (SOP) model is equivalent to the SMR
model if we put some restrictions on both sides. Specifically, an
SOP model where only SO orderings are accepted is equivalent
to an SMR model where the state is a collection of objects and
where there are three types of commands, namely R, W, and RMW
operations. The SOP model is more expressive than the SMR model
in the aspect that it inherently allows partial orderings, which helps
us incorporate consistency levels that do not guarantee SO. The
SMR model is more expressive than the SOP model in the aspect
that it allows more general state machines with custom states and
custom commands, not only reads and writes.

4.2 Sequential Consistency

Sequential consistency was first defined by Lamport in [32]. The
original interpretation of this level was that all clients agree on the
same sequence of operations applied by the service, where opera-
tions from each client appear in the sequence in the same order as
they are issued by the client, hence the name “sequential consis-
tency”. In our model, a service that provides sequential consistency
always gives an ordering that is SO and CASL for any physical
timeline workload.

Compared to linearizability, since the ordering does not have
to be RT anymore, sequential consistency allows the service to
move an operation (or a group of operations) backward in time,

4We would like to clarify another closely related term — consensus. A consensus protocol,
e.g. Paxos [35, 36], operates at a lower level than a replication protocol; it is used to
achieve agreement on a single value (or a sequence of values in optimized variants)
among a set of message-passing processes. A complete SMR protocol, e.g. Multi-
Paxos [36] or Raft [45], typically builds on top of or inherently integrates a consensus
protocol.

Guanzhou Hu

reordering it before another group that does not causally precede it.
This property is sometimes referred to as unstable ordering [9, 12],
in contrast to stable ordering provided by linearizability.

For example, given the following physical timeline:

cWx/1

dWx /2 dRx

A linearizable ordering must be SO and RT:

[ceWx 21| — |dWx 22| — |dRx:2|

While a sequentially consistent protocol is allowed to give the
following ordering that is SO and CASL:

[dWx 22| — [¢Wx /1| — |dRx:1|

The reordering is allowed because client d did not issue any read
on object x before |dWx /2| that observed value 1 written by client
c. Therefore, there is no causal dependency from client ¢’s write
|[cWx 21| to client d’s write |dWx /2|.

At first glance, it may be hard to tell the exact differences be-
tween linearizability and sequential consistency. Attiya and Welch
presented a quantitative analysis of the performance implications of
these two levels, showing that linearizability is strictly more expen-
sive to implement than sequential consistency for common object
types in systems without perfectly synchronized clocks. What se-
mantic power do we lose if we relax the real-time guarantee and
allow certain reordering? The following paragraphs explain their
three practical differences: 1) sequential consistency does not cap-
ture external causality dependencies, 2) sequential consistency is
non-local, and 3) it takes extra care to add read-modify-write (RMW)
operation support to a sequentially-consistent protocol.

External Causality Dependencies. So far we have assumed that
all clients communicate only with the service and there are no
external communication channels between clients that bypass the
service, as depicted in Figure 1. However, in real distributed sys-
tems such as cloud databases [16, 24, 31, 49], clients of a replicated
storage service may be part of a higher-level system. It is common
for clients to coordinate with each other through external causal-
ity dependencies, which are impossible for the service to capture
without using physical time.

In the example above, it could be that client c first issues a write
of value 1 to object x and waits for its acknowledgment. It then
sends a message to client d through an external inter-client channel
saying ‘I have finished my write to x and you can go ahead to
operate on x”. Client d then issues its own write of value 2 and
expects to read out value 2. However, since the message from c
to d is external to the service, a sequentially consistent service
may reorder d’s write ahead of ¢’s, and return value 1 for d’s read.
Figure 3 demonstrates this phenomenon.

A service that provides linearizability will be able to capture such
implicit external dependencies, because of the real-time property (as
|dWx /2] starts after |cWx /1|’s acknowledgment in physical time).

A Unified and Understandable Summary of Non-transactional Consistency Levels and Protocols for Distributed Replication

@ External Message: c has finished WxZ1

[Client ¢] [Client d]
A A
@) ® ® o |1 o
WxZ1 Ack Wx«Z2 Ack Rx Ack: 1
A A Y

Ordering: dWxZ£2 — cWxZ1 — dRx:1

Object Pool: @

Figure 3: Demonstration of External Causality Dependencies.

Sequentially Consistent
Service

We say that linearizability captures external causality dependencies®,

while sequential consistency does not.

Implementation Locality. Herlihy and Wing have proven in [28]
that a protocol that implements sequential consistency for each
object does not necessarily guarantee overall sequential consistency
across all operations. Formally, we say that sequential consistency
is non-local: it is possible for an ordering to be SO and CASL on
each object, while not SO or CASL overall.

For example, given the following physical timeline:

cWx /1 cWy/1 cRy

dWy /2 dWx 22 dRx

The following ordering is SO and CASL on each object (i.e., the
subordering on object x and y are both SO and CASL), but the overall
ordering is CPO and FIFO:

[cWy /1| — |¢Wx /1] — |cRy:2|

> 2]

|[dWx 22| — |[dWy /2] — |dRx:1|

Notice that given the result of d reading 1 out of x and ¢ reading 2
out of y, it is impossible to resolve an SO and CASL ordering across
all six operations. This implies that a protocol that guarantees
sequential consistency on each object may fail to come up with
a global sequence of operations. In fact, such a protocol provides
per-key sequential consistency (see Section 4.5.6).

In contrast, a service that provides linearizability on a per-object
basis is guaranteed to provide overall linearizability [6, 28]. We say
that linearizability is local, allowing modular implementation and
verification. The above example can only return value 1 for ¢’s read
and value 2 for d’s read with such a service.

Support for RMW Operations. A protocol that implements se-
quential consistency for only read (R) and write (W) operations
may take advantage of the unstable ordering of writes to speed
up the processing of writes. Shared register protocols [5, 9] are the
primary examples of this category. We describe shared registers in
more detail in Section 6.

Note that this is not to be confused with external consistency in distributed transaction
processing [15, 18], which means that transactions are processed in the same order as
they commit, i.e., an enhanced version of strict serializability.

UW-Madison, January 05, 2023, Madison, W1

Adding support for read-modify-write (RMW) operations to
such protocols is not a trivial task. In particular, we cannot simply
treat RMW operations in the same way as pure writes, because
RMW:s require a stable base value to determine the result of the
read. Systems that demand compare-and-swap (CAS) operations,
such as the LogOnce operation in [24], may have to go for a service
that provides linearizability (or regular sequential consistency [26],
as will be described in Section 4.5.1). Gryff [12] is a recent protocol
that adds RMW support atop shared registers.

4.3 Causal+ Consistency

If a global total order is not required, it may be desirable to fur-
ther relax sequential consistency and embrace the family of causal
consistency levels. Causal consistency stems from the definition of
causal memory [3]. Lloyd et al. pointed out in [38] that distributed
replication protocols typically implement a slightly stronger ver-
sion of causal consistency, which they term causal+ consistency. It
is essentially causal consistency with convergence guarantee.

In our model, a service that provides causal+ consistency always
gives an ordering that is CPO and CASL. Compared to sequential
consistency, the ordering does not have to be a serial total order but
instead may leave certain operations unordered with each other.
This opens opportunities to improve the scalability of a replication
protocol. However, all causal dependencies still have to be reflected
in the decided ordering.

For example, given the following physical timeline:

cWx /1 cWy/1
dWx /2 dRy
d: — o — o
eRx eWy/3

A service that provides causal+ consistency may give the follow-
ing ordering that is CPO and CASL:

[cWx 21| — |cWy 1]

>

|[dWx /2] — |eRx:{1,2}| — |eWys3| — |dRy:3|

Notice that [¢Wx /1| and [dWx /2| are unordered with each other,
and |eRx:{1, 2}| observes the values of both writes, hence causally
depends on both. |eWy /3| follows e’s read and hence causally de-
pends on both writes as well. |dRy:3| observes the result of e’s write
and hence continues this causal dependency chain. In contrast,
|cWy /1] is dangling and has not been observed by any reader.

Interpreting A Partial Ordering. Assuming that we are designing
a replication protocol atop a set of replica nodes, an intuitive way
to interpret a partial ordering in the SOP model is to think from
each replica’s perspective. Replicas are free to apply an arbitrary
order between operations that are unordered with each other in the
ordering decided by the consistency level. Figure 4 demonstrates
this perspective.

With a consistency level that always gives an SO ordering, all
replicas agree on the same sequence of operations. With a consis-
tency level that allows CPO or NPO ordering, replicas may apply

UW-Madison, January 05, 2023, Madison, W1

CWx/1 — dWxZ2 — cWy /1 — eRx:{1.2} --- |

@ @ dWx£2 — cWx£1 — cWyZ1 — eRx:{1.2} ...

cWx£1 — dWx£2 — eRx:{1.2} — cWy£1 ... @ @

Replica

Causally Consistent Service

Figure 4: Partial Ordering Interpretation with Replicas.

operations in different orders, as long as everyone is coherent with
the required validity constraints. This removes the need to coordi-
nate a global sequence for operations that do not causally depend
on each other, and is the root source of the scalability benefits
of causal+ or weaker consistency levels. Lloyd et al. showed that
causal+ and weaker consistency levels are achievable in available,
low-latency, partition-tolerant, and scalable (ALPS) systems, while
linearizability and sequential consistency are not [38].

Why Causality. The causal property is desirable in many applica-
tion scenarios. For example, [38] describes a scenario where client
c is sharing a photo with client d by first uploading the photo to
an image store s and then adding a reference to the photo to the
album a. Client d then checks c¢’s album and, upon seeing a new
reference, goes to fetch the referenced photo:

cWs/photo cWasrefppoto

dRa dRs

For consistency levels that do not honor causal dependencies,
such as per-key sequential consistency or eventual consistency;, it
is possible for d to observe a new reference out of album a but
fail to see the new photo from store s (because |cWs/photo| ~»
|dRs:mil| in the decided ordering). Causal and thus causal+ consis-
tency prevents this type of counter-intuitive phenomenon, because
causal dependencies will force [c¢Ws/photo| ~> |dRs:photo| since
[cWazrefypoto| ~ [dRa:refppotol-

Why Convergence. Compared to regular causal consistency, causal+
consistency demands a convergent conflict resolution mechanism
for conflicting values observed. In other words, all read operations
that observe the same set of unordered values on an object must
resolve into the same return value. Examples of such conflict res-
olution mechanisms include last-writer-wins, taking-the-max, and
taking-the-sum.

Without the convergence guarantee, regular causal consistency
is allowed to forever return different values for reads on the same
object from different clients. This may be undesirable in many
application scenarios. For example, [38] describes a scenario where
two clients, ¢ and d, happen to concurrently update the time for a
reminder event ¢:

Guanzhou Hu

cWt/7pm cRt

J dWt/8pm dR¢

Original causal consistency may yield the following NPO order-
ing, letting both ¢ and d falsely believe that their own update is the
finalized one, even though they have indeed observed both writes:

|cWt27pm| — |cR¢:7pm)|

|dWt/8pm| — |dRt:8pm|

Causal+ consistency guarantees that ¢ and d agree on the same
time value after they have observed both writes. Assuming a last-
writer-wins conflict resolution policy, the service may check the
acknowledgment timestamp of both writes and determine that the
reduced value should be 8pm:

|cWt/7pm| — |cRt:f ({7pm, 8pm}) = 8pm)|

|dWt/8pm| — |dRt:f ({7pm, 8pm}) = 8pm|

With a service that provides linearizability or sequential consis-
tency, conflicts are avoided altogether by enforcing an SO ordering.
However, as previous paragraphs have explained, such protocols
lose the benefits of scalable implementation and are not achievable
in ALPS systems [38].

4.4 Eventual Consistency

Eventual consistency, as the name suggests, is a consistency level
that only requires reads on an object to return a consistent value
if no updates are being made to the object [51]. There is no rela-
tionship constraint between operations, meaning that any pairs of
operations issued by the same client are allowed to get reordered
in the final ordering. Eventual consistency is widely adopted in
geo-scale systems where the demand for high performance and
scalability outweighs the need for data consistency.

Eventual Convergence. Although eventual consistency is some-
times used interchangeably with weak consistency, it does impose
one requirement on the service: the decided ordering must be con-
vergent. In other words, after all the writers on an object become
inactive and after all the writes become visible to readers, reads
on the object must all return the same value. In our model, this is
captured by the CPO constraint.
For example, given the following physical timeline:

cWx/1 cWx/2 cRx

dWx /3

d B ——

An eventually consistent service is allowed to produce the fol-
lowing CPO ordering:

[cWx /2| — [¢Wx /1| — |cRx:{1, 3}

|[dWx 23|

A Unified and Understandable Summary of Non-transactional Consistency Levels and Protocols for Distributed Replication

Notice that |cWx 22| is allowed to be ordered before |[c¢Wx /1|, vio-
lating the FIFO property. In real implementations, eventually consis-
tent systems typically process every write operation in an asynchro-
nous manner to maximize concurrency. Also notice that |cRx:{1, 3}|
must return a convergent value over the set {1, 3}.

Quiescent Consistency. A closely related, vaguely defined term is
quiescent consistency, as mentioned in [27]. In a commonly accepted
definition of quiescent consistency, special periods of physical time
are identified, during which no write operations are happening.
Every such contiguous time period is called a quiescence period.
Each quiescence period orders all operations that are acknowledged
ahead of the period before operations that start after the period.
With this definition, quiescent consistency is weaker than even-
tual consistency, because it makes no guarantees if a system-wide
quiescence period never appears [50].

4.5 Other Consistency Levels

In this section, we briefly describe the rest of the selected consis-
tency levels other than the four most common ones. These levels
explore different combinations of convergence and relationship
constraints to refine the consistency level spectrum.

4.5.1 Regular Sequential Consistency

Helt et al. formalized the notion of regular sequential consistency
in a recent work [26]. Regular sequential consistency takes the
middle ground between linearizability and sequential consistency.
It combines the strengths of both by imposing different levels of
relationship constraints for read-only operations and write oper-
ations. Specifically, all write operations (and RMWs) must honor
the real-time property (denoted RT-W), while read operations are
allowed to travel back in time as long as they still honor causality
(denoted CASL-R).
For example, given the following physical timeline:

cWx/1 cRx

——o

4 dWx /2

A service that provides regular sequential consistency may give
the following SO ordering, where c’s read travels back in time:

[ceWx 21| — |cRx:1] — |[dWx /2|

Invariant-equivalence to Linearizability. It is shown in [26] that
regular sequential consistency is invariant-equivalent to lineariz-
ability, meaning that: 1) it is local (see Section 4.2 for the definition
of implementation locality) and 2) it inherently supports RMW
operations thanks to stable ordering of writes. However, it does
not guarantee to capture external causality dependencies, making it
still slightly weaker than linearizability. If external causality is not
an issue, a linearizable replicated storage system can seamlessly
adopt regular sequential consistency to improve the performance
of read-only operations.

The transactional version of this consistency level is regular
sequential serializability [26], where read-only transactions are al-
lowed to get reordered in the serialization sequence, while all other
transactions must honor RT. Similar properties have been exploited

UW-Madison, January 05, 2023, Madison, W1

in transactional database systems that use certain Timestamp Or-
dering (T/O) optimistic concurrency control mechanisms [53].

4.5.2 Real-time Causal Consistency

Real-time causal consistency is a strengthening of causal+ consis-
tency by bringing back a relaxed version of the real-time property.
On top of causal+, real-time causal further requires that: if opera-
tion op; is acknowledged before the start of op, in physical time,
then ops ~4 op1 in the final ordering. Notice that this is a weaker
constraint than what we have defined as RT, since RT would enforce
op1 ~ opy. We denote this weaker constraint as RT’.

The discussion around causality and convergence is tightly cou-
pled with availability guarantees. Assuming that the system is
composed of a set of symmetric message-passing replica nodes, Ma-
hajan et al. have proven in [39] that real-time causal consistency is
the strongest possible level that is achievable in an always-available,
one-way convergent system (which is implied by our definition of
sticky available in Section 5).

Fork-based Consistency Models. A family of fork-based con-
sistency models has been developed to deal with Byzantine faults
in a system containing untrusted replica nodes. For example, a
fork-linearizable system ensures that if any two replicas have ob-
served different orderings (i.e., forked by an adversary, even for
one operation), then their writes will never be visible to each other
afterward (i.e., they cannot be joined again). Fork causal consistency
is a family of consistency levels that weaken causal consistency to
tolerate Byzantine replicas and enforce causal consistency among
correct replicas [40]. It is proven that fork causal consistency is
unachievable in an always-available, one-way convergent system,
while bounded fork-join causal consistency, a refinement of fork
causal, is achievable in such a system [39].

4.5.3 Causal Consistency

Section 4.3 has explained the most essential pieces of causal and
causal+ consistency. To recap, a service that provides causal con-
sistency must give an ordering that is NPO and CASL given any
physical timeline workload. Such an ordering captures all the po-
tential causality dependencies between operations. Compared to
causal+, original causal consistency does not demand convergent
conflict resolution, meaning that different clients are allowed to
forever retrieve different values from reads on the same object.

As mentioned in Section 3.2.2, causal consistency can be defined
exactly as the combination of the four session guarantees [11, 30].

4.5.4 Bounded Staleness

Although causal consistency enables the powerful abstraction of
causal dependency, it does not provide any guarantee on the “time-
liness” of when writes become visible to reads. Bounded staleness
is a vaguely-defined family of consistency levels that typically
strengthen causal consistency by adding recency guarantees [42].
Bounded staleness levels put an extra constraint on the delay
between the acknowledgment of a write by client ¢ on object x and
when reads from other clients on x must reflect the effect of the
write. The delay constraint may be expressed in the following ways:
1) at most j more write operations by client c, or 2) at most k more
updates on object x, or 3) at most a physical time interval t, or 4)

UW-Madison, January 05, 2023, Madison, W1

a mixture of the three, e.g., whichever is reached first. We use the
name Bounded-CASL to broadly refer to the combination of the
CASL relationship guarantee with any delay constraint.

Because of the extra delay constraint, bounded staleness levels
are incomparable with both sequential and causal levels, because
they both do not express any recency requirements.

4.5.5 PRAM Consistency

Pipeline Random Access Memory (PRAM) consistency [37], or simply
FIFO consistency, is a weaker consistency level than causal consis-
tency, where causality across clients is not captured. It was origi-
nally defined within a shared memory system context. In our model
of distributed replication, it is a consistency level that requires NPO
and FIFO ordering.

Using the notion of session guarantees, PRAM consistency can be
defined exactly as the combination of Monotonic Writes, Monotonic
Reads, and Read My Writes [30]. It does not enforce Writes Follow
Reads, hence not capturing cross-client causality.

Consistent Prefix. The combination of Monotonic Writes and
Monotonic Reads are sometimes referred to as Consistent Prefix [42].
This name comes from the fact that, for every writer, all clients will
observe a monotonically-growing prefix of its writes.

Although Figure 2 does not include bounded staleness and consis-
tent prefix because of their vague definitions, we can easily derive
a strength rank of these two levels w.r.t. causal and PRAM consis-
tency: any Bounded Staleness configuration > Causal > PRAM >
Consistent Prefix.

4.5.6 Per-key Sequential Consistency

As Section 4.2 pointed out, sequential consistency is non-local, mean-
ing that a protocol that enforces SO and CASL ordering on a per-
object basis (termed CASL-per-key) does not necessarily guarantee
a global SO and CASL ordering across all operations. In fact, such
a protocol implements per-key sequential consistency.

This consistency level was first studied in the PNUTS system [14],
a highly-concurrent data serving system that provides per-record
consistency. However, modern distributed systems typically have
complicated client-side logic layered on top of a non-transactional
object store, where each client is interested in way more than one
object. This makes the object-key-oriented consistency level less
appealing than session-oriented causality levels. The photo-album
case described in Section 4.3 would be a good example that demon-
strates the limitations of per-key sequential consistency.

4.5.7 Weak Consistency

Weak consistency is at the bottom of the consistency level spec-
trum and is weaker than all other consistency levels. In our model,
weak consistency can be defined as enforcing an NPO and None-
relationship ordering. It can simply be interpreted as “not providing
any consistency guarantees at all”. Note that this level is irrelevant
to weak ordering in shared memory consistency [29, 44].

4.5.8 Mixed/Hierarchical Consistency Levels

So far, we have assumed a single conceptual storage service without
making any assumptions on the internal implementation of the
service. Real distributed systems may, however, contain multiple

10

Guanzhou Hu

layers or scopes of sub-services, each providing a different con-
sistency level semantic. For example, Cosmos DB [42] provides a
stronger consistency guarantee for clients within the same region
than those distributed across multiple regions, effectively exposing
a 2-layer consistency model. Given the implementation details of a
system, we can always refine the consistency level spectrum and
define mixed or hierarchical consistency levels that are composed
of multiple basic levels.

Yu and Vahdat [52] proposed a continuous consistency model for
replicated services, where consistency is defined as a 3-tuple, (nu-
merical error, order error, and staleness), named a conit. This leads to
a fairly fine-grained consistency spectrum and allows applications
to dynamically balance consistency and performance.

4.5.9 Memory Consistency Models

Distributed replication consistency is tightly related to early works
in multiprocessor shared memory consistency. Hill defined hard-
ware memory consistency model as the interface contract for memory
in a shared memory multiprocessor, where instructions may be ex-
ecuted out-of-order [29]. Many of the consistency levels described
in this report originated from multiprocessor shared memory con-
sistency models. The three primary examples are sequential con-
sistency, which was first defined by Lamport in [32], causal consis-
tency, which was adapted from causal memory [3], and PRAM con-
sistency, which was adapted from FIFO processor consistency [2].
Other relaxed memory consistency models and techniques, such as
weak ordering, acquire/release consistency, entry consistency, cache
coherence, and memory fences/barriers [29, 44], are out of the scope
of this report.

5 AVAILABILITY GUARANTEES

Besides consistency, availability is also an important part of the
interface contract between a distributed storage service and clients.
Availability is not implementation-oblivious; the meaning of fault-
tolerance and availability can only be defined given a specific sys-
tem model. In this section, we consider a simple system model
of symmetric replicas and analyze the best possible availability
guarantee that each consistency level can provide in such a system.

5.1 Symmetric Replicas System Model

We consider a fault-tolerant system implementation of the object
store service composed of a set of symmetric replica servers, simi-
lar to what Figure 4 depicts. Each replica node holds a complete
copy of all objects and can communicate with any other replica
through message-passing over the network. Clients establish con-
nections to one (or more) replica nodes, issue operations, and wait
for acknowledgments.

Data Partitioning. Since we only consider non-transactional work-
loads, this symmetric model can be easily extended to incorporate
data partitioning (or called partial replication), where each node is
responsible for a subset of objects. For each object, only the set of
nodes that hold the object is under consideration for availability of
that object.

Client-side Caching. A client may act as a partial replica server
by doing client-side coherent caching w.r.t. the consistency level for

A Unified and Understandable Summary of Non-transactional Consistency Levels and Protocols for Distributed Replication

its reads and writes [8, 48]. In this case, we count the client itself
as a valid partial replica. We leave a more detailed discussion on
client-side caching as future work.

5.2 Meaning of Availability

We say a system of symmetric replicas provides high availability
if, in the presence of arbitrarily long network partitions between
arbitrary replicas, every client that can establish connection to one
(or a specific set of) non-failing replica(s) of an object eventually
gets acknowledged for all operations it issues on that object [7].

Failure Model. We allow the following two types of failures:

o Fail-stop: a replica server may crash and stop responding to any
incoming messages at any time point.

o Network partition: the network channel between any two groups
of replicas may break. A failed replica is indistinguishable to its
peers from a completely network-partitioned replica or a replica
that is just running very slowly.

We do not consider Byzantine faults [13, 17, 39], where a server
node may maliciously send out inconsistent information, or where
the content of network messages may get tampered with. We leave
the integration of Byzantine faults as future work.

Availability Levels. We consider three coarsely-defined levels of
availability guarantees in the presence of arbitrarily long network
partitions between arbitrary pairs of replicas [30]:

o Totally available: every client that can contact at least one non-
failing replica of an object eventually receives responses that
honor the consistency level for operations on that object.

o Sticky available: a client maintains stickiness if it keeps contacting
the same replica for each of its operations on an object. The
system is sticky available if every client that sticks to a non-
failing replica of an object eventually receives responses that
honor the consistency level for operations on that object.

o Weakly available: the system does not guarantee progress under
arbitrary network partitions.

Note that the “weakly available” category can be further decom-
posed into finer-grained, protocol-specific availability levels if we
can bound the number of failures to a certain quantity. For exam-
ple, most state machine replication protocols are available when at
least a majority of nodes are healthy and can communicate with
each other. We mention such availability implications in Section 6.
Also, extra care needs to be taken to define reasonable transactional
availability guarantees [7], which is out of the scope of this report.

5.3 Availability Upper Bounds

Brewer’s famous CAP theorem states that a distributed system
cannot achieve Consistency, Availability, and network Partition-
tolerance all at the same time [10]. This informal description is
often misunderstood and taken in an overly restrictive form. A
more precise statement would be that a distributed system can-
not achieve linearizability, total/sticky availability, and network
partition-tolerance all at the same time. This statement has been
proven by Gilbert and Lynch in [19].

By relaxing linearizability to weaker consistency levels, it is
often (but not always) possible to derive a replication protocol that
guarantees sticky or even total availability under arbitrary network

11

UW-Madison, January 05, 2023, Madison, W1

Consistency Level [Availability Upper Bound

Linearizability
Regular Sequential
Sequential
Bounded Staleness
Real-time Causal
Causal+
Causal
PRAM
Per-key Sequential

Session Guarantees:
Read My Writes
Writes Follow Reads
Monotonic Reads
Monotonic Writes

Eventual
Weak

Weakly available

Sticky available

Totally available

Table 2: Availability Upper Bound of Consistency Levels.

partitions. Table 2 lists the availability upper bound of each of the
selected consistency levels.

Most of these availability bounds have been proven in previous
literature [7, 39]. Linearizability, regular sequential consistency, and
bounded staleness are obviously weakly available because of the
RT constraint or the delay constraint: clients connecting to servers
separated on opposite sides of a network partition have no way
of knowing the acknowledgment time of operations made on the
other side, unless operations on that side are blocked indefinitely.
Sequential consistency cannot be sticky available because of its
non-locality, as counter-examples similar to the one presented in
Section 4.2 can be constructed; in contrast, per-key sequential is
sticky available. Bailis et al. have proven that the writes follow
reads, monotonic reads, and monotonic writes session guarantees
are totally available, while read my writes requires stickiness [7].
Causal and PRAM consistency are therefore both sticky available.
Mahajan et al. have proven that real-time causal is as available as
causal consistency (given one-way convergence, which is assumed
in our model) [39]. Causal+ is also sticky available following this
result. Eventual and weak consistency are both totally available:
clients can make progress on any live server.

Limitations. The availability upper bounds presented here are
rather coarse-grained and do not capture everything about avail-
ability. First, they say nothing about recency guarantees, i.e., how
stale are read results allowed to be. For example, although causal
consistency is sticky available, a network partition may indefinitely
prevent writes made on one side from being visible to readers on
the other side. Bounded staleness levels would thus all be weakly
available in our definition. Second, these availability bounds also do
not consider partial network partitions, where certain pairs nodes
cannot directly communicate with each other, but some indirect
multi-hop paths are still available. Alfatafta et al. discussed partial
network partitions and mechanisms to exploit available indirect
paths in [4].

UW-Madison, January 05, 2023, Madison, W1

6

PROTOCOL EXAMPLES

TODO: expand this section...

Consensus primitives: Paxos, Speculative-Paxos, Ben-Or algo-
rithm, randomized consensus, ABD shared register, CASPaxos,
weighted voting, quorum consensus

Linearizable SMR protocols & systems:

— Leader-based protocols atop Paxos: Multi-Paxos, Cheap-Paxos,
Fast-Paxos, Vertical-Paxos, FPaxos, Generalized-Paxos, View-
stamped replication, Raft, Paxos summary

— Multi-leader protocols (optimizing latency/contention): Men-
cius, EPaxos, WPaxos, AllConcur, RIFL, Atlas

— Chain-topology protocols (optimizing throughput): Chain
replication, CRAQ, Ring-Paxos, Multi-Ring-Paxos, ChainPaxos

- SMR with Error Correction Code (ECC) techniques: RS-Paxos,
CRaft

— SMR with randomized consensus: Rabia

— Scalability-focused optimizations: HP-SMR, S-SMR, DS-SMR,
P-SMR, OP-SMR, Insanely-scalable SMR, Compartmentaliza-
tion

— Durability-oriented optimizations: Durable SMR, SDPaxos,
Consistency-aware durability, Skyros Nil-externality

— Fail-slow tolerance enhancements: SDPaxos, Copilots

- Bypassing consensus by exploiting hardware assumptions:
NOPaxos, FLAIR

Causal consistency protocols & systems: Lazy replication, Bayou,

COPS, ChainReaction, Bolt-on causal consistency, Occult, TCC-

Store, UniStore

Deployed systems:

— Coordination service & Master replication: Chubby, ZooKeeper,
Niobe, GFS

— Industrial transactional database systems: Spanner, F1, FaRM,
FaRMv2, Aurora, TiDB, FoundationDB, CockroachDB

— Systems with weaker/continuous consistency guarantees: PRACTI,

TACT, PNUTS, Dynamo, Cassandra, DynamoDB
— Deployed system measurement & surveys: Consensus in the
cloud, Paxi, Cloud OLTP eval
Programming abstractions, tools, & services: CORFU, Tango
(shared log abstraction), uKharon (membership service), Nifty
(masking partial network partitioning), virtual synchrony, Sinfo-
nia, Derecho, DepFast (general libraries)

REFERENCES

[1

[2

] SV. Adve and K. Gharachorloo. 1996. Shared memory consistency models: a
tutorial. Computer 29, 12 (1996), 66-76. https://doi.org/10.1109/2.546611
Mustaque Ahamad, Rida A. Bazzi, Ranjit John, Prince Kohli, and Gil Neiger.
1993. The power of processor consistency. In Proceedings of the 5th Annual ACM
Symposium on Parallel Algorithms and Architectures, SPAA 1993 (Proceedings of
the 5th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
1993). Association for Computing Machinery, Inc, 251-260. https://doi.org/10.
1145/165231.165264 Funding Information: * Thk work was supported in part
by the National Science Foundation under grants CCR-8619586, CCR-8909663j
and CCR-9106627. Authors’ address: College of Computing, Georgia Institute of
Technology Atlanta, Georgia 30332-0280. t Tlds author was supported in part
by a scholarship Hariri Foundation. Publisher Copyright: © 1993 ACM.; 5th
Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA 1993 ;
Conference date: 30-06-1993 Through 02-07-1993.

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto.
1995. Causal memory: definitions, implementation, and programming. Distributed
Computing 9, 1 (01 Mar 1995), 37-49. https://doi.org/10.1007/BF01784241

12

[4

[10]

—_
—_

[12

[13

[14

=
&

[16

(17

(18]

(19]

[20

[22

[23

Guanzhou Hu

Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany.
2020. Toward a Generic Fault Tolerance Technique for Partial Network Partition-
ing. In Proceedings of the 14th USENIX Conference on Operating Systems Design
and Implementation (OSDI’20). USENIX Association, USA, Article 20, 18 pages.
Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. 1995. Sharing Memory Robustly
in Message-Passing Systems. J. ACM 42, 1 (jan 1995), 124-142. https://doi.org/
10.1145/200836.200869

Hagit Attiya and Jennifer L. Welch. 1994. Sequential Consistency versus
Linearizability. ACM Trans. Comput. Syst. 12, 2 (may 1994), 91-122. https:
//doi.org/10.1145/176575.176576

Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and
Ton Stoica. 2013. Highly Available Transactions: Virtues and Limitations. Proc.
VLDB Endow. 7, 3 (nov 2013), 181-192. https://doi.org/10.14778/2732232.2732237
Peter Bailis, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. 2013. Bolt-
on Causal Consistency. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data (New York, New York, USA) (SIGMOD
’13). Association for Computing Machinery, New York, NY, USA, 761-772.
https://doi.org/10.1145/2463676.2465279

Alysson Bessani, Paulo Sousa, and Miguel Correia. 2010. Active Quorum Sys-
tems. In Proceedings of the Sixth International Conference on Hot Topics in System
Dependability (Vancouver, BC, Canada) (HotDep’10). USENIX Association, USA,
1-8.

Eric A. Brewer. 2000. Towards Robust Distributed Systems (Abstract). In Pro-
ceedings of the Nineteenth Annual ACM Symposium on Principles of Distributed
Computing (Portland, Oregon, USA) (PODC ’00). Association for Computing
Machinery, New York, NY, USA, 7. https://doi.org/10.1145/343477.343502

J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. 2004. From session causality
to causal consistency. In 12th Euromicro Conference on Parallel, Distributed and
Network-Based Processing, 2004. Proceedings. 152-158. https://doi.org/10.1109/
EMPDP.2004.1271440

Matthew Burke, Audrey Cheng, and Wyatt Lloyd. 2020. Gryff: Unifying Con-
sensus and Shared Registers. In Proceedings of the 17th Usenix Conference on
Networked Systems Design and Implementation (Santa Clara, CA, USA) (NSDI’20).
USENIX Association, USA, 591-618.

Miguel Castro, Barbara Liskov, et al. 1999. Practical byzantine fault tolerance. In
OSDI, Vol. 99. 173-186.

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein,
Philip Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana
Yerneni. 2008. PNUTS: Yahoo!’s hosted data serving platform. Proc. VLDB Endow.
1(2008), 1277-1288.

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,
Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,
Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed
Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (aug 2013), 22 pages. https:
//doi.org/10.1145/2491245

Benoit Dageville, Thierry Cruanes, Marcin Zukowski, Vadim Antonov, Artin
Avanes, Jon Bock, Jonathan Claybaugh, Daniel Engovatov, Martin Hentschel,
Jiansheng Huang, Allison W. Lee, Ashish Motivala, Abdul Q. Munir, Steven Pelley,
Peter Povinec, Greg Rahn, Spyridon Triantafyllis, and Philipp Unterbrunner. 2016.
The Snowflake Elastic Data Warehouse. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SSIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 215-226. https:
//doi.org/10.1145/2882903.2903741

Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (apr 1985),
374-382. https://doi.org/10.1145/3149.214121

David Kenneth Gifford. 1981. Information Storage in a Decentralized Computer
System. Ph.D. Dissertation. Stanford, CA, USA. AAI8124072.

Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the Feasibility of
Consistent, Available, Partition-Tolerant Web Services. SIGACT News 33, 2 (jun
2002), 51-59. https://doi.org/10.1145/564585.564601

Alexey Gotsman, Hongseok Yang, Marek Zawirski, and Sebastian Burck-
hardt. 2014. Replicated Data Types: Specification, Verification, Optimal-
ity. In 41st Symposium on Principles of Programming Languages (POPL) (41st
symposium on principles of programming languages (popl) ed.). ACM SIG-
PLAN. https://www.microsoft.com/en-us/research/publication/replicated-data-
types-specification-verification-optimality/

V. Gramoli, N. Nicolaou, and A.A. Schwarzmann. 2021. Consistent Distributed
Storage. Morgan & Claypool Publishers. https://books.google.com/books?id=
bWiKzgEACAA]

Jim Gray. 1985. Why Do Computers Stop and What Can Be Done About It?
HP. Retrieved 2023-01-05 from https://www.hpL.hp.com/techreports/tandem/TR-
85.7.pdf

Jim Gray. 1988. The Transaction Concept: Virtues and Limitations. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 140-150.

https://doi.org/10.1109/2.546611
https://doi.org/10.1145/165231.165264
https://doi.org/10.1145/165231.165264
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/200836.200869
https://doi.org/10.1145/176575.176576
https://doi.org/10.1145/176575.176576
https://doi.org/10.14778/2732232.2732237
https://doi.org/10.1145/2463676.2465279
https://doi.org/10.1145/343477.343502
https://doi.org/10.1109/EMPDP.2004.1271440
https://doi.org/10.1109/EMPDP.2004.1271440
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2491245
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/2882903.2903741
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/564585.564601
https://www.microsoft.com/en-us/research/publication/replicated-data-types-specification-verification-optimality/
https://www.microsoft.com/en-us/research/publication/replicated-data-types-specification-verification-optimality/
https://books.google.com/books?id=bWiKzgEACAAJ
https://books.google.com/books?id=bWiKzgEACAAJ
https://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf
https://www.hpl.hp.com/techreports/tandem/TR-85.7.pdf

A Unified and Understandable Summary of Non-transactional Consistency Levels and Protocols for Distributed Replication

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34

[35

[36

[37

[38]

[39]

[40

[41]

[42

[43]

[44]

[45]

[46]

[47

Zhihan Guo, Xinyu Zeng, Kan Wu, Wuh-Chwen Hwang, Ziwei Ren, Xiangyao
Yu, Mahesh Balakrishnan, and Philip A. Bernstein. 2022. Cornus: Atomic Commit
for a Cloud DBMS with Storage Disaggregation. Proc. VLDB Endow. 16, 2 (nov
2022), 379-392. https://doi.org/10.14778/3565816.3565837

Theo Haerder and Andreas Reuter. 1983. Principles of Transaction-Oriented
Database Recovery. ACM Comput. Surv. 15, 4 (dec 1983), 287-317. https://doi.
org/10.1145/289.291

Jeffrey Helt, Matthew Burke, Amit Levy, and Wyatt Lloyd. 2021. Regular Se-
quential Serializability and Regular Sequential Consistency. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles (Virtual Event,
Germany) (SOSP 21). Association for Computing Machinery, New York, NY, USA,
163-179. https://doi.org/10.1145/3477132.3483566

M. Herlihy and N. Shavit. 2011. The Art of Multiprocessor Programming. Elsevier
Science. https://books.google.com/books?id=pFSwuqtJgxYC

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: A Correctness
Condition for Concurrent Objects. ACM Trans. Program. Lang. Syst. 12, 3 (jul
1990), 463-492. https://doi.org/10.1145/78969.78972

M.D. Hill. 1998. Multiprocessors should support simple memory consistency
models. Computer 31, 8 (1998), 28-34. https://doi.org/10.1109/2.707614
JEPSEN. 2016. Jepsen Consistency Models. JEPSEN. Retrieved 2023-01-05 from
https://jepsen.io/consistency

Donald Kossmann, Tim Kraska, and Simon Loesing. 2010. An Evaluation of
Alternative Architectures for Transaction Processing in the Cloud. In Proceedings
of the 2010 ACM SIGMOD International Conference on Management of Data (Indi-
anapolis, Indiana, USA) (SIGMOD °10). Association for Computing Machinery,
New York, NY, USA, 579-590. https://doi.org/10.1145/1807167.1807231
Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Comput. C-28, 9 (1979), 690-691. https:
//doi.org/10.1109/TC.1979.1675439

Leslie Lamport. 1978. The Implementation of Reliable Distributed
Multiprocess Systems. Computer Networks 2 (August 1978), 95-114.
https://www.microsoft.com/en-us/research/publication/implementation-
reliable-distributed-multiprocess-systems/

Leslie Lamport. 1978. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun. ACM 21,7 (jul 1978), 558-565. https://doi.org/10.1145/359545.
359563

Leslie Lamport. 1998. The Part-Time Parliament. ACM Transactions on Computer
Systems 16, 2 (May 1998), 133-169. Also appeared as SRC Research Report 49. This
paper was first submitted in 1990, setting a personal record for publication delay
that has since been broken by [60]. (May 1998). https://www.microsoft.com/en-
us/research/publication/part-time-parliament/ ACM SIGOPS Hall of Fame Award
in 2012.

Leslie Lamport. 2001. Paxos Made Simple. ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001) (December 2001),
51-58. https://www.microsoft.com/en-us/research/publication/paxos-made-
simple/

Richard J. Lipton and Jonathan Sandberg. 1988. PRAM: A Scalable Shared Memory.
(08 1988).

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
2011. Don’t Settle for Eventual: Scalable Causal Consistency for Wide-Area Stor-
age with COPS. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (Cascais, Portugal) (SOSP ’11). Association for Computing Ma-
chinery, New York, NY, USA, 401-416. https://doi.org/10.1145/2043556.2043593
Prince Mahajan, Lorenzo Alvisi, and Mike Dahlin. 2012. Consistency, Availability,
and Convergence. (05 2012).

Prince Mahajan, Srinath Setty, Sangmin Lee, Allen Clement, Lorenzo Alvisi,
Mike Dahlin, and Michael Walfish. 2011. Depot: Cloud Storage with Minimal
Trust. ACM Trans. Comput. Syst. 29, 4, Article 12 (dec 2011), 38 pages. https:
//doi.org/10.1145/2063509.2063512

Jenny Mankin. 2007. Memory Consistency Models: A Survey in Past and Present
Research. (2007).

Microsoft. 2022. Consistency levels in Azure Cosmos DB. Microsoft. ~Re-
trieved 2023-01-06 from https://learn.microsoft.com/en-us/azure/cosmos-db/
consistency-levels

C. Mohan, B. Lindsay, and R. Obermarck. 1986. Transaction Management in the
R* Distributed Database Management System. ACM Trans. Database Syst. 11, 4
(dec 1986), 378-396. https://doi.org/10.1145/7239.7266

David Mosberger. 1993. Memory Consistency Models. SIGOPS Oper. Syst. Rev. 27,
1 (jan 1993), 18-26. https://doi.org/10.1145/160551.160553

Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable Consen-
sus Algorithm. In Proceedings of the 2014 USENIX Conference on USENIX Annual
Technical Conference (Philadelphia, PA) (USENIX ATC’14). USENIX Association,
USA, 305-320.

Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (dec 1990), 299-319.
https://doi.org/10.1145/98163.98167

Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory
Consistency and Cache Coherence (1st ed.). Morgan & Claypool Publishers.

13

UW-Madison, January 05, 2023, Madison, W1

[48] Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M.

[49

[51

[52

[53

Theimer, and Brent B. Welch. 1994. Session Guarantees for Weakly Consistent
Replicated Data. In Proceedings of the Third International Conference on on Par-
allel and Distributed Information Systems (Autin, Texas, USA) (PDIS *94). IEEE
Computer Society Press, Washington, DC, USA, 140-150.

Alexandre Verbitski, Anurag Gupta, Debanjan Saha, Murali Brahmadesam,
Kamal Gupta, Raman Mittal, Sailesh Krishnamurthy, Sandor Maurice, Tengiz
Kharatishvili, and Xiaofeng Bao. 2017. Amazon Aurora: Design Considerations
for High Throughput Cloud-Native Relational Databases. In Proceedings of the
2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD °17). Association for Computing Machinery, New York, NY, USA,
1041-1052. https://doi.org/10.1145/3035918.3056101

Paolo Viotti and Marko Vukoli¢. 2016. Consistency in Non-Transactional Dis-
tributed Storage Systems. ACM Comput. Surv. 49, 1, Article 19 (jun 2016), 34 pages.
https://doi.org/10.1145/2926965

Werner Vogels. 2008. Eventually Consistent: Building Reliable Distributed Sys-
tems at a Worldwide Scale Demands Trade-Offs Between Consistency and Avail-
ability. Queue 6, 6 (oct 2008), 14-19. https://doi.org/10.1145/1466443.1466448
Haifeng Yu and Amin Vahdat. 2002. Design and Evaluation of a Conit-Based
Continuous Consistency Model for Replicated Services. ACM Trans. Comput.
Syst. 20, 3 (aug 2002), 239-282. https://doi.org/10.1145/566340.566342
Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. TicToc:
Time Traveling Optimistic Concurrency Control. In Proceedings of the 2016 Inter-
national Conference on Management of Data (San Francisco, California, USA) (SIG-
MOD ’16). Association for Computing Machinery, New York, NY, USA, 1629-1642.
https://doi.org/10.1145/2882903.2882935

https://doi.org/10.14778/3565816.3565837
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://doi.org/10.1145/3477132.3483566
https://books.google.com/books?id=pFSwuqtJgxYC
https://doi.org/10.1145/78969.78972
https://doi.org/10.1109/2.707614
https://jepsen.io/consistency
https://doi.org/10.1145/1807167.1807231
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://www.microsoft.com/en-us/research/publication/implementation-reliable-distributed-multiprocess-systems/
https://www.microsoft.com/en-us/research/publication/implementation-reliable-distributed-multiprocess-systems/
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://www.microsoft.com/en-us/research/publication/part-time-parliament/
https://www.microsoft.com/en-us/research/publication/part-time-parliament/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1145/2043556.2043593
https://doi.org/10.1145/2063509.2063512
https://doi.org/10.1145/2063509.2063512
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://learn.microsoft.com/en-us/azure/cosmos-db/consistency-levels
https://doi.org/10.1145/7239.7266
https://doi.org/10.1145/160551.160553
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/3035918.3056101
https://doi.org/10.1145/2926965
https://doi.org/10.1145/1466443.1466448
https://doi.org/10.1145/566340.566342
https://doi.org/10.1145/2882903.2882935

	1 Introduction
	2 Problem Model
	2.1 Shared Object Pool (SOP) Model
	2.2 Physical Timeline Workload
	2.3 Definition of Ordering
	2.4 Meaning of Consistency

	3 Ordering Validity Constraints
	3.1 Convergence Constraints
	3.2 Relationship Constraints

	4 Consistency Levels
	4.1 Linearizability
	4.2 Sequential Consistency
	4.3 Causal+ Consistency
	4.4 Eventual Consistency
	4.5 Other Consistency Levels

	5 Availability Guarantees
	5.1 Symmetric Replicas System Model
	5.2 Meaning of Availability
	5.3 Availability Upper Bounds

	6 Protocol Examples
	References

